Max Pitz

Joint work with Rolf Suabedissen

University of Oxford

1 July 2014

Max Pitz, Rolf Suabedissen The remainder of $\omega^* \setminus \{x\}$

Motivation

What is the Stone-Čech compactification of $\omega^* \setminus \{x\}$?

- Fine and Gillman '60: CH implies that for every point x ∈ ω* there are continuous bounded real-valued functions on ω* \ {x} that cannot be continuously extended to ω*.

In other words, under CH, the space $\omega^* \setminus \{x\}$ has a non-trivial Stone-Čech remainder.

- Question for this talk: Under CH, how do the Stone-Čech remainders of $\omega^* \setminus \{x\}$ look for different x?
- Frolík '67: There are 2^{c} different spaces of the form $\omega^* \setminus \{x\}$.

Motivation

What is the Stone-Čech compactification of $\omega^* \setminus \{x\}$?

- Fine and Gillman '60: CH implies that for every point x ∈ ω* there are continuous bounded real-valued functions on ω* \ {x} that cannot be continuously extended to ω*.

In other words, under CH, the space $\omega^*\setminus\{x\}$ has a non-trivial Stone-Čech remainder.

• Question for this talk: Under CH, how do the Stone-Čech remainders of $\omega^* \setminus \{x\}$ look for different x?

• Frolík '67: There are $2^{\mathfrak{c}}$ different spaces of the form $\omega^* \setminus \{x\}$.

Motivation

What is the Stone-Čech compactification of $\omega^* \setminus \{x\}$?

- Fine and Gillman '60: CH implies that for every point x ∈ ω* there are continuous bounded real-valued functions on ω* \ {x} that cannot be continuously extended to ω*.

In other words, under CH, the space $\omega^*\setminus\{x\}$ has a non-trivial Stone-Čech remainder.

- Question for this talk: Under CH, how do the Stone-Čech remainders of $\omega^* \setminus \{x\}$ look for different x?
- Frolík '67: There are $2^{\mathfrak{c}}$ different spaces of the form $\omega^* \setminus \{x\}$.

The Stone-Čech remainder ω^* of the integers

A topological characterisation of ω^* requiring the Continuum Hypothesis

The Parovičenko properties of ω^* :

- Compactness, zero-dimensionality, no isolated points;
- Disjoint open F_σ-sets have disjoint closures;
 (⇔ F-space: open F_σ-sets are C*-embedded)
- Non-empty G_{δ} -sets have non-empty interior.

Theorem (Parovičenko '63 and van Douwen/van Mill '78)

The Continuum Hypothesis is equivalent to the assertion that every Parovičenko space of weight \mathfrak{c} is homeomorphic to ω^* .

The $\kappa\text{-Parovičenko}$ spaces of weight κ

A common generalisation of the Cantor space and ω^* to higher cardinals

The κ -Parovičenko properties:

isolated points.

- Compactness, zero-dimensionality, no isolated points;
- Disjoint open $F_{<\kappa}$ -sets have disjoint closures;
- Non-empty $G_{<\kappa}$ -sets have non-empty interior.

 $\mathfrak{c} = \omega_1$.

Brouwer 1910: C	Parovičenko '63: ω^*	Negrepontis '69: S_{κ}
There is a unique	Under CH there is a	Under the assumption
0-dim. compact space	unique Parovičenko	$\kappa = \kappa^{<\kappa}$ there is a
of weight ω without	space of weight	unique κ -Parovičenko

• S_{ω} is the Cantor space C and S_{ω_1} equals ω^* under CH.

space of weight κ .

Parovičenko properties improve when taking Stone-Čech remainders

Theorem (Main Result)

Assuming CH, for every x in ω^* , the remainder of $\omega^* \setminus \{x\}$ is an ω_2 -Parovičenko space of weight 2^{ω_1} .

Hence, under the cardinal assumption $2^{\mathfrak{c}} = \omega_2$ we get:

- For every point x the space $(\omega^* \setminus \{x\})^*$ is homeomorphic to S_{w_2} , the unique ω_2 -Parovičenko space of weight ω_2 .
- In particular: the remainders of ω^{*} \ {x} and ω^{*} \ {y} are homeomorphic for all points x and y of ω^{*}.

Parovičenko properties improve when taking Stone-Čech remainders

Theorem (Main Result)

Assuming CH, for every x in ω^* , the remainder of $\omega^* \setminus \{x\}$ is an ω_2 -Parovičenko space of weight 2^{ω_1} .

