
Lectures 3 and 4

Hamiltonicity threshold in random graphs

The main aim of these two lectures is to establish the Hamiltonicity threshold in the probability

space G(n, p), this is the minimum value of the edge probability p(n), for which a random graph G

drawn from G(n, p) is whp Hamiltonian. By doing so we will prove a classical result of Komlós and

Szemerédi [3] and independently of Bollobás [2].

Let us start by providing some intuition on where this threshold is expected to be located. It is

well known that the threshold probability for connectivity in G(n, p) is p = lnn
n . More explicitly, one

can prove (and we leave this as an exercise) that for any function ω(n) tending to infinity arbitrarily

slowly with n, if p = lnn−ω(n)
n , then whp G ∼ G(n, p) is not connected, whereas for p = lnn+ω(n)

n

whp G ∼ G(n, p) is connected. Perhaps more importantly, the main reason for the threshold for

connectivity to be around lnn/n is that precisely at this value of probability the last isolated vertex

in G(n, p) typically ceases to exist. Of course, the graph cannot be connected while having isolated

vertices, and this is the easy part of the connectivity threshold statement; the hard(er) part is to

prove that if p(n) is such that δ(G) ≥ 1 whp, then G is whp connected.

If so, we can suspect that the threshold for Hamiltonicity of G(n, p) coincides with that of non-

existence of vertices of degree at most one, the latter being an obvious necessary condition for

Hamiltonicity. This is exactly what was proven in [3, 2]. Let us therefore set our goal by stating first

a fairly accessible result about the threshold for δ(G) ≥ 2, both in G(n, p) and in G(n,m).

Proposition 1 Let ω(n) be any function tending to infinity arbitrarily slowly with n. Then:

• in the probability space G(n, p),

1. if p(n) = lnn+ln lnn−ω(n)
n , then G ∼ G(n, p) whp satisfies δ(G) ≤ 1;

2. if p(n) = lnn+ln lnn+ω(n)
n , then G ∼ G(n, p) whp satisfies δ(G) ≥ 2;

• in the probability space G(n,m),

1. if m(n) = (lnn+ln lnn−ω(n))n
2 , then G ∼ G(n,m) whp satisfies δ(G) ≤ 1;

2. if m(n) = (lnn+ln lnn+ω(n))n
2 , then G ∼ G(n,m) whp satisfies δ(G) ≥ 2.
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Proof Straightforward application of the first (for proving δ(G) ≥ 2) and the second (for proving

δ(G) ≤ 1) methods in both probability spaces; left as an exercise. 2

Hence our goal will be to prove that for p(n) = lnn+ln lnn+ω(n)
n and for m(n) = (lnn+ln lnn+ω(n))n

2

the random graphs G(n, p) and G(n,m) respectively are whp Hamiltonian.

We will actually prove a stronger, and a much more delicate, result about the hitting time

for Hamiltonicity in random graph processes. Let us first define this notion formally. Let σ :

E(Kn) → [N ] be a permutation of the edges of the complete graph Kn on n vertices, we can write

σ = (e1, . . . , eN ), where N =
(
n
2

)
. A graph process G̃ = G̃(σ) is a nested sequence G̃ = (Gi)

N
i=0, where

the graph Gi has [n] as its vertex set and {e1, . . . , ei}, the prefix of σ of length i, as its edge set. The

sequence (Gi) thus starts with the empty graph on n vertices, finishes with the complete graph on

n vertices, and its i-th element Gi has exactly i edges; moreover, it is nested, as for i ≥ 1 the graph

Gi is obtained from its predecessor Gi−1 by adding the i-th edge ei of σ. We can view G̃(σ) as a

graph process (as the name indicates suggestively) or as an evolutionary process, unraveling from

the empty graph to the complete graph, guided by σ.

Now, we introduce the element of randomness in the above definition. Suppose the permutation

σ is drawn uniformly at random from the set of all N ! permutations of the edges of Kn. Then the

corresponding process G̃(σ) is called a random graph process. We can describe it in the following

equivalent way: start by setting G0 to be the empty graph on n vertices, and for each 1 ≤ i ≤ N ,

obtain Gi by choosing an edge ei of Kn missing in Gi−1 uniformly at random and adding it to Gi−1.

This very nice and natural probability space models a random evolutionary process in graphs; here

too we proceed from the empty graph to the complete graph, but in a random fashion.

