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Shadowing in Dynamical Systems

What is Shadowing?

Preliminary Definitions

Dynamical Systems

• Let X be a compact space with metric d and let f : X → X
be a continuous function.

• The orbit of a point x ∈ X is the sequence 〈f i (x)〉i∈N.

• For ε > 0, an ε-pseudo-orbit is a sequence 〈xi 〉i∈N satisfying
d(f (xi ), xi+1) < ε for all i ∈ N.

• An ε-chain from x to y is a finite sequence x0, x1, . . . xn with
x0 = x and xn = y satisfying d(f (xi ), xi+1) < ε for 0 ≤ i < n.
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Shadowing in Dynamical Systems

What is Shadowing?

Preliminary Definitions

Shadowing

Shadowing

A map f : X → X has shadowing provided that for all ε > 0 there
exists a δ > 0 such that for every δ-pseudo-orbit 〈xi 〉i∈N there
exists an orbit 〈f i (z)〉i∈N satisfying d(xi , f

i (z)) < ε.

• We say that the orbit 〈f i (z)〉i∈N ε-shadows the δ-pseudo-orbit
〈xi 〉i∈N.
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Shadowing in Dynamical Systems

What is Shadowing?

Shadowing as Stability

Perturbation and Pseudo-orbits

An Observation

Let f , g be maps on X with d(f (x), g(x)) < δ for all x ∈ X . Then
〈g i (x)〉i∈N is a δ-pseudo-orbit for f .

• Anosov (1969) and Bowen (1975) used this observation to
address stability of orbits under perturbation in hyperbolic
systems
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Shadowing in Dynamical Systems

What is Shadowing?

Shadowing as Stability

Perturbation and Shadowing

Lemma

Let f be a map with shadowing. Then for all ε > 0 there exists
δ > 0 such that for any map g with d(f (x)), g(x)) < δ, and any
point x ∈ X , there exists a point z ∈ X such that
d(f i (z), g i (x)) < ε for all i ∈ N.

• In this sense maps with shadowing exhibit stability of orbits
under perturbation.
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Shadowing in Dynamical Systems

What is Shadowing?

Shadowing and Computation

Finite Precision and Pseudo-orbits

Another Observation

Since computers have only finite precision, any computed orbit (or
orbit segment) is necessarily a pseudo-orbit.

• In a chaotic system, a computed orbit diverges rapidly from a
true orbit.

• In a chaotic system with shadowing, the computed orbit is still
representative of the true orbit of a (possibly) different point.
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Shadowing in Dynamical Systems

Shadowing and Symbolic Dynamics

Shift Spaces

Definitions

• Let Σ be a finite set equipped with the discrete topology.

• For a = 〈ai 〉i∈N ∈ ΣN and N ∈ N, let a�N = 〈a0, a1, a2, . . . aN〉
• Let for a, b ∈ ΣN, defined d(a, b) = 2−N where N is maximal

so that a�N = b�N (or zero if a = b).
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Shadowing in Dynamical Systems

Shadowing and Symbolic Dynamics

Shift Spaces

Definitions

• A shift space is a compact subset of ΣN which is invariant
under the shift map σ

〈ai 〉i∈N 7→ 〈ai+1〉i∈N

• A shift of finite type is a shift space X characterized by a
finite set F of ‘forbidden words’ where a ∈ X if and only if for
all i ,N ∈ N, σi (a)�N does not belong to F .

• Without loss of generality, each element of F has the same
length.
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Shadowing and Symbolic Dynamics

Shift Spaces

Pseudo-orbits in Shift Spaces

Observation

Let σ : X → X be a shift space. Then 〈ai 〉i∈N is a
2−N -pseudo-orbit if and only if σ(ai )�N = ai+1�N .

N

0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 . . .
1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 . . .

1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 . . .
0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 . . .

0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 . . .
0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 . . .

1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 . . .
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Shadowing and Symbolic Dynamics

Shift Spaces

Shadowing in Shift Spaces

Observation

Let σ : X → X be a shift space. If 〈ai 〉i∈N is a 2−N -pseudo-orbit
then it is easy to construct an element c of ΣN which 2−N

shadows it.

c = 0 1 1 0 0 0 1 1 0 0 1 . . .