Hence, under the cardinal assumption $2^{\mathfrak{c}} = \omega_2$ we get:

- For every point x the space $(\omega^* \setminus \{x\})^*$ is homeomorphic to S_{w_2} , the unique ω_2 -Parovičenko space of weight ω_2 .
- In particular: the remainders of ω^{*} \ {x} and ω^{*} \ {y} are homeomorphic for all points x and y of ω^{*}.

Overview of proof strategy

Theorem (Main Result)

Assuming CH, for every x in ω^* , the remainder of $\omega^* \setminus \{x\}$ is an ω_2 -Parovičenko space of weight 2^{ω_1} .

- **1** The remainder of $\omega^* \setminus \{x\}$ is compact, 0-dim, crowded;
- Oow '85: The theorem holds for ω* \ {p} where p is a point with a nested neighbourhood base (a so-called P-point);
- (a) Locally, apart from at most one rogue point *, $(\omega^* \setminus \{x\})^*$ looks like $(\omega^* \setminus \{p\})^*$;
- This point ★ in the remainder of ω^{*} \ {x} has an ω₁-complete neighbourhood base, so is quite nice after all;
- Outting it all together.

Overview of proof strategy

Theorem (Main Result)

Assuming CH, for every x in ω^* , the remainder of $\omega^* \setminus \{x\}$ is an ω_2 -Parovičenko space of weight 2^{ω_1} .

- The remainder of $\omega^* \setminus \{x\}$ is compact, 0-dim, crowded;
- ② Dow '85: The theorem holds for ω^{*} \ {p} where p is a point with a nested neighbourhood base (a so-called P-point);
- ⓐ Locally, apart from at most one rogue point *, $(\omega^* \setminus \{x\})^*$ looks like $(\omega^* \setminus \{p\})^*$;
- This point ★ in the remainder of ω^{*} \ {x} has an ω₁-complete neighbourhood base, so is quite nice after all;
- Outting it all together.

Overview of proof strategy

Theorem (Main Result)

Assuming CH, for every x in ω^* , the remainder of $\omega^* \setminus \{x\}$ is an ω_2 -Parovičenko space of weight 2^{ω_1} .

- The remainder of $\omega^* \setminus \{x\}$ is compact, 0-dim, crowded;
- Dow '85: The theorem holds for ω* \ {p} where p is a point with a nested neighbourhood base (a so-called P-point);
- Solution Locally, apart from at most one rogue point \star , $(\omega^* \setminus \{x\})^*$ looks like $(\omega^* \setminus \{p\})^*$;
- O This point ★ in the remainder of ω^{*} \ {x} has an ω₁-complete neighbourhood base, so is quite nice after all;
- Outting it all together.

Overview of proof strategy

Theorem (Main Result)

Assuming CH, for every x in ω^* , the remainder of $\omega^* \setminus \{x\}$ is an ω_2 -Parovičenko space of weight 2^{ω_1} .

Proof ingredients:

- The remainder of $\omega^* \setminus \{x\}$ is compact, 0-dim, crowded;
- Oow '85: The theorem holds for ω* \ {p} where p is a point with a nested neighbourhood base (a so-called P-point);
- Solution Locally, apart from at most one rogue point \star , $(\omega^* \setminus \{x\})^*$ looks like $(\omega^* \setminus \{p\})^*$;
- This point * in the remainder of ω* \ {x} has an ω₁-complete neighbourhood base, so is quite nice after all;

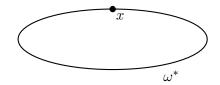
Outting it all together.

Overview of proof strategy

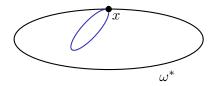
Theorem (Main Result)

Assuming CH, for every x in ω^* , the remainder of $\omega^* \setminus \{x\}$ is an ω_2 -Parovičenko space of weight 2^{ω_1} .

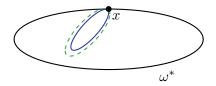
- The remainder of $\omega^* \setminus \{x\}$ is compact, 0-dim, crowded;
- ② Dow '85: The theorem holds for ω^{*} \ {p} where p is a point with a nested neighbourhood base (a so-called P-point);
- Solution Locally, apart from at most one rogue point \star , $(\omega^* \setminus \{x\})^*$ looks like $(\omega^* \setminus \{p\})^*$;
- This point * in the remainder of ω* \ {x} has an ω₁-complete neighbourhood base, so is quite nice after all;
- 9 Putting it all together.



