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Motivation
What is the Stone-Čech compactification of ω∗ \ {x}?

Fine and Gillman ’60: CH implies that for every point x ∈ ω∗

there are continuous bounded real-valued functions on
ω∗ \ {x} that cannot be continuously extended to ω∗.

van Douwen, Kunen and van Mill ’89: It is consistent with
c = ℵ2 that for every point x ∈ ω∗ all continuous real-valued
functions on ω∗ \ {x} can be continuously extended to ω∗.

In other words, under CH, the space ω∗ \ {x} has a non-trivial
Stone-Čech remainder.

Question for this talk: Under CH, how do the Stone-Čech
remainders of ω∗ \ {x} look for different x?

Froĺık ’67: There are 2c different spaces of the form ω∗ \ {x}.
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The Stone-Čech remainder ω∗ of the integers
A topological characterisation of ω∗ requiring the Continuum Hypothesis

The Parovičenko properties of ω∗:

Compactness, zero-dimensionality, no isolated points;

Disjoint open Fσ-sets have disjoint closures;
(⇔ F -space: open Fσ-sets are C∗-embedded)

Non-empty Gδ-sets have non-empty interior.

Theorem (Parovičenko ’63 and van Douwen/van Mill ’78)

The Continuum Hypothesis is equivalent to the assertion that
every Parovičenko space of weight c is homeomorphic to ω∗.
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The κ-Parovičenko spaces of weight κ
A common generalisation of the Cantor space and ω∗ to higher cardinals

The κ-Parovičenko properties:

Compactness, zero-dimensionality, no isolated points;

Disjoint open F<κ-sets have disjoint closures;

Non-empty G<κ-sets have non-empty interior.

Brouwer 1910: C

There is a unique
0-dim. compact space
of weight ω without
isolated points.

Parovičenko ’63: ω∗

Under CH there is a
unique Parovičenko
space of weight
c = ω1.

Negrepontis ’69: Sκ

Under the assumption
κ = κ<κ there is a
unique κ-Parovičenko
space of weight κ.

Sω is the Cantor space C and Sω1 equals ω∗ under CH.
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The Stone-Čech remainder of ω∗ \ {x}
Parovičenko properties improve when taking Stone-Čech remainders

Theorem (Main Result)

Assuming CH, for every x in ω∗, the remainder of ω∗ \ {x} is an
ω2-Parovičenko space of weight 2ω1 .

Hence, under the cardinal assumption 2c = ω2 we get:

For every point x the space (ω∗ \ {x})∗ is homeomorphic to
Sw2 , the unique ω2-Parovičenko space of weight ω2.

In particular: the remainders of ω∗ \ {x} and ω∗ \ {y} are
homeomorphic for all points x and y of ω∗.
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The Stone-Čech remainder of ω∗ \ {x}
Overview of proof strategy

Theorem (Main Result)

Assuming CH, for every x in ω∗, the remainder of ω∗ \ {x} is an
ω2-Parovičenko space of weight 2ω1 .

Proof ingredients:

1 The remainder of ω∗ \ {x} is compact, 0-dim, crowded;

2 Dow ’85: The theorem holds for ω∗ \ {p} where p is a point
with a nested neighbourhood base (a so-called P -point);

3 Locally, apart from at most one rogue point ?,
(ω∗ \ {x})∗ looks like (ω∗ \ {p})∗;

4 This point ? in the remainder of ω∗ \ {x} has an ω1-complete
neighbourhood base, so is quite nice after all;

5 Putting it all together.
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3a Finding the rogue point ? in (ω∗ \ {x})∗
A comic-strip proof

x

ω∗\{x}

(ω∗ \ {x})∗
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A comic-strip proof

Pick an open Fσ-set U such
that x ∈ ∂U .
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3a Finding the rogue point ? in (ω∗ \ {x})∗
A comic-strip proof

Pick an open Fσ-set U such
that x ∈ ∂U .

U = βU by the F -space
property.

U \ {x} has a 1-pt Stone-
Čech compactification.

U limits only onto ? in the
remainder.

x

ω∗ \ {x}

(ω∗ \ {x})∗
?
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3b Apart from point ?, (ω∗ \ {x})∗ looks like (ω∗ \ {p})∗
Another comic-strip proof
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3b Apart from point ?, (ω∗ \ {x})∗ looks like (ω∗ \ {p})∗
Another comic-strip proof

Pick any clopen set C∗ 63 ?
of the remainder.

There is a non-compact
clopen set C ⊂ ω∗ \ {x}
missing U s.t. C∗ = C \ C.

C ∪ {x} looks like ω∗ with x
a P -point, so C ∼= ω∗ \ {p}.
So C∗ looks like (ω∗ \ {p})∗.

x

ω∗ \ {x}

(ω∗ \ {x})∗
?
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The Stone-Čech remainder of ω∗ \ {x}
Parovičenko properties improve when taking Stone-Čech remainders

Theorem (Main Result)

Assuming CH, for every x in ω∗, the remainder of ω∗ \ {x} is an
ω2-Parovičenko space of weight 2ω1 .

Proof ingredients:
1 The remainder of ω∗ \ {x} is compact, 0-dim, crowded;

2 Dow ’85: The theorem holds for ω∗ \ {p} where p is a point
with a nested neighbourhood base (a so-called P -point);

3 Locally, apart from at most one rogue point ?,

(ω∗ \ {x})∗ looks like (ω∗ \ {p})∗; X
4 The point ? in the remainder of ω∗ \ {x} has an ω1-complete

neighbourhood base, so is quite nice after all;

5 Putting it all together.
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The Stone-Čech remainder of ω∗ \ {x}
An open question

In this talk: It is consistent with CH that the remainders of
ω∗ \ {x} are all homeomorphic, regardless of the choice of x.

Question

Is it consistent with CH that for a P -point p and a non-P -point x
the remainders of ω∗ \ {p} and ω∗ \ {x} are non-homeomorphic?

Max Pitz, Rolf Suabedissen The remainder of ω∗ \ {x}


