Shadowing in Dynamical Systems

Jonathan Meddaugh

Andy Barwell and Brian Raines

Baylor University

17th Galway Topology Colloquium June 30th-July 2nd, 2014

Outline

• What is Shadowing?

- **2** Shadowing and Symbolic Dynamics
- **3** Shadowing and ω -limit sets

Shadowing in Dynamical Systems What is Shadowing?

Outline

1 What is Shadowing?

Preliminary Definitions Shadowing as Stability Shadowing and Computation

Shadowing and Symbolic Dynamics

3 Shadowing and ω -limit sets

 Let X be a compact space with metric d and let f : X → X be a continuous function.

Dynamical Systems

- Let X be a compact space with metric d and let f : X → X be a continuous function.
- The *orbit* of a point $x \in X$ is the sequence $\langle f^i(x) \rangle_{i \in \mathbb{N}}$.

Dynamical Systems

- Let X be a compact space with metric d and let f : X → X be a continuous function.
- The *orbit* of a point $x \in X$ is the sequence $\langle f^i(x) \rangle_{i \in \mathbb{N}}$.
- For $\epsilon > 0$, an ϵ -pseudo-orbit is a sequence $\langle x_i \rangle_{i \in \mathbb{N}}$ satisfying $d(f(x_i), x_{i+1}) < \epsilon$ for all $i \in \mathbb{N}$.

Dynamical Systems

- Let X be a compact space with metric d and let f : X → X be a continuous function.
- The *orbit* of a point $x \in X$ is the sequence $\langle f^i(x) \rangle_{i \in \mathbb{N}}$.
- For $\epsilon > 0$, an ϵ -pseudo-orbit is a sequence $\langle x_i \rangle_{i \in \mathbb{N}}$ satisfying $d(f(x_i), x_{i+1}) < \epsilon$ for all $i \in \mathbb{N}$.
- An ϵ -chain from x to y is a finite sequence $x_0, x_1, \ldots x_n$ with $x_0 = x$ and $x_n = y$ satisfying $d(f(x_i), x_{i+1}) < \epsilon$ for $0 \le i < n$.

Shadowing

Shadowing

A map $f: X \to X$ has *shadowing* provided that for all $\epsilon > 0$ there exists a $\delta > 0$ such that for every δ -pseudo-orbit $\langle x_i \rangle_{i \in \mathbb{N}}$ there exists an orbit $\langle f^i(z) \rangle_{i \in \mathbb{N}}$ satisfying $d(x_i, f^i(z)) < \epsilon$.

Shadowing

Shadowing

A map $f: X \to X$ has *shadowing* provided that for all $\epsilon > 0$ there exists a $\delta > 0$ such that for every δ -pseudo-orbit $\langle x_i \rangle_{i \in \mathbb{N}}$ there exists an orbit $\langle f^i(z) \rangle_{i \in \mathbb{N}}$ satisfying $d(x_i, f^i(z)) < \epsilon$.

• We say that the orbit $\langle f^i(z) \rangle_{i \in \mathbb{N}} \epsilon$ -shadows the δ -pseudo-orbit $\langle x_i \rangle_{i \in \mathbb{N}}$.

Shadowing

Shadowing

Perturbation and Pseudo-orbits

An Observation

Let f, g be maps on X with $d(f(x), g(x)) < \delta$ for all $x \in X$. Then $\langle g^i(x) \rangle_{i \in \mathbb{N}}$ is a δ -pseudo-orbit for f.

Perturbation and Pseudo-orbits

An Observation

Let f, g be maps on X with $d(f(x), g(x)) < \delta$ for all $x \in X$. Then $\langle g^i(x) \rangle_{i \in \mathbb{N}}$ is a δ -pseudo-orbit for f.

 Anosov (1969) and Bowen (1975) used this observation to address stability of orbits under perturbation in hyperbolic systems

Perturbation and Shadowing

Lemma

Let f be a map with shadowing. Then for all $\epsilon > 0$ there exists $\delta > 0$ such that for any map g with $d(f(x)), g(x)) < \delta$, and any point $x \in X$, there exists a point $z \in X$ such that $d(f^i(z), g^i(x)) < \epsilon$ for all $i \in \mathbb{N}$.

Perturbation and Shadowing

Lemma

Let f be a map with shadowing. Then for all $\epsilon > 0$ there exists $\delta > 0$ such that for any map g with $d(f(x)), g(x)) < \delta$, and any point $x \in X$, there exists a point $z \in X$ such that $d(f^i(z), g^i(x)) < \epsilon$ for all $i \in \mathbb{N}$.

• In this sense maps with shadowing exhibit stability of orbits under perturbation.

Shadowing in Dynamical Systems What is Shadowing? Shadowing and Computation

Finite Precision and Pseudo-orbits

Another Observation

Since computers have only finite precision, any computed orbit (or orbit segment) is necessarily a pseudo-orbit.

Shadowing in Dynamical Systems What is Shadowing? Shadowing and Computation

Finite Precision and Pseudo-orbits

Another Observation

Since computers have only finite precision, any computed orbit (or orbit segment) is necessarily a pseudo-orbit.

• In a chaotic system, a computed orbit diverges rapidly from a true orbit.

Shadowing in Dynamical Systems What is Shadowing? Shadowing and Computation

Finite Precision and Pseudo-orbits

Another Observation

Since computers have only finite precision, any computed orbit (or orbit segment) is necessarily a pseudo-orbit.

- In a chaotic system, a computed orbit diverges rapidly from a true orbit.
- In a chaotic system with shadowing, the computed orbit is still representative of the true orbit of a (possibly) different point.

Outline

What is Shadowing?

Shadowing and Symbolic Dynamics Shift Spaces Self-similar Dendrites

3 Shadowing and ω -limit sets

• Let $\boldsymbol{\Sigma}$ be a finite set equipped with the discrete topology.

Definitions

- Let Σ be a finite set equipped with the discrete topology.
- For $a = \langle a_i \rangle_{i \in \mathbb{N}} \in \Sigma^{\mathbb{N}}$ and $N \in \mathbb{N}$, let $a \upharpoonright_N = \langle a_0, a_1, a_2, \dots a_N \rangle$

Definitions

- Let $\boldsymbol{\Sigma}$ be a finite set equipped with the discrete topology.
- For $a = \langle a_i \rangle_{i \in \mathbb{N}} \in \Sigma^{\mathbb{N}}$ and $N \in \mathbb{N}$, let $a \upharpoonright_N = \langle a_0, a_1, a_2, \dots a_N \rangle$
- Let for a, b ∈ Σ^N, defined d(a, b) = 2^{-N} where N is maximal so that a↾_N = b↾_N (or zero if a = b).

Definitions

 A shift space is a compact subset of Σ^N which is invariant under the shift map σ

$$\langle a_i \rangle_{i \in \mathbb{N}} \mapsto \langle a_{i+1} \rangle_{i \in \mathbb{N}}$$

Definitions

• A *shift space* is a compact subset of $\Sigma^{\mathbb{N}}$ which is invariant under the shift map σ

$$\langle a_i \rangle_{i \in \mathbb{N}} \mapsto \langle a_{i+1} \rangle_{i \in \mathbb{N}}$$

A shift of finite type is a shift space X characterized by a finite set F of 'forbidden words' where a ∈ X if and only if for all i, N ∈ N, σⁱ(a) ↾_N does not belong to F.

Definitions

• A *shift space* is a compact subset of $\Sigma^{\mathbb{N}}$ which is invariant under the shift map σ

$$\langle a_i \rangle_{i \in \mathbb{N}} \mapsto \langle a_{i+1} \rangle_{i \in \mathbb{N}}$$

- A shift of finite type is a shift space X characterized by a finite set F of 'forbidden words' where a ∈ X if and only if for all i, N ∈ N, σⁱ(a)↾_N does not belong to F.
- Without loss of generality, each element of ${\mathcal F}$ has the same length.

Pseudo-orbits in Shift Spaces

Observation

```
Let \sigma: X \to X be a shift space. Then \langle a_i \rangle_{i \in \mathbb{N}} is a 2^{-N}-pseudo-orbit if and only if \sigma(a_i) \upharpoonright_N = a_{i+1} \upharpoonright_N.
```

Pseudo-orbits in Shift Spaces

Observation

Shadowing in Shift Spaces

Observation

Shadowing in Shift Spaces

Observation

Shadowing in Shift Spaces

Observation

Shadowing in Shift Spaces

Observation

$$c = 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 \dots$$

$$1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 \dots$$

$$1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 \dots$$

$$0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 \dots$$

$$0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 \dots$$

$$0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 \dots$$

$$1 1 0 0 1 1 1 1 1 1 0 0 0 0 \dots$$

$$c = 0 1 1 0 0 0 1 1 0 0 1 \dots$$

Shadowing in Shift Spaces

Obesrvation

In fact this is the *unique* element c of $\Sigma^{\mathbb{N}}$ which could *possibly* ϵ -shadow the pseudo-orbit for any $\epsilon < 1$.

$$c = 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 \dots$$

$$1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 \dots$$

$$1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 \dots$$

$$0 0 0 1 1 1 0 1 0 0 1 0 0 1 \dots$$

$$0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 \dots$$

$$0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 \dots$$

$$1 1 0 0 1 1 1 1 1 1 0 0 0 0 \dots$$

$$c = 0 1 1 0 0 0 1 1 0 0 1$$

Shadowing in Shift Spaces

Question

Does c belong to the shift space X?

Shadowing and Shifts of Finite Type

Theorem

Shadowing and Shifts of Finite Type

Theorem

A shift space $\sigma : X \to X$ has shadowing if and only if it is a shift of finite type.

• Suppose $\sigma : X \to X$ is a shift of finite type and let $N \in \mathbb{N}$ be the length of the elements of \mathcal{F} .

Shadowing and Shifts of Finite Type

Theorem

- Suppose σ : X → X is a shift of finite type and let N ∈ N be the length of the elements of F.
- Let $\langle a_i \rangle_{i \in \mathbb{N}}$ be a 2^{-N}-pseudo-orbit in X.

Shadowing and Shifts of Finite Type

Theorem

- Suppose $\sigma : X \to X$ is a shift of finite type and let $N \in \mathbb{N}$ be the length of the elements of \mathcal{F} .
- Let $\langle a_i \rangle_{i \in \mathbb{N}}$ be a 2^{-N} -pseudo-orbit in X.
- Construct $c \in \Sigma^{\mathbb{N}}$ as above.

Shadowing and Shifts of Finite Type

Theorem

- Suppose $\sigma : X \to X$ is a shift of finite type and let $N \in \mathbb{N}$ be the length of the elements of \mathcal{F} .
- Let $\langle a_i \rangle_{i \in \mathbb{N}}$ be a 2^{-N} -pseudo-orbit in X.
- Construct $c \in \Sigma^{\mathbb{N}}$ as above.
- Observe that for all $i \in \mathbb{N}$, $\sigma^i(c) \upharpoonright_N = a_i \upharpoonright_N \notin \mathcal{F}$ and therefore $c \in X$.