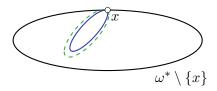
Pick an open F_σ-set U such that x ∈ ∂U.



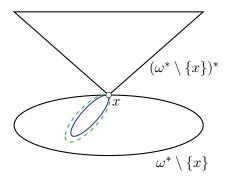
- Pick an open F_σ-set U such that x ∈ ∂U.
- $\overline{U} = \beta U$ by the *F*-space property.



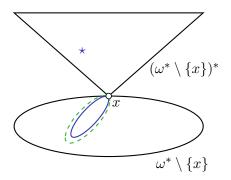
- Pick an open F_σ-set U such that x ∈ ∂U.
- $\overline{U} = \beta U$ by the *F*-space property.
- $\overline{U} \setminus \{x\}$ has a 1-pt Stone-Čech compactification.

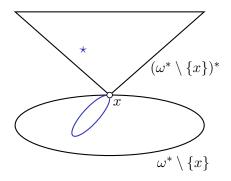


- Pick an open F_{σ} -set U such that $x \in \partial U$.
- $\overline{U} = \beta U$ by the *F*-space property.
- $\overline{U} \setminus \{x\}$ has a 1-pt Stone-Čech compactification.

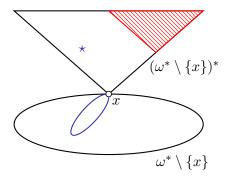


- Pick an open F_{σ} -set U such that $x \in \partial U$.
- $\overline{U} = \beta U$ by the *F*-space property.
- $\overline{U} \setminus \{x\}$ has a 1-pt Stone-Čech compactification.
- U limits only onto \star in the remainder.

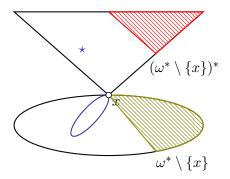




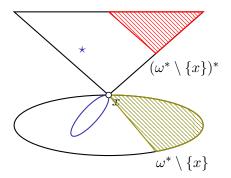
 Pick any clopen set C^{*} ≇ ★ of the remainder.



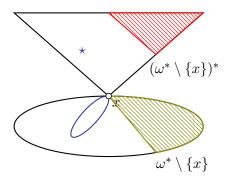
- Pick any clopen set C^{*} ≠ ★ of the remainder.
- There is a non-compact clopen set $C \subset \omega^* \setminus \{x\}$ missing U s.t. $C^* = \overline{C} \setminus C$.



- Pick any clopen set C^{*} ≇ ★ of the remainder.
- There is a non-compact clopen set $C \subset \omega^* \setminus \{x\}$ missing U s.t. $C^* = \overline{C} \setminus C$.
- $C \cup \{x\}$ looks like ω^* with xa P-point, so $C \cong \omega^* \setminus \{p\}$.



- Pick any clopen set C^{*} ≇ ★ of the remainder.
- There is a non-compact clopen set $C \subset \omega^* \setminus \{x\}$ missing U s.t. $C^* = \overline{C} \setminus C$.
- $C \cup \{x\}$ looks like ω^* with xa P-point, so $C \cong \omega^* \setminus \{p\}$.
- So C^* looks like $(\omega^* \setminus \{p\})^*$.



Parovičenko properties improve when taking Stone-Čech remainders

Theorem (Main Result)

Assuming CH, for every x in ω^* , the remainder of $\omega^* \setminus \{x\}$ is an ω_2 -Parovičenko space of weight 2^{ω_1} .

Proof ingredients:

- **1** The remainder of $\omega^* \setminus \{x\}$ is compact, 0-dim, crowded;
- Oow '85: The theorem holds for ω* \ {p} where p is a point with a nested neighbourhood base (a so-called P-point);
- Society, apart from at most one rogue point *,

 $(\omega^* \setminus \{x\})^*$ looks like $(\omega^* \setminus \{p\})^*$;

- The point * in the remainder of ω* \ {x} has an ω₁-complete neighbourhood base, so is quite nice after all;
- Outting it all together.

The Stone-Čech remainder of $\omega^* \setminus \{x\}$ An open question

In this talk: It is consistent with CH that the remainders of $\omega^* \setminus \{x\}$ are all homeomorphic, regardless of the choice of x.

Question

Is it consistent with CH that for a P-point p and a non-P-point x the remainders of $\omega^* \setminus \{p\}$ and $\omega^* \setminus \{x\}$ are non-homeomorphic?