The Katowice Problem Quidquid latine dictum sit, altum videtur

K. P. Hart

Faculty EEMCS TU Delft

Birmingham, 2 July 2014: 12:30-13:00

Let X and Y be sets and assume $b : \mathcal{P}(X) \to \mathcal{P}(Y)$ is a bijection.

Construct a bijection $c: X \to Y$

Exercise 2

Let X and Y be sets and assume $b : \mathcal{P}(X) \to \mathcal{P}(Y)$ is a bijection that preserves \subseteq (both ways).

Construct a bijection $c: X \to Y$

Note that b is actually an isomorphism of Boolean algebras.

Exercise 3

Let X and Y be sets and assume $b : \mathcal{P}(X)/fin \to \mathcal{P}(Y)/fin$ is an isomorphism of Boolean algebras.

Construct a bijection $c: X \to Y$

Note: fin is the ideal of finite subsets of X (or Y).

Solution 1

There is no such construction, *because* it is consistent to have X and Y and a bijection $b : \mathcal{P}(X) \to \mathcal{P}(Y)$, but no bijection $c : X \to Y$.

Remember what Mirna said when she quoted Ken Kunen.

No construction needed.

The bijection c is hiding in plain sight: the points of X are the atoms of $\mathcal{P}(X)$ and b maps these to the atoms of $\mathcal{P}(Y)$, that is, to the points of Y.

I know of no construction, even though we know that, in the majority of cases, a bijection c must exist.

Start at the bottom

Theorem

If $\lambda > \omega$ and $\mathcal{P}(\omega)/\text{fin}$ and $\mathcal{P}(\lambda)/\text{fin}$ are isomorphic then $\lambda = \omega_1$.

Proof.

If $\lambda \ge \omega_2$ then $\mathcal{P}(\omega)/fin$, $\mathcal{P}(\omega_1)/fin$ and $\mathcal{P}(\omega_2)/fin$ are all isomorphic. Reason: $\mathcal{P}(\omega)/fin$ is isomorphic with $\mathcal{P}(A)/fin$ for every infinite subset A of ω .

Continued

From now on we write A^* for $\mathcal{P}(A)/fin$.

Proof, part 2.

From the state isomorphism that we have for ω^* , ω_1^* and ω_2^* , we deduce that $\mathfrak{d} = \aleph_1$ and $\mathfrak{d} = \aleph_2$, in particular: $\aleph_1 = \aleph_2$, which you'll all agree flies in the face of common sense.

Higher up

Theorem

If κ and λ are infinite cardinals such that $\kappa \leq \lambda$ and such that κ^* and λ^* are isomorphic then $\lambda \leq \max{\kappa, \aleph_1}$.

Proof.

By induction on κ . True for $\kappa = \aleph_0$. Assume $\kappa \ge \aleph_1$ and true for all $\mu < \kappa$. Let $\lambda > \kappa$ and assume $h : \kappa^* \to \lambda^*$ is an isomorphism. For $\alpha < \kappa$ choose $A_\alpha \subseteq \lambda$ such that $b(\alpha^*) = A^*_\alpha$. By assumption $|A_\alpha| \le \max\{|\alpha|, \aleph_1\}$

Delft University of Technology

Higher up

Proof, continued.

Let $A = \bigcup_{\alpha} A_{\alpha}$ and $B = \lambda \setminus A$, also choose $C \subseteq \kappa$ with $h(C^*) = B^*$. Then $|A| \leq \kappa$ and $|B| = \lambda$. Also, as $B \cap A_{\alpha} = \emptyset$ we have $|C \cap \alpha| < \aleph_0$ for all α . But this gives us $|C| \leq \aleph_0$, and so, by what we had already established: $|B| \leq \aleph_1$. Contradiction.

If $\omega_1 \leqslant \kappa < \lambda$ then κ^* and λ^* are not isomorphic, and if $\omega_2 \leqslant \lambda$ then ω^* and λ^* are not homeomorphic.

A structure on ω

Work with the set $D = \mathbb{Z} \times \omega_1$ — so we have an isomorphism $h: D^* \to \omega^*$.

On the D-side we have

map

A structure on ω

On the $\omega\text{-side}$ we get

- v_n such that $v_n^* = h(V_n^*)$, for $n \in \mathbb{Z}$
- h_{lpha} such that $h_{lpha}^*=h(H_{lpha}^*)$, for $lpha\in\omega_1$
- b_{lpha} such that $b_{lpha}^*=h(B_{lpha}^*)$, for $lpha\in\omega_1$
- e_{lpha} such that $e_{lpha}^*=h(E_{lpha}^*)$, for $lpha\in\omega_1$

and the automorphism τ of ω^* given by $\tau = h \circ \sigma \circ h^{-1}$

Properties of the structure

We can replace ω by $\mathbb{Z} \times \omega$, so that $v_n = \{n\} \times \omega$.

 $\{h_{\alpha} : \alpha < \omega_1\}$ is an almost disjoint family such that whenever we have $x_{\alpha} \subseteq h_{\alpha}$ for all α then there is an X such that $x \cap h_{\alpha} =^* x_{\alpha}$ for all α .

This is a very strong property and implies, among others, that $2^{\aleph_0}=2^{\aleph_1}.$

For $\alpha < \omega_1$ define $f_\alpha : \mathbb{Z} \to \omega$ by

$$f_lpha(n) = \min\{m: \langle n,m
angle \in e_lpha\}$$

then $\langle f_{\alpha} : \alpha < \omega_1 \rangle$ is an ω_1 -scale: increasing and cofinal with respect to the order \leq^* .

$$f \leq g$$
 means $\{n : f(n) > g(n)\}$ is finite.

In terms of small cardinals: $\mathfrak{d} = \aleph_1$.

The automorphism au

First:
$$au(v_n^*) = v_{n+1}^*$$
 for all n

The equivalence classes h^*_α form a maximal disjoint family of $\tau\text{-invariant elements}$

 τ is not trivial: there is no bijection between cofinite subsets of ω that induces $\tau.$

It seems to me that all these things should not be able to coexist in this one structure.

Homework for next year: prove me wrong, or, preferably, prove me right and thus show that $\mathcal{P}(\omega)/fin$ and $\mathcal{P}(\omega_1)/fin$ are not isomorphic.