0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 . . .
1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 . . .

1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 . . .
0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 . . .

0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 . . .
0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 . . .

1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 . . .
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Shadowing and Symbolic Dynamics
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Shadowing in Shift Spaces

Obesrvation

In fact this is the unique element c of ΣN which could possibly
ε-shadow the pseudo-orbit for any ε < 1.
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Shadowing in Shift Spaces

Question

Does c belong to the shift space X?
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Shadowing in Dynamical Systems

Shadowing and Symbolic Dynamics

Shift Spaces

Shadowing and Shifts of Finite Type

Theorem

A shift space σ : X → X has shadowing if and only if it is a shift of
finite type.

• Suppose σ : X → X is a shift of finite type and let N ∈ N be
the length of the elements of F .

• Let 〈ai 〉i∈N be a 2−N -pseudo-orbit in X .

• Construct c ∈ ΣN as above.

• Observe that for all i ∈ N, σi (c)�N = ai�N /∈ F and therefore
c ∈ X .
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Shadowing in Dynamical Systems

Shadowing and Symbolic Dynamics

Self-similar Dendrites

Symbolics in Continua

• Continuum dynamics are often studied by assigning itineraries
to points and then working in the space of itineraries

• A significant issue with this approach is that itinerary spaces
are naturally totally disconnected.

16 / 58



Shadowing in Dynamical Systems

Shadowing and Symbolic Dynamics

Self-similar Dendrites

Symbolics in Continua

• Continuum dynamics are often studied by assigning itineraries
to points and then working in the space of itineraries

• A significant issue with this approach is that itinerary spaces
are naturally totally disconnected.

16 / 58



Shadowing in Dynamical Systems

Shadowing and Symbolic Dynamics

Self-similar Dendrites

Dendrites

• A dendrite is a compact locally connected metric space that is
uniquely arcwise connected.

• The topology of a dendrite is compatible with a taxicab
metric d , i.e.

• Given two points x , y and a third point z on the arc
connecting x and z , we have

d(x , y) = d(x , z) + d(z , y)
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Shadowing in Dynamical Systems

Shadowing and Symbolic Dynamics

Self-similar Dendrites

Baldwin’s symbolics

• Baldwin (2007) laid out a system of symbolics for a certain
class of dendrite maps.

• Let X be a dendrite and f : X → X such that f has a single
turning point t and f is expanding by a factor λ > 1 on
components of X \ {t}.

• Furthermore, suppose that f is self-similar in the sense that
for each component M of X \ {t} , f (M ∪ {t}) = X .

• Then f : X → X is conjugate to a map in the collection we
will now describe.
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Shadowing and Symbolic Dynamics

Self-similar Dendrites

Baldwin’s symbolics

Itinerary Space

Give {0, 1, . . . , n, ∗} with topology generated by the basis

{{0}, {1}, . . . , {n}, {0, 1, . . . , n, ∗}}.

Let Λ = {0, 1, . . . , n, ∗}N with the induced product topology.

• The topology on Λ is not Hausdorff.

• There are many shift invariant Hausdorff subspaces.
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Baldwin’s symbolics

• A sequence τ = 〈τn〉 ∈ Λ is called acceptable if
• τn = ∗ if and only if σn+1(τ) = τ
• If σn(τ) 6= τ , then σn(τ) and τ are distinguishable in Λ

• A sequence α ∈ Λ is τ -consistent provided that if αn = ∗,
then σn+1(α) = τ .

• A τ -consistent sequence α is τ -admissible provided that if
σn(α) 6= ∗τ , then σn(α) and ∗τ are distinguishable in Λ
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Baldwin’s symbolics

The dendrite Dτ

Let τ be an acceptable sequence in Λ, and let Dτ be the collection
of all τ -admissible sequences in Λ. Then

• Dτ is a dendrite

• σ(Dτ ) = Dτ

• ∗τ is the only turning point of σ|Dτ .

• σ|Dτ is self-similar in the earlier sense.
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Baldwin’s symbolics

Theorem (Baldwin)

Let X be a dendrite and let f : X → X be a self-similar piecwise
expanding dendrite map with a single turning point(as described
earlie).Then there exists n ∈ N and τ ∈ {1, 2, . . . , n, ∗}N such that
f is conjugate to the shift map restricted to Dτ .
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Distance in Dτ

Definition

Let x , y ∈ Dτ and let N ∈ N. We say x�N ' y�N provided that
there exists z ∈ Dτ for which z�N is indistinguishable from both
x�N and y�N (in {0, 1, ∗}N).