Random graph processes are so important not just because they model evolution very nicely;

in fact, they embed the probability spaces G(n,m) for various m; due to standard connections

between G(n,m) and G(n, p) one can also claim they “contain” G(n, p) as well. Observe that running

a random process G̃ and stopping it (or taking a snapshot) at time m produces the probability

distribution G(n,m). Indeed, every graph G with vertex set [n] and exactly m edges is the m-th

element of the same number of graph processes, namely, of m!(N−m)! of them. Thus, understanding

random graph processes usually leads to immediate consequences for G(n,m), and then for G(n, p),

and Hamiltonicity is not exceptional in this sense.

Let P be a property of graphs on n vertices; assume that P is monotone increasing (i.e., adding

edges preserves it), and that the complete graph Kn possesses P (you can think of P as being the

property of Hamiltonicity). Then, given permutation σ : E(Kn)→ [N ] and the corresponding graph

process G̃(σ), we can define the first moment i when the i-th element Gi of G̃ has P. This is the so

called hitting time of P, denoted by τP(G̃(σ)):

τP(G̃(σ)) = min{i ≥ 0 : Gi has P} .

Of course, due to the monotonicity of P from this point till the end of the process the graphs Gi

all have P. When G̃ is a random graph process, the hitting time τP(G̃) becomes a random variable,
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and one can study its typical behavior. A related task is compare two hitting times, and to try to

bundle them, deterministically or probabilistically.

We now state the main result of this part of the course, due to Ajtai, Komlós and Szemeredi [1],

and to Bollobás [2].

Theorem 2 Let G̃ be a random graph process on n vertices. Denote by τ2(G̃) and τH(G̃) the hitting

times of the properties of having minimum degree at least 2, and of Hamiltonicity, respectively. Then

whp:

τ2(G̃) = τH(G̃) .

In words, for a typical graph process, Hamiltonicity arrives exactly at the very moment the last

vertex of degree less than two disappears. Of course, it cannot arrive earlier deterministically, so the

main point of the above theorem is to prove that typically is does not arrive later either.

As we indicated above, random graph process results are usually more powerful than those for

concrete random graph models. Here too we are able to derive the results for G(n,m) and G(n, p)

easily from the above theorem.

Corollary 3 Let m(n) = (lnn+ln lnn+ω(n))n
2 . Then a random graph G ∼ G(n,m) is whp Hamilto-

nian.

Proof Generate a random graph G distributed according to G(n,m) by running a random graph

process G̃ and stopping it at time m. By Proposition 1 we know that τ2(G̃) ≤ m. Theorem 2 implies

that typically τ2(G̃) = τH(G̃), and thus the graph of the process has become Hamiltonian not later

than m. Hence G is whp Hamiltonian as well. 2

Corollary 4 Let p(n) = lnn+ln lnn+ω(n)
n . Then a random graph G ∼ G(n,m) is whp Hamiltonian.

Proof Observe that generating a random graph G ∼ G(n, p) and conditioning on its number of

edges being exactly equal to m produces the distribution G(n,m). Let ω1(n) = ω(n)/3. Denote

I = [Np − nω1(n), Np + nω1(n)]. Observe that for every m ∈ I, the random graph G ∼ G(n,m)

is whp Hamiltonian by Corollary 3. Also, the number of edges in G(n, p) is distributed binomially

with parameters N and p and has thus standard deviation less than
√
Np � nω1(n). Applying

Chebyshev we derive that whp |E(G)| ∈ I. Hence

Pr[G ∼ G(n, p) is not Hamiltonian] =
N∑
m=0

Pr[|E(G)| = m] · Pr[G is not Hamiltonian| |E(G) = m]

≤ Pr[|E(G)| 6∈ I] +
∑
m∈I

Pr[|E(G)| = m]Pr[G is not Hamiltonian| |E(G) = m]

= o(1) +
∑
m∈I

Pr[|E(G)| = m]Pr[G ∼ G(n,m) is not Hamiltonian| = o(1) · Pr[Bin(N, p) ∈ I]

= o(1) .
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Now we start proving Theorem 2. The proof is somewhat technical, so before diving into its

details, we outline its main idea briefly. Recall that our goal is to prove that for a typical random

process G̃, we have τ2(G̃) = τH(G̃). In order to prove this, we will take a very close look at the

snapshot Gτ2 of G̃, aiming to prove that this graph is whp Hamiltonian. By definition, the minimum

degree of Gτ2 is exactly two, and it is thus quite reasonable to expect that this graph is typically a