Symbolics in Continua

• Continuum dynamics are often studied by assigning itineraries to points and then working in the space of itineraries

Symbolics in Continua

- Continuum dynamics are often studied by assigning itineraries to points and then working in the space of itineraries
- A significant issue with this approach is that itinerary spaces are naturally totally disconnected.

Dendrites

• A dendrite is a compact locally connected metric space that is uniquely arcwise connected.

Dendrites

- A dendrite is a compact locally connected metric space that is uniquely arcwise connected.
- The topology of a dendrite is compatible with a *taxicab metric d*, i.e.

Dendrites

- A dendrite is a compact locally connected metric space that is uniquely arcwise connected.
- The topology of a dendrite is compatible with a *taxicab metric d*, i.e.
- Given two points x, y and a third point z on the arc connecting x and z, we have

$$d(x,y) = d(x,z) + d(z,y)$$

Baldwin's symbolics

• Baldwin (2007) laid out a system of symbolics for a certain class of dendrite maps.

- Baldwin (2007) laid out a system of symbolics for a certain class of dendrite maps.
- Let X be a dendrite and f : X → X such that f has a single turning point t and f is expanding by a factor λ > 1 on components of X \ {t}.

- Baldwin (2007) laid out a system of symbolics for a certain class of dendrite maps.
- Let X be a dendrite and f : X → X such that f has a single turning point t and f is expanding by a factor λ > 1 on components of X \ {t}.
- Furthermore, suppose that f is self-similar in the sense that for each component M of $X \setminus \{t\}$, $f(M \cup \{t\}) = X$.

- Baldwin (2007) laid out a system of symbolics for a certain class of dendrite maps.
- Let X be a dendrite and f : X → X such that f has a single turning point t and f is expanding by a factor λ > 1 on components of X \ {t}.
- Furthermore, suppose that f is *self-similar* in the sense that for each component M of $X \setminus \{t\}$, $f(M \cup \{t\}) = X$.
- Then f : X → X is conjugate to a map in the collection we will now describe.

Baldwin's symbolics

Itinerary Space

Give $\{0, 1, \ldots, n, *\}$ with topology generated by the basis

$$\{\{0\},\{1\},\ldots,\{n\},\{0,1,\ldots,n,*\}\}.$$

Let $\Lambda = \{0, 1, \dots, n, *\}^{\mathbb{N}}$ with the induced product topology.

Baldwin's symbolics

Itinerary Space

Give $\{0, 1, \ldots, n, *\}$ with topology generated by the basis

$$\{\{0\},\{1\},\ldots,\{n\},\{0,1,\ldots,n,*\}\}.$$

Let $\Lambda = \{0, 1, \dots, n, *\}^{\mathbb{N}}$ with the induced product topology.

• The topology on Λ is not Hausdorff.

Baldwin's symbolics

Itinerary Space

Give $\{0,1,\ldots,n,*\}$ with topology generated by the basis

$$\{\{0\},\{1\},\ldots,\{n\},\{0,1,\ldots,n,*\}\}.$$

Let $\Lambda = \{0, 1, \dots, n, *\}^{\mathbb{N}}$ with the induced product topology.

- The topology on Λ is not Hausdorff.
- There are many shift invariant Hausdorff subspaces.

- A sequence $\tau = \langle \tau_n \rangle \in \Lambda$ is called *acceptable* if
 - $\tau_n = *$ if and only if $\sigma^{n+1}(\tau) = \tau$
 - If $\sigma^n(\tau) \neq \tau$, then $\sigma^n(\tau)$ and τ are distinguishable in Λ

- A sequence $\tau = \langle \tau_n \rangle \in \Lambda$ is called *acceptable* if
 - $\tau_n = *$ if and only if $\sigma^{n+1}(\tau) = \tau$
 - If $\sigma^n(\tau) \neq \tau$, then $\sigma^n(\tau)$ and τ are distinguishable in Λ
- A sequence α ∈ Λ is τ-consistent provided that if α_n = *, then σⁿ⁺¹(α) = τ.

- A sequence $\tau = \langle \tau_n \rangle \in \Lambda$ is called *acceptable* if
 - $\tau_n = *$ if and only if $\sigma^{n+1}(\tau) = \tau$
 - If $\sigma^n(\tau) \neq \tau$, then $\sigma^n(\tau)$ and τ are distinguishable in Λ
- A sequence α ∈ Λ is τ-consistent provided that if α_n = *, then σⁿ⁺¹(α) = τ.
- A τ -consistent sequence α is τ -admissible provided that if $\sigma^n(\alpha) \neq *\tau$, then $\sigma^n(\alpha)$ and $*\tau$ are distinguishable in Λ

Baldwin's symbolics

The dendrite D_{τ}

Baldwin's symbolics

The dendrite D_{τ}

Let τ be an acceptable sequence in Λ , and let D_{τ} be the collection of all τ -admissible sequences in Λ . Then

• D_{τ} is a dendrite

Baldwin's symbolics

The dendrite D_{τ}

- $D_{ au}$ is a dendrite
- $\sigma(D_{\tau}) = D_{\tau}$

Baldwin's symbolics

The dendrite $D_{ au}$

- $D_{ au}$ is a dendrite
- $\sigma(D_{\tau}) = D_{\tau}$
- $*\tau$ is the only turning point of $\sigma|D_{\tau}$.

Baldwin's symbolics

The dendrite $D_{ au}$

- $D_{ au}$ is a dendrite
- $\sigma(D_{\tau}) = D_{\tau}$
- $*\tau$ is the only turning point of $\sigma|D_{\tau}$.
- $\sigma | D_{\tau}$ is self-similar in the earlier sense.

Baldwin's symbolics

Theorem (Baldwin)

Let X be a dendrite and let $f : X \to X$ be a self-similar piecwise expanding dendrite map with a single turning point(as described earlie). Then there exists $n \in \mathbb{N}$ and $\tau \in \{1, 2, ..., n, *\}^{\mathbb{N}}$ such that f is conjugate to the shift map restricted to D_{τ} .

Distance in D_{τ}

Definition

Let $x, y \in D_{\tau}$ and let $N \in \mathbb{N}$. We say $x \upharpoonright_N \simeq y \upharpoonright_N$ provided that there exists $z \in D_{\tau}$ for which $z \upharpoonright_N$ is indistinguishable from both $x \upharpoonright_N$ and $y \upharpoonright_N$ (in $\{0, 1, *\}^N$).

Distance in D_{τ}

Definition

Let $x, y \in D_{\tau}$ and let $N \in \mathbb{N}$. We say $x \upharpoonright_N \simeq y \upharpoonright_N$ provided that there exists $z \in D_{\tau}$ for which $z \upharpoonright_N$ is indistinguishable from both $x \upharpoonright_N$ and $y \upharpoonright_N$ (in $\{0, 1, *\}^N$).

- $x \upharpoonright_N \simeq y \upharpoonright_N$ provided that
 - $x_i = y_i$ for all $i \leq N$, or
 - there exists $z = z_1 z_2 \dots z_j * \tau$ with $j \le N$ such that for all $i \le N$ either $x_i = y_i = z_i$ or $z_i = *$

Distance in D_{τ}

Distance in D_{τ}

Distance in D_{τ}

Distance in D_{τ}

Theorem

Consider D_{τ} with its taxicab metric d. Then the following hold.

Distance in D_{τ}

Theorem

Consider D_{τ} with its taxicab metric d. Then the following hold.

 For each ε > 0 there exists N_ε ∈ N such that for x, y ∈ D_τ, x↾_{Nε} ≃ y↾_{Nε} implies d(x, y) < ε.

Distance in D_{τ}

Theorem

Consider D_{τ} with its taxicab metric d. Then the following hold.

- For each ε > 0 there exists N_ε ∈ N such that for x, y ∈ D_τ, x↾_{N_ε} ≃ y↾_{N_ε} implies d(x, y) < ε.
- For each N ∈ N there exists δ_N > 0 such that for x, y ∈ D_τ, d(x, y) < δ_N implies x↾_N ≃ y↾_N.

Pseudo-orbits in D_{τ}

Observation

Let $\sigma: D_{\tau} \to D_{\tau}$. Then $\langle a_i \rangle_{i \in \mathbb{N}}$ is a δ -pseudo-orbit only if $\sigma(a_i) \upharpoonright_{N_{\delta}} \simeq a_{i+1} \upharpoonright_{N_{\delta}}$.

Pseudo-orbits in D_{τ}

Observation

Let $\sigma: D_{\tau} \to D_{\tau}$. Then $\langle a_i \rangle_{i \in \mathbb{N}}$ is a δ -pseudo-orbit only if $\sigma(a_i) \upharpoonright_{N_{\delta}} \simeq a_{i+1} \upharpoonright_{N_{\delta}}$.

a₃
Pseudo-orbits in D_{τ}

Observation

Let $\sigma: D_{\tau} \to D_{\tau}$. Then $\langle a_i \rangle_{i \in \mathbb{N}}$ is a δ -pseudo-orbit only if $\sigma(a_i) \upharpoonright_{N_{\delta}} \simeq a_{i+1} \upharpoonright_{N_{\delta}}$.

Pseudo-orbits in D_{τ}

Observation

Let $\sigma: D_{\tau} \to D_{\tau}$. Then $\langle a_i \rangle_{i \in \mathbb{N}}$ is a δ -pseudo-orbit only if $\sigma(a_i) \upharpoonright_{N_{\delta}} \simeq a_{i+1} \upharpoonright_{N_{\delta}}$.

Pseudo-orbits in D_{τ}

Observation

Let $\sigma: D_{\tau} \to D_{\tau}$. Then $\langle a_i \rangle_{i \in \mathbb{N}}$ is a δ -pseudo-orbit only if $\sigma(a_i) \upharpoonright_{N_{\delta}} \simeq a_{i+1} \upharpoonright_{N_{\delta}}$.

Shadowing in D_{τ}

Question

Let $\epsilon>0.$ How do we choose $\delta>0$ such that every $\delta\mbox{-pseudo-orbit}$ is ϵ shadowed?

Shadowing in D_{τ}

Question

Let $\epsilon>0.$ How do we choose $\delta>0$ such that every $\delta\mbox{-pseudo-orbit}$ is ϵ shadowed?

• The only obstacle to using the same construction as in shifts of finite type is those columns in which we have a disagreement of symbols.

Shadowing in D_{τ}

Question

Let $\epsilon>0.$ How do we choose $\delta>0$ such that every $\delta\mbox{-pseudo-orbit}$ is ϵ shadowed?

- The only obstacle to using the same construction as in shifts of finite type is those columns in which we have a disagreement of symbols.
- In particular, we might run into trouble when two such columns are within N_{ϵ} of one another.

Shadowing in D_{τ}

• For simplicity, suppose that τ is periodic of period p.

- For simplicity, suppose that τ is periodic of period p.
- If we choose N large enough, we can guarantee that in any N_{ϵ} length window, the trouble spots are all in sync with the period of τ .

- For simplicity, suppose that τ is periodic of period p.
- If we choose N large enough, we can guarantee that in any N_{ϵ} length window, the trouble spots are all in sync with the period of τ .

- For simplicity, suppose that τ is periodic of period p.
- If we choose N large enough, we can guarantee that in any N_ε length window, the trouble spots are all in sync with the period of τ.

- For simplicity, suppose that τ is periodic of period p.
- If we choose N large enough, we can guarantee that in any N_{ϵ} length window, the trouble spots are all in sync with the period of τ .

Shadowing in D_{τ}

• For this sufficiently large N, we take δ_N and then any δ_N pseudo-orbit will be ϵ -shadowed.

- For this sufficiently large N, we take δ_N and then any δ_N pseudo-orbit will be ϵ -shadowed.
- Construct *c* as in shifts of finite type, with the exception that if the *i*-th column has a disagreement within the first *N* many symbols, choose an arbitrary symbol.

- For this sufficiently large N, we take δ_N and then any δ_N pseudo-orbit will be ϵ -shadowed.
- Construct *c* as in shifts of finite type, with the exception that if the *i*-th column has a disagreement within the first *N* many symbols, choose an arbitrary symbol.
- Any N_{ϵ} length piece of the constructed itinerary either
 - misses all such columns, or
 - all corresponding pieces of the *a_i* are indistinguishable from the apropriate shifts of eachother (and hence from *c*).

Shadowing in D_{τ}

Theorem

For each acceptable τ in $\{0, 1, ..., n, *\}^{\mathbb{N}}$, $\sigma : D_{\tau} \to D_{\tau}$ has shadowing.

Shadowing in D_{τ}

Theorem

For each acceptable τ in $\{0, 1, ..., n, *\}^{\mathbb{N}}$, $\sigma : D_{\tau} \to D_{\tau}$ has shadowing.

• In particular, unimodal, self-similar dendrite maps have shadowing

Shadowing in D_{τ}

Theorem

For each acceptable τ in $\{0, 1, ..., n, *\}^{\mathbb{N}}$, $\sigma : D_{\tau} \to D_{\tau}$ has shadowing.

- In particular, unimodal, self-similar dendrite maps have shadowing
- As a corollary it follows (with some work) that Julia sets of quadratic polynomials that are dendrites all have shadowing.

Shadowing in Quadratic Julia sets

• Baldwin noticed that a similar symbolics could be established for other quadratic Julia sets.

Shadowing in Quadratic Julia sets

- Baldwin noticed that a similar symbolics could be established for other quadratic Julia sets.
- In particular, consider the set Γ = {0, 1, *, #}^N and for α ∈ Γ and i ∈ {0, 1}, define s_i(α) to be the sequence replacing each * with i and each # with 1 − i

Shadowing in Quadratic Julia sets

- Baldwin noticed that a similar symbolics could be established for other quadratic Julia sets.
- In particular, consider the set Γ = {0,1,*, #}^N and for α ∈ Γ and i ∈ {0,1}, define s_i(α) to be the sequence replacing each * with i and each # with 1 − i
- Define a topology on Γ by taking as basis the collection

 $\{\{\alpha\restriction_{N}, s_{0}(\alpha)\restriction_{N}, s_{1}(\alpha)\restriction_{N}\} : \alpha \in \Gamma, N \in \mathbb{N}\}$

Shadowing in Quadratic Julia sets

• Restricting our attention to τ which are periodic, we can define analogous notions of acceptable, compatible and admissible sequences.

Shadowing in Quadratic Julia sets

- Restricting our attention to τ which are periodic, we can define analogous notions of acceptable, compatible and admissible sequences.
- For an acceptable sequence τ, the space E_τ of τ-admissible sequences is well-structured and exhibits shadowing.

Shadowing in Quadratic Julia sets

Theorem

Let $c \in \mathbb{C}$ and suppose that f_c defined by $z \mapsto z^2 + c$ has an attracting or parabolic periodic point. If the associated kneading sequence τ is not an n-tupling, then τ is an acceptable sequence in Γ and f_c restricted to its Julia set is conjugate to σ on E_{τ} .

Shadowing in Quadratic Julia sets

Corollary

Let $c \in \mathbb{C}$ and suppose that f_c defined by $z \mapsto z^2 + c$ has an attracting or parabolic periodic point. If the associated kneading sequence τ is not an n-tupling, then f_c restricted to its Julia set has shadowing.

Asymptotic Shadowing

In all of these settings, once we fix ε > 0 and find the δ > 0 such that every δ-pseudo-orbit ⟨a_i⟩ is ε-shadowed by some x ∈ X, we can actually say a bit more.

Asymptotic Shadowing

- In all of these settings, once we fix ε > 0 and find the δ > 0 such that every δ-pseudo-orbit ⟨a_i⟩ is ε-shadowed by some x ∈ X, we can actually say a bit more.
- If the sequence $\langle a_i \rangle$ also has the property that for every $\eta > 0$ there is an $N \in \mathbb{N}$ such that $\langle a_i \rangle_{i \geq N}$ is an η -pseudo-orbit, then the constructed shadowing point will have the property that for all $\gamma > 0$ there exists $M \in \mathbb{N}$ such that $f^M(x) \gamma$ shadows $\langle a_i \rangle_{i \geq M}$.

Asymptotic Shadowing

Theorem

Let X be a shift of finite type or either D_{τ} or E_{τ} for an acceptable τ . Then $\sigma : X \to X$ has asymptotic shadowing.

Questions for Further Research

• In the context of E_{τ} , what if τ is an *n*-tupling?

Questions for Further Research

- In the context of E_{τ} , what if τ is an *n*-tupling?
- Can these techniques be extended to self-similar maps with multiple turning points?

Questions for Further Research

- In the context of E_{τ} , what if τ is an *n*-tupling?
- Can these techniques be extended to self-similar maps with multiple turning points?
- Can these techniques be extended to handle higher degree polynomial Julia sets?

Questions for Further Research

- In the context of E_{τ} , what if τ is an *n*-tupling?
- Can these techniques be extended to self-similar maps with multiple turning points?
- Can these techniques be extended to handle higher degree polynomial Julia sets?
- Can shadowing be classified in the category of dendrite maps?

Outline

What is Shadowing?

Shadowing and Symbolic Dynamics

Shadowing and ω-limit sets Definitions Connection with Shadowing

ω -limit sets

• For a map $f: X \to X$, the ω -limit set of a point $x \in X$ is the set

$$\omega(x) = \bigcap_{n \in \mathbb{N}} \overline{\{f^i(x) : i \ge n\}}$$

ω -limit sets

For a map f : X → X, the ω-limit set of a point x ∈ X is the set

$$\omega(x) = \bigcap_{n \in \mathbb{N}} \overline{\{f^i(x) : i \ge n\}}$$

 Bowen used shadowing to characterize ω-limit sets for Axiom A diffeormorphisms.

ω -limit sets

 For a map f : X → X, the ω-limit set of a point x ∈ X is the set

$$\omega(x) = \bigcap_{n \in \mathbb{N}} \overline{\{f^i(x) : i \ge n\}}$$

- Bowen used shadowing to characterize ω -limit sets for Axiom A diffeormorphisms.
- In particular, for an Axiom A diffeomorphism *f*, the ω-limit sets of *f* are precisely those sets which are 'abstract ω-limit sets.'

Definition

Internal Chain Transitivity

A set $A \subseteq X$ is internally chain transitive with respect to f provided that for all $x, y \in A$ and all $\epsilon > 0$, there exists an ϵ -chain in A from x to y.
Definition

Internal Chain Transitivity

Asymptotic Pseudo-Orbits

 An asymptotic pseudo-orbit is a sequence ⟨x_i⟩_{i∈ℕ} satisfying lim_{i→∞} d(f(x_i), x_{i+1}) = 0

Asymptotic Pseudo-Orbits

- An asymptotic pseudo-orbit is a sequence ⟨x_i⟩_{i∈ℕ} satisfying lim_{i→∞} d(f(x_i), x_{i+1}) = 0
- The ω-limit of an asymptotic pseudo-orbit ⟨x_i⟩_{i∈ℕ} is the set ω(⟨x_i⟩_{i∈ℕ}) = ∩_{n∈ℕ} {x_i : i ≥ n}

Asymptotic Pseudo-Orbits

- An asymptotic pseudo-orbit is a sequence ⟨x_i⟩_{i∈ℕ} satisfying lim_{i→∞} d(f(x_i), x_{i+1}) = 0
- The ω-limit of an asymptotic pseudo-orbit ⟨x_i⟩_{i∈ℕ} is the set ω(⟨x_i⟩_{i∈ℕ}) = ∩_{n∈ℕ} {x_i : i ≥ n}

Theorem (Barwell, Good, Oprocha, Raines)

A nonempty closed set $A \subseteq X$ is internally chain transitive if and only if it is the ω -limit of some asymptotic pseudo-orbit $\langle x_i \rangle_{i \in \mathbb{N}}$ in X.

Hausdorff metric

• 2^X is the collection of compact subsets of X.

Hausdorff metric

• 2^X is the collection of compact subsets of X.

Hausdorff metric

The metric d on X induces a metric d_H on 2^X given by:

$$d_{H}(A,B) = \max\{\sup_{a\in A} \inf_{b\in B} d(a,b), \sup_{b\in B} \inf_{a\in A} d(a,b)\}.$$

Hausdorff metric

• 2^X is the collection of compact subsets of X.

Hausdorff metric

The metric d on X induces a metric d_H on 2^X given by:

$$d_H(A,B) = \max\{\sup_{a\in A} \inf_{b\in B} d(a,b), \sup_{b\in B} \inf_{a\in A} d(a,b)\}.$$

• 2^X is compact with respect to the topology generated by d_H .

Notation

 We use the notation ω(f) to refer to the collection of ω-limit sets of f.

Notation

- We use the notation ω(f) to refer to the collection of ω-limit sets of f.
- Similarly, *ICT*(*f*) will refer to the collection of nonempty closed internally chain transitive sets.

Notation

- We use the notation ω(f) to refer to the collection of ω-limit sets of f.
- Similarly, *ICT*(*f*) will refer to the collection of nonempty closed internally chain transitive sets.

•
$$\omega(f) \subseteq ICT(f) \subseteq 2^X$$
.

Internal chain transitivity and ω -limit sets

• There are many systems in which every nonempty closed internally chain transitive set is an ω -limit set-shifts of finite type, certain interval maps, etc.

Internal chain transitivity and ω -limit sets

- There are many systems in which every nonempty closed internally chain transitive set is an ω-limit set—shifts of finite type, certain interval maps, etc.
- However, there are also many systems where this is not the case.

Internal chain transitivity and ω -limit sets

- There are many systems in which every nonempty closed internally chain transitive set is an ω-limit set-shifts of finite type, certain interval maps, etc.
- However, there are also many systems where this is not the case.

Question

Can we characterize those systems for which the collection of nonempty closed internally chain transitive sets is equal to the collection of ω -limit sets?

A conjecture

 Many of the known examples of systems in which internal chain transitivity characterizes ω-limit sets exhibit shadowing.

A conjecture

- Many of the known examples of systems in which internal chain transitivity characterizes ω-limit sets exhibit shadowing.
- This led to the conjecture that in systems with shadowing, $\omega(f)$ and ICT(f) are equal.

A conjecture

- Many of the known examples of systems in which internal chain transitivity characterizes ω-limit sets exhibit shadowing.
- This led to the conjecture that in systems with shadowing, $\omega(f)$ and ICT(f) are equal.
- Recently, a counterexample was discovered (Puljiz 2013).

A conjecture

- Many of the known examples of systems in which internal chain transitivity characterizes ω-limit sets exhibit shadowing.
- This led to the conjecture that in systems with shadowing, $\omega(f)$ and ICT(f) are equal.
- Recently, a counterexample was discovered (Puljiz 2013).
- However, there still seemed to be a strong connection to shadowing.

Main Theorem

Theorem

If $f : X \to X$ has shadowing, then $\omega(f) = ICT(f)$ if and only if $\omega(f)$ is closed with respect to the Hausdorff metric.

Outline of Proof

Lemma

Outline of Proof

Lemma

ICT(f) is closed.

Lemma

If $f : X \to X$ has shadowing, then $\overline{(\omega(f))} = ICT(f)$.

Outline of Proof

Corollary

If
$$\omega(f) = ICT(f)$$
, then $\omega(f)$ is closed.

Lemma

If
$$f : X \to X$$
 has shadowing, then $\overline{(\omega(f))} = ICT(f)$.

Outline of Proof

Corollary

If
$$\omega(f) = ICT(f)$$
, then $\omega(f)$ is closed.

Corollary

If $f : X \to X$ has shadowing and $\omega(f)$ is closed, then $\omega(f) = ICT(f)$.

ICT(f) is closed.

Let C₁, C₂,... be a sequence in *ICT*(f) that converges to a set C ∈ 2^X.

- Let C₁, C₂,... be a sequence in *ICT*(f) that converges to a set C ∈ 2^X.
- Let $a, b \in C$ and fix $\epsilon > 0$.

- Let C₁, C₂,... be a sequence in *ICT*(f) that converges to a set C ∈ 2^X.
- Let $a, b \in C$ and fix $\epsilon > 0$.
- By unif. cont., let $\delta > 0$ such that if $d(p,q) < \delta$, then $d(f(p), f(q)) < \epsilon/3$. WLOG, $\delta < \epsilon/3$.

- Let C₁, C₂,... be a sequence in *ICT*(f) that converges to a set C ∈ 2^X.
- Let $a, b \in C$ and fix $\epsilon > 0$.
- By unif. cont., let $\delta > 0$ such that if $d(p,q) < \delta$, then $d(f(p), f(q)) < \epsilon/3$. WLOG, $\delta < \epsilon/3$.
- Choose k such that $d_H(C_k, C) < \delta$.
ICT(f) is closed.

• Let $a' \in B_{\delta}(a) \cap C_k$ and $b' \in B_{\delta}(b) \cap C_k$.

ICT(f) is closed.

- Let $a' \in B_{\delta}(a) \cap C_k$ and $b' \in B_{\delta}(b) \cap C_k$.
- Since C_k is internally chain transitive, let $\langle x'_i \rangle_{i=0}^n$ be an $\epsilon/3$ -chain in C_k from a' to b'.

ICT(f) is closed.

- Let $a' \in B_{\delta}(a) \cap C_k$ and $b' \in B_{\delta}(b) \cap C_k$.
- Since C_k is internally chain transitive, let $\langle x'_i \rangle_{i=0}^n$ be an $\epsilon/3$ -chain in C_k from a' to b'.
- Let $x_0 = a$, $x_n = b$ and for 0 < i < n choose $x_i \in B_{\delta}(x_i) \cap C$.

ICT(f) is closed.

- Let $a' \in B_{\delta}(a) \cap C_k$ and $b' \in B_{\delta}(b) \cap C_k$.
- Since C_k is internally chain transitive, let $\langle x'_i \rangle_{i=0}^n$ be an $\epsilon/3$ -chain in C_k from a' to b'.
- Let $x_0 = a$, $x_n = b$ and for 0 < i < n choose $x_i \in B_{\delta}(x_i) \cap C$.
- Then $\langle x_i \rangle$ is an ϵ -chain in C from a to b:

 $\begin{aligned} d(f(x_i), x_{i+1}) &\leq d(f(x_i), f(x_i')) + d(f(x_i'), x_{i+1}') + d(x_{i+1}', x_{i+1}) \\ &< \epsilon/3 + \epsilon/3 + \delta < \epsilon \end{aligned}$

ICT(f) is closed.

- Let $a' \in B_{\delta}(a) \cap C_k$ and $b' \in B_{\delta}(b) \cap C_k$.
- Since C_k is internally chain transitive, let $\langle x'_i \rangle_{i=0}^n$ be an $\epsilon/3$ -chain in C_k from a' to b'.
- Let $x_0 = a$, $x_n = b$ and for 0 < i < n choose $x_i \in B_{\delta}(x_i) \cap C$.
- Then $\langle x_i \rangle$ is an ϵ -chain in C from a to b:

 $d(f(x_i), x_{i+1}) \leq d(f(x_i), f(x_i')) + d(f(x_i'), x_{i+1}') + d(x_{i+1}', x_{i+1})$

 $<\epsilon/3+\epsilon/3+\delta<\epsilon$

• Thus $C \in ICT(f)$ and ICT(f) is closed.

With shadowing, $\overline{(\omega(f))} = ICT(f)$.

• By previous, $\overline{\omega(f)} \subseteq ICT(f)$.

- By previous, $\overline{\omega(f)} \subseteq ICT(f)$.
- Let C ∈ ICT(f). By [BGOR], there exists an asymptotic pseudo-orbit ⟨x_i⟩_{i∈ℕ} with ω(⟨x_i⟩) = C.

- By previous, $\overline{\omega(f)} \subseteq ICT(f)$.
- Let C ∈ ICT(f). By [BGOR], there exists an asymptotic pseudo-orbit ⟨x_i⟩_{i∈ℕ} with ω(⟨x_i⟩) = C.
- For all $\delta > 0$ there exists $M_{\delta} \in \mathbb{N}$ such that $\langle x_{i+M_{\delta}} \rangle$ is a δ -pseudo-orbit.

With shadowing, $\overline{(\omega(f))} = ICT(f)$.

Fix ε > 0.

- Fix $\epsilon > 0$.
- Since f has shadowing, choose $\delta > 0$ such that every δ -pseudo-orbit is $\epsilon/2$ -shadowed.

- Fix $\epsilon > 0$.
- Since f has shadowing, choose $\delta > 0$ such that every δ -pseudo-orbit is $\epsilon/2$ -shadowed.
- In particular, choose $z \in X$ such that $\langle f^i(z) \rangle \epsilon/2$ -shadows $\langle x_{i+M_{\delta}} \rangle$.

With shadowing, $\overline{(\omega(f))} = ICT(f)$.

For all a ∈ ω(z), there exists a sequence ⟨n_i⟩ of natural numbers with f^{n_i}(z) → a.

- For all a ∈ ω(z), there exists a sequence ⟨n_i⟩ of natural numbers with f^{n_i}(z) → a.
- WLOG, the sequence $\langle x_{n_i+M} \rangle$ converges to some $b \in C$.

- For all a ∈ ω(z), there exists a sequence ⟨n_i⟩ of natural numbers with f^{n_i}(z) → a.
- WLOG, the sequence $\langle x_{n_i+M} \rangle$ converges to some $b \in C$.
- Then $d(a,b) = \lim d(f^{n_i}(z), x_{n_i+M}) \le \epsilon/2$ and so

$$\sup_{a\in\omega(z)}\inf_{b\in C}d(a,b)\leq\epsilon/2<\epsilon.$$

With shadowing, $\overline{(\omega(f))} = ICT(f)$.

 Additionally, for all b ∈ C, there exists a sequence ⟨n_i⟩ of natural numbers greater than M_δ with x_{ni} → b.

- Additionally, for all b ∈ C, there exists a sequence ⟨n_i⟩ of natural numbers greater than M_δ with x_{ni} → b.
- WLOG $\langle f^{n_i-M_\delta}(z) \rangle$ converges to some $a \in \omega(z)$.

- Additionally, for all b ∈ C, there exists a sequence ⟨n_i⟩ of natural numbers greater than M_δ with x_{ni} → b.
- WLOG $\langle f^{n_i-M_\delta}(z) \rangle$ converges to some $a \in \omega(z)$.
- Then $d(a,b) = \lim d(f^{n_i M_\delta}(z), x_{n_i}) \le \epsilon/2$ and so

$$\sup_{b\in C} \inf_{a\in\omega(z)} d(a,b) \leq \epsilon/2 < \epsilon.$$

With shadowing, $\overline{(\omega(f))} = ICT(f)$.

• In particular, $d_H(\omega(z), C) < \epsilon$.

- In particular, $d_H(\omega(z), C) < \epsilon$.
- This holds for all $\epsilon > 0$, and so $C \in \overline{\omega(f)}$.

Interval Maps

• Interval maps are known to satisfy $\omega(f)$ being closed [Blokh, Bruckner, Humke, Smítal].

Interval Maps

• Interval maps are known to satisfy $\omega(f)$ being closed [Blokh, Bruckner, Humke, Smítal].

Corollary

If $f : I \rightarrow I$ has shadowing, then $\omega(f) = ICT(f)$.

Shifts of finite type

• Shifts of finite type are known to exhibit both shadowing and $\omega(f) = ICT(f)$ [Barwell, Good, Knight, Raines].

Shifts of finite type

• Shifts of finite type are known to exhibit both shadowing and $\omega(f) = ICT(f)$ [Barwell, Good, Knight, Raines].

Corollary

In shifts of finite type, $\omega(\sigma)$ is closed.

Quadratic Julia sets

 The complex map f_c(z) = z² + c restricted to its Julia set exhibits both shadowing and ω(f) = ICT(f) for certain parameters c [Barwell, M, Raines]

Quadratic Julia sets

• The complex map $f_c(z) = z^2 + c$ restricted to its Julia set exhibits both shadowing and $\omega(f) = ICT(f)$ for certain parameters c [Barwell, M, Raines]

Corollary

For parameters c such that either J_c is a dendrite, or f_c has an attracting or parabolic periodic point, and kneading sequence τ which is not an n-tupling, $\omega(f_c|J_c)$ is closed.

Thank you

Thank you!