• x�N ' y�N provided that
• xi = yi for all i ≤ N, or
• there exists z = z1z2 . . . zj ∗ τ with j ≤ N such that for all

i ≤ N either xi = yi = zi or zi = ∗
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Distance in Dτ

N
x

y

xi = yi

z

j

∗τ

xi = yi xi = yi
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Distance in Dτ

Theorem

Consider Dτ with its taxicab metric d . Then the following hold.

• For each ε > 0 there exists Nε ∈ N such that for x , y ∈ Dτ ,
x�Nε ' y�Nε implies d(x , y) < ε.

• For each N ∈ N there exists δN > 0 such that for x , y ∈ Dτ ,
d(x , y) < δN implies x�N ' y�N .
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Pseudo-orbits in Dτ

Observation

Let σ : Dτ → Dτ . Then 〈ai 〉i∈N is a δ-pseudo-orbit only if
σ(ai )�Nδ ' ai+1�Nδ .

a1

a2

a3

Nδ

z1 ∗τ

*

Nδ

z2 ∗τ

*
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Shadowing in Dτ

Question

Let ε > 0. How do we choose δ > 0 such that every δ-pseudo-orbit
is ε shadowed?

• The only obstacle to using the same construction as in shifts
of finite type is those columns in which we have a
disagreement of symbols.

• In particular, we might run into trouble when two such
columns are within Nε of one another.
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Shadowing in Dτ

• For simplicity, suppose that τ is periodic of period p.

• If we choose N large enough, we can guarantee that in any Nε
length window, the trouble spots are all in sync with the
period of τ .

a1

a2

a3

z1 ∗τ

*

z2 ∗τ

*

!

∗τ

∗τ
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Shadowing in Dτ

• For this sufficiently large N, we take δN and then any δN
pseudo-orbit will be ε-shadowed.

• Construct c as in shifts of finite type, with the exception that
if the i-th column has a disagreement within the first N many
symbols, choose an arbitrary symbol.

• Any Nε length piece of the constructed itinerary either
• misses all such columns, or
• all corresponding pieces of the ai are indistinguishable from the

apropriate shifts of eachother (and hence from c).
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Shadowing in Dτ

Theorem

For each acceptable τ in {0, 1, . . . , n, ∗}N, σ : Dτ → Dτ has
shadowing.

• In particular, unimodal, self-similar dendrite maps have
shadowing

• As a corollary it follows (with some work) that Julia sets of
quadratic polynomials that are dendrites all have shadowing.
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Shadowing in Quadratic Julia sets

• Baldwin noticed that a similar symbolics could be established
for other quadratic Julia sets.

• In particular, consider the set Γ = {0, 1, ∗,#}N and for α ∈ Γ
and i ∈ {0, 1}, define si (α) to be the sequence replacing each
∗ with i and each # with 1− i

• Define a topology on Γ by taking as basis the collection

{{α�N , s0(α)�N , s1(α)�N} : α ∈ Γ,N ∈ N}
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Shadowing in Quadratic Julia sets

• Restricting our attention to τ which are periodic, we can
define analogous notions of acceptable, compatible and
admissible sequences.

• For an acceptable sequence τ , the space Eτ of τ -admissible
sequences is well-structured and exhibits shadowing.
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Shadowing in Quadratic Julia sets

Theorem

Let c ∈ C and suppose that fc defined by z 7→ z2 + c has an
attracting or parabolic periodic point. If the associated kneading
sequence τ is not an n-tupling, then τ is an acceptable sequence in
Γ and fc restricted to its Julia set is conjugate to σ on Eτ .
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Shadowing in Quadratic Julia sets

Corollary

Let c ∈ C and suppose that fc defined by z 7→ z2 + c has an
attracting or parabolic periodic point. If the associated kneading
sequence τ is not an n-tupling, then fc restricted to its Julia set
has shadowing.
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Asymptotic Shadowing

• In all of these settings, once we fix ε > 0 and find the δ > 0
such that every δ-pseudo-orbit 〈ai 〉 is ε-shadowed by some
x ∈ X , we can actually say a bit more.