(k, 2)-expander for k = Θ(n). This is true indeed, however such expansion by itself does not quite

guarantee Hamiltonicity. As indicated in Lecture 1, expanders form a very convenient backbone for

augmenting a graph to a Hamiltonian one – according to Corollary 3.5 of Lecture 1 every connected

non-Hamiltonian (k, 2)-expander has Ω(k2) boosters. Observe though that since we aim to prove a

hitting time result, we cannot allow ourselves to sprinkle few random edges on top on our expander

- a Hamilton cycle should appear at the very moment the minimum degree in the random graph

process becomes two. We will circumvent this difficulty in the following way: we will argue that the

snapshop Gτ2 typically is not only a good expander by itself, but also contains a subgraph Γ0 who

is about as good an expander as Gτ2 is, but contains only a small positive proportion on its edges.

Having obtained such Γ0 we will start looking for boosters relative to Γ0, but already contained in

our graph Gτ2 – thus avoiding the need for sprinkling. We will argue that Gτ2 is typically such that

it is contains a booster with respect to every sparse expander in it. If this is the case, then we will

be able to start with Γ0 and to update it sequentially by adding a booster after a booster (at most

n boosters will need to be added by definition), until we will finally reach Hamiltonocity – all within

Gτ2 ; observe crucially that at each step of this augmentation procedure the updated backbone Γi,

obtained by adjoining to Γ0 the previously added boosters, has at most n more edges than Γ0 and

is thus still a sparse subgraph of Gτ2 ; of course the required expansion is inherited from an iteration

to iteration. Then our claim about Gτ2 typically containing a booster with respect to every sparse

expander within is applicable, and we can push the process through. This is quite a peculiar proof

idea – it appears that the random graph is helping itself to become Hamiltonian!

Let us get to work. As outlined before, we run a random graph process G̃ and take a snapshot

at the hitting time τ2 = τ2(G̃). Denote

m1 =
n ln

2
m2 = n lnn .

Observe that by Proposition 1 we have that whp m1 ≤ τ2 ≤ m2. Let

d0 = bδ0 lnnc

where δ0 > 0 is a sufficiently small constant to be chosen later, and denote, for a graph G on n

vertices,

SMALL(G) = {v ∈ V (G) : d(v) < d0} .
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Observe that for G ∼ G(n,m) with m ≥ m1, the expected vertex degree is asymptotically equal

to lnn. Thus falling into SMALL(G) is a rather rare event, and we can expect the vertices of

SMALL(G) to be few and far apart in the graph. In addition, such G should have typically very

nice edge distribution, with no small and dense vertex subsets, and many edges crossing between

any tow large disjoint subsets. This is formalized in the following lemma.

Lemma 5 Let G̃ = (Gi)
N
i=0 be a random graph process on n vertices. Denote G = Gτ2, where

τ2 = τ2(G̃) is the hitting time for having minimum degree two in G̃. Then whp G has the following

properties:

(P1) ∆(G) ≤ 10 lnn; δ(G) ≥ 2;

(P2) |SMALL(G)| ≤ n0.3;

(P3) G does not contain a non-empty path of length at most 4 such that both of its (possibly identical)

endpoints lie in SMALL(G);

(P4) every vertex subset U ⊂ [n] of size |U | ≤ n
ln1/2 n

spans at most |U | · ln3/4 n edges in G;

(P5) for every pair of disjoint vertex subsets U,W of sizes |U | ≤ n
ln1/2 n

, |W | ≤ |U | · ln1/4 n, the

number of edges of G crossing between U and W is at most d0|U |
2 ;

(P6) for every pair of disjoint vertex subsets U,W of size |U | = |W | =
⌈

n
ln1/2 n

⌉
, G has at least 0.5n

edges between U and W .

Proof The proof is a fairly standard (though tedious) manipulation with binomial coefficients. We

will thus prove several of the above items, leaving the proof of remaining ones to the reader.

(P1): Observe that since whp τ2 ≤ m2, it is enough to prove that in G ∼ G(n,m2) there are whp

no vertices of degree at least 10 lnn. For a given vertex v ∈ [n], the probability that v has degree at

least 10 lnn in G(n,m2) is at most(
n− 1

10 lnn

)( N−10 lnn
m2−10 lnn

)(
N
m2

) ≤
( en

10 lnn

)10 lnn (m2

N

)10 lnn
,

by the standard estimates on binomial coefficients stated in Lecture 1. After cancellations we see

that the above estimate is at most (2en/10(n − 1))10 lnn = o(1/n). Applying the union bound we

obtain that typically at time m2 and thus at τ2 ≤ m2 as well there are no vertices of degree at least

10 lnn. The bound on δ(G) is immediate from the definition of τ2.