• If the sequence 〈ai 〉 also has the property that for every η > 0
there is an N ∈ N such that 〈ai 〉i≥N is an η-pseudo-orbit, then
the constructed shadowing point will have the property that
for all γ > 0 there exists M ∈ N such that f M(x) γ shadows
〈ai 〉i≥M .
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Asymptotic Shadowing

Theorem

Let X be a shift of finite type or either Dτ or Eτ for an acceptable
τ . Then σ : X → X has asymptotic shadowing.
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Questions for Further Research

• In the context of Eτ , what if τ is an n-tupling?

• Can these techniques be extended to self-similar maps with
multiple turning points?

• Can these techniques be extended to handle higher degree
polynomial Julia sets?

• Can shadowing be classified in the category of dendrite maps?
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Shadowing and ω-limit sets

Definitions

ω-limit sets

• For a map f : X → X , the ω-limit set of a point x ∈ X is the
set

ω(x) =
⋂
n∈N
{f i (x) : i ≥ n}

• Bowen used shadowing to characterize ω-limit sets for Axiom
A diffeormorphisms.

• In particular, for an Axiom A diffeomorphism f , the ω-limit
sets of f are precisely those sets which are ‘abstract ω-limit
sets.’
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Definitions

Definition

Internal Chain Transitivity

A set A ⊆ X is internally chain transitive with respect to f
provided that for all x , y ∈ A and all ε > 0, there exists an ε-chain
in A from x to y .

x

y
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Shadowing and ω-limit sets

Definitions

Asymptotic Pseudo-Orbits

• An asymptotic pseudo-orbit is a sequence 〈xi 〉i∈N satisfying
limi→∞ d(f (xi ), xi+1) = 0

• The ω-limit of an asymptotic pseudo-orbit 〈xi 〉i∈N is the set
ω(〈xi 〉i∈N) =

⋂
n∈N {xi : i ≥ n}

Theorem (Barwell, Good, Oprocha, Raines)

A nonempty closed set A ⊆ X is internally chain transitive if and
only if it is the ω-limit of some asymptotic pseudo-orbit 〈xi 〉i∈N in
X .
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Shadowing and ω-limit sets

Definitions

Hausdorff metric

• 2X is the collection of compact subsets of X .

Hausdorff metric

The metric d on X induces a metric dH on 2X given by:

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

• 2X is compact with respect to the topology generated by dH .
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Shadowing and ω-limit sets

Definitions

Notation

• We use the notation ω(f ) to refer to the collection of ω-limit
sets of f .

• Similarly, ICT (f ) will refer to the collection of nonempty
closed internally chain transitive sets.

• ω(f ) ⊆ ICT (f ) ⊆ 2X .
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Shadowing and ω-limit sets

Connection with Shadowing

Internal chain transitivity and ω-limit sets

• There are many systems in which every nonempty closed
internally chain transitive set is an ω-limit set–shifts of finite
type, certain interval maps, etc.

• However, there are also many systems where this is not the
case.

Question

Can we characterize those systems for which the collection of
nonempty closed internally chain transitive sets is equal to the
collection of ω-limit sets?
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Shadowing in Dynamical Systems

Shadowing and ω-limit sets

Connection with Shadowing

A conjecture

• Many of the known examples of systems in which internal
chain transitivity characterizes ω-limit sets exhibit shadowing.

• This led to the conjecture that in systems with shadowing,
ω(f ) and ICT (f ) are equal.

• Recently, a counterexample was discovered (Puljiz 2013).

• However, there still seemed to be a strong connection to
shadowing.
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Shadowing and ω-limit sets

Connection with Shadowing

Main Theorem

Theorem

If f : X → X has shadowing, then ω(f ) = ICT (f ) if and only if
ω(f ) is closed with respect to the Hausdorff metric.
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Connection with Shadowing

Outline of Proof

Lemma

ICT (f ) is closed.
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Corollary
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Shadowing and ω-limit sets

Connection with Shadowing

ICT (f ) is closed.

• Let C1,C2, . . . be a sequence in ICT (f ) that converges to a
set C ∈ 2X .

• Let a, b ∈ C and fix ε > 0.

• By unif. cont., let δ > 0 such that if d(p, q) < δ, then
d(f (p), f (q)) < ε/3. WLOG, δ < ε/3.

• Choose k such that dH(Ck ,C ) < δ.
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Connection with Shadowing

ICT (f ) is closed.

• Let a′ ∈ Bδ(a) ∩ Ck and b′ ∈ Bδ(b) ∩ Ck .

• Since Ck is internally chain transitive, let 〈x ′i 〉ni=0 be an
ε/3-chain in Ck from a′ to b′.

• Let x0 = a, xn = b and for 0 < i < n choose xi ∈ Bδ(xi ) ∩ C .

• Then 〈xi 〉 is an ε-chain in C from a to b:

d(f (xi ), xi+1) ≤ d(f (xi ), f (x ′i ))+d(f (x ′i ), x
′
i+1)+d(x ′i+1, xi+1)

< ε/3 + ε/3 + δ < ε

• Thus C ∈ ICT (f ) and ICT (f ) is closed.
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Shadowing and ω-limit sets

Connection with Shadowing

With shadowing, (ω(f )) = ICT (f ).

• By previous, ω(f ) ⊆ ICT (f ).

• Let C ∈ ICT (f ). By [BGOR], there exists an asymptotic
pseudo-orbit 〈xi 〉i∈N with ω(〈xi 〉) = C .

• For all δ > 0 there exists Mδ ∈ N such that 〈xi+Mδ
〉 is a

δ-pseudo-orbit.
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Shadowing and ω-limit sets

Connection with Shadowing

With shadowing, (ω(f )) = ICT (f ).

• Fix ε > 0.

• Since f has shadowing, choose δ > 0 such that every
δ-pseudo-orbit is ε/2-shadowed.

• In particular, choose z ∈ X such that 〈f i (z)〉 ε/2-shadows
〈xi+Mδ

〉.
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Connection with Shadowing

With shadowing, (ω(f )) = ICT (f ).

• For all a ∈ ω(z), there exists a sequence 〈ni 〉 of natural
numbers with f ni (z)→ a.

• WLOG, the sequence 〈xni+M〉 converges to some b ∈ C .

• Then d(a, b) = lim d(f ni (z), xni+M) ≤ ε/2 and so

sup
a∈ω(z)

inf
b∈C

d(a, b) ≤ ε/2 < ε.
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Connection with Shadowing

With shadowing, (ω(f )) = ICT (f ).

• Additionally, for all b ∈ C , there exists a sequence 〈ni 〉 of
natural numbers greater than Mδ with xni → b.

• WLOG 〈f ni−Mδ(z)〉 converges to some a ∈ ω(z).

• Then d(a, b) = lim d(f ni−Mδ(z), xni ) ≤ ε/2 and so

sup
b∈C

inf
a∈ω(z)

d(a, b) ≤ ε/2 < ε.
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Connection with Shadowing

With shadowing, (ω(f )) = ICT (f ).

• In particular, dH(ω(z),C ) < ε.

• This holds for all ε > 0, and so C ∈ ω(f ).
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Shadowing and ω-limit sets

Connection with Shadowing

Interval Maps

• Interval maps are known to satisfy ω(f ) being closed [Blokh,
Bruckner, Humke, Sḿıtal].

Corollary

If f : I → I has shadowing, then ω(f ) = ICT (f ).
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Shadowing and ω-limit sets

Connection with Shadowing

Shifts of finite type

• Shifts of finite type are known to exhibit both shadowing and
ω(f ) = ICT (f ) [Barwell, Good, Knight, Raines].

Corollary

In shifts of finite type, ω(σ) is closed.
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Shadowing and ω-limit sets

Connection with Shadowing

Quadratic Julia sets

• The complex map fc(z) = z2 + c restricted to its Julia set
exhibits both shadowing and ω(f ) = ICT (f ) for certain
parameters c [Barwell, M, Raines]

Corollary

For parameters c such that either Jc is a dendrite, or fc has an
attracting or parabolic periodic point, and kneading sequence τ
which is not an n-tupling, ω(fc |Jc) is closed.
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Connection with Shadowing

Thank you

Thank you!
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