(P2): Notice that since adding edges can only decrease the size of SMALL(G), it is enough to prove

that typically already at timem1 |SMALL(Gm1)| ≤ n0.3. LetG ∼ G(n,m1). If |SMALL(G)| ≥ n0.3,
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then G contains a subset V0 ⊂ V , |V0| = k = dn0.3e such that eG(V0, V − V0) ≤ d0k. The probability

of this to happen in G(n,m1) is at most:(
n

k

) ∑
i≤d0k

(
k(n− k)

i

)
·
(
N−k(n−k)
m1−i

)(
N
m1

) ≤
(
n

k

) ∑
i≤d0k

(
kn

i

)
·
(
N−k(n−k)
m1−i

)(
N−i
m1−i

) ·
(
N−i
m1−i

)(
N
m1

)
≤
(en
k

)k ∑
i≤d0k

(
ekn

i

)i
· e−

(m1−i)(k(n−k)−i)
N−i ·

(m1

N

)i
≤
(en
k

)k ∑
i≤d0k

(
ekm1n

iN

)i
· e−

0.9km1n
N

≤
(en
k

)k [
(d0k + 1) ·

(
ekm1n

d0kN

)d0k
· e−

0.9km1n
N

]

≤ (d0k + 1)

[
3n0.7

(
3 lnn

d0

)d0
· e−0.8 lnn

]k
= o(1) ,

for δ0 small enough.

(P3): Since whp m1 ≤ τ2 ≤ m2, it is enough to prove the following statement:whp every two

(possibly identical) vertices of SMALL(Gm1) are not connected by a path of length at most 4 in

Gm2 .

Let us prove first that whp there is no such path in Gm1 ∼ G(n,m1). First we treat the case

where the endpoints of the path are distinct. Fix 1 ≤ r ≤ 4, a sequence P of distinct vertices

v0, . . . , vr in [n] and denote by AP the event (vi, vi+1) ∈ E(Gm1 for every 0 ≤ i ≤ r − 1. Then

Pr[AP ] =

(
N−r
m1−r

)(
N
m1

) ≤ (m1

N

)r
=

(
lnn

n− 1

)r
.

If we now condition on AP , then the two edges (v0, v1) and (vr−1, vr) are present in Gm1 . Thus in

order for both v0, vr to fall into SMALL(Gm1), out of 2n − 4 potential edges between {v0, vr} and

the rest of the graph (the edges (v0, v1), (vr−1, vr) are excluded from the count), only at most 2d0−2

are present in Gm1 . Hence:

Pr[v0, vr ∈ SMALL(Gm1)|AP ] ≤
2d0−2∑
i=0

(
2n− 4

i

)
·
(
N−r−2n+4
m1−r−i

)(
N−r
m1−r

)
≤ (2d0 − 1)

(
2n− 4

2d0 − 2

)
·
(
N−r−2n+4
m1−r−2d0+2

)(
N−r
m1−r

)
≤ 2d0

(
2n− 4

2d0 − 2

)
·
(
N−r−2n+4
m1−r−2d0+2

)(
N−r−2d0+2
m1−r−2d0+2

) · ( N−r−2d0+2
m1−r−2d0+2

)(
N−r
m1−r

)
≤ 2d0 ·

(
en

d0 − 1

)2d0−2

· e−
(m1−r−2d0+2)(2n−2d0−2)

N−r−2d0+2 ·
(
m1 − r
N − r

)2d0−2

≤ 2d0 ·
(

em1n

(d0 − 1)N

)2d0−2

· e−
1.9m1n

N ≤ n−1.8 ,

for δ0 small enough. Hence, applying the union bound over all such sequences of r + 1 vertices, we

conclude that the probability that there exists a path in Gm1 of length at most 4, connecting two
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distinct vertices from SMALL(Gm1) is at most
∑

r≤4 n
r+1 ·

(
lnn
n−1

)r
· n−1.8 = o(1). The case where

the endpoitns of the path are identical is treated similarly.

In light of the above, we can assume that after m1 steps of the random graph process the

current graph does not have a forbidden short path between the vertices of SMALL. Moreover,

by (P2) we can assume that |SMALL(Gm1)| ≤ n0.3. Now, let us run the process between m1

and m2. In order for the i-th edge of the process, m1 < i ≤ m2, to close a short path between

the vertices of SMALL(Gm1), it should fall inside a current set U of vertices at distance at most

3 from SMALL(Gm1). We have proven (property (P1)) that in fact whp the maximum degree

of Gm2 as well is at most 10 lnn. Hence, whp in this time interval, the set U has size at most

|SMALL(Gm1 | · (10 lnn)3, and thus the probability of the i-th edge of the process to fall inside U

is at most
(|U|2 )
N−m2

= o(n−1.3). Taking the union bound over all such i in the interval (m1,m2], we

establish the desired property.

Properties (P4)–(P6) can be proven quite similarly (and are in fact simpler to prove), and we

spare the reader from the (perhaps somewhat boring. . . ) task of reading their proofs.

2

The above stated properties (P1)–(P6) are sufficient to prove that Gτ2 is a very good expander

by itself. Our goal is somewhat different though – we aim to prove that Gτ2 contains a much sparser,

but still fairly good expander. For this purpose, assume that a graph G = (V,E) has properties

(P1)–(P6). Form a random subgraph Γ0 of G as follows. For every v ∈ V − SMALL(G), choose

a set E(v) of d0 edges of G incident to v uniformly at random; for every v ∈ SMALL(G), define

E(v) to be the set of all edges of G touching v. Finally, define Γ0 to be the spanning subgraph of G,

whose edge set is:

E(Γ0) =
⋃
v

E(v) .

In words, in order to form Γ0 we retain all edges touching the vertices of SMALL(G), and sparsify

randomly other edges.

Lemma 6 With high probability (over the choices of E(v)) the subgraph Γ0 is a (k, 2)-expander with

at most d0n edges, where k = n
4 .

Proof Since by definition |E(v)| ≤ d0 for every v ∈ V , it follows immediately that |E(Γ0| ≤ d0n.

We now prove that typically Γ0 has the following property:

(P7) For every pair of disjoint sets U,W of size |U | = |W | =
⌈

n
ln1/2 n

⌉
, Γ0 has at least one edge

between U and W .

Fix sets U,W as above. We know by (P6) that G has at least 0.5n edges between U and W . For

a vertex u ∈ U , the probability that none of the edges between u and W falls into E(u) is at most(dG(u)−dG(u,W )
d0

)(dG(u)
d0

) ≤ e−
d0·dG(u,W )

dG(u) ≤ e−
d0

10 lnn
·dG(u,W )
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by (P1). Hence the probability that none of the vertices u from U chooses an edge between u and

W to be put into its set E(u) is at most:∏
u∈U

e−
d0

10 lnn
·dG(u,W ) = e−

d0
10 lnn

·eG(U,W ) = e−Θ(n) .

Applying the union bound over all choices of U,W gives the desired claim.

We now claim that for every graph G, and every its subgraph Γ0 of minimum degree 2 satisfying

properties (P2), (P3), (P4), (P5), (P7), the subgraph Γ0 is an (n/4, 2)-expander. In order to

verify this claim, let S ⊂ [n] be a subset of size |S| ≤ n/4. Denote S1 = S ∩ SMALL(G), S2 =

S − SMALL(G). Consider first the case where |S2| ≤ n
ln1/2 n

. Since δ(Γ0) ≥ 2, and all vertices from

SMALL are at distance more than 4 from each other by (P3), we obtain: |NΓ0(S1)| ≥ 2|S1|. As for

vertices from S2, they are all of degree at least d0 in Γ0. The set S2 spans at most |S2| · ln3/4 n edges

in G, and thus in Γ0, according to (P4). It thus follows that eΓ0(S2, V − S2) ≥ d0|S2| − 2eΓ0(S2) >
d0|S2|

2 . Hence |NΓ0(S2)| ≥ |S2| · ln1/4 n, by (P5). Finally, notice that, due to the non-existence of

short paths connecting SMALL(G) again, the set NΓ0(S1) contains only one vertex from u ∪ NΓ0

for every u ∈ S2 (here we use the fact the forbidden paths have length at most 4). Therefore,

|S1 ∩ (S2 ∪NΓ0(S2))| ≤ |S2|. Altogether,

|NΓ0(S)| = |NΓ0(S2)|+ |NΓ0(S1)− (S2 ∪NΓ0(S2))|

≤ |S2| · ln1/4 n+ 2|S1| − |S2| ≤ 2(|S1|+ |S2|) = 2|S| ,

as required. The complementary case n
ln1/2 n

≤ |S2| ≤ n
4 is very simple: by property (P7), such

S2 misses at most n/ ln1/2 n vertices in its neighborhood in Γ0, also |S1| ≤ |SMALL(G)| ≤ n0.3 by

(P2). In follows that |NΓ0(S)| ≥ n− n
ln1/2 n

− |S2| − |SMALL(G)| ≥ n
2 . 2

Notice that every (n4 , 2)-expander Γ on n vertices is necessarily connected. Indeed, if such Γ

is not connected, then consider its component C of size |C| ≤ n
2 , and take U to be an arbitrary

subset of C of size |U | = min{
⌊
n
4

⌋
, |C|}. Then the external neighborhood of U in Γ has size at least

2|U | > |C − U | by our expansion assumption, and falls entirely within C – a contradiction.

As we stated already in this lecture, expanders are not necessarily Hamiltonian themselves, but

they are amenable to reaching Hamiltonicity by adding extra (random) edges, as they contain many

boosters. However, in our circumstances we do not have extra time for sprinkling, and the required

boosters should come from within the already existing edges of the random graph. Fortunately, a

random graph G(n,m) with m = m(n) in the relevant range has whp a booster with respect to any

sparse expander it contains, as given by the following lemma.

Lemma 7 Let G̃ = (Gi)
N
i=0 be a random graph process on n vertices. Denote G = Gτ2, where

τ2 = τ2(G̃) is the hitting time for having minimum degree two in G̃. Assume the constant δ0 is small

enough. Then whp for every (n/4, 2)-expander Γ ⊂ G with V (Γ) = V (G) and |E(Γ)| ≤ d0n+ n, Γ

is Hamiltonian , or G contains at least one booster with respect to Γ.
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Proof Recall that every connected (k, 2)-expander Γ has at least k2/2 boosters, by Corollary 3.5 of

Lecture 1. In order for a random graph G to violate the assertion of the lemma, G should contain

some (n/4, 2)-expander Γ with few edges, but none of at least as many as n2/32 boosters relative

to Γ (note that the required connectivity of G is delivered by the expansion of Γ, as explained

above). Since we cannot pinpoint the exact location of τ2, we instead take the union bound over all

m1 ≤ m ≤ m2, as whp τ2 is located in this interval. So the estimate is:

m2∑
m=m1

∑
i≤d0n+n

(
N
i

)
·
(N−i−n2

32
m−i

)(
N
m

) + o(1) (1)

(we sum over all relevant values of m, adding in the end o(1) to account for the probability that τ2

falls outside the interval [m1,m2]; then we sum over all possible values i of |E(Γ)|; then we bound

from above by
(
N
i

)
the number of (n/4, 2)-expanders with i edges in the complete graph on n vertices,

and finally we require the edges of Γ to be present in G(n,m), but all at least n2/32 boosters relative

to Γ to be omitted). The ratio of the binomial coefficients above can be estimated as follows:

(N−i−n2

32
m−i

)(
N
m

) ≤
e−

n2

32 (m−i)

N−i
(
N−i
m−i
)(

N
m

) ≤ e−
m
17

(m
N

)i
,

assuming that δ0 in the definition of d0 is small enough. We can thus estimate the i-th summand in

(1) as follows:(
N

i

)
e−

m
17

(m
N

)i
≤
(
eN

i
· m
N

)i
· e−

m
17 =

(em
i

)i
· e−

m
17 ≤

(
em

d0n+ n

)d0n+n

· e−
m
17 = o(n−3) ,

again for δ0 small enough (it is even exponentially, and not just polynomially, small in n). Summing

over all i ≤ d0n+ n and then over all m1 ≤ m ≤ m2 establishes the required claim. 2

The stage is now set to deliver the final (and crushing!) blow in the proof of Theorem 2. Recall

that our goal is to prove that for a random graph process G̃, whp the graph G = Gτ2 at the very

moment τ2 when the minimum degree becomes 2 is already Hamiltonian. First, observe that by

Lemma 6 whp G contains an (n/4, 2)-expander Γ0 with at most d0n edges. We start with this

sparse expander Γ0 and keep adding boosters to it until the current graph Γi becomes Hamiltonian;

obviously at most n steps (edge additions) will be needed to reach Hamiltonicity. If we ever get

stuck before reaching Hamiltonicity, say at step i ≥ 0, then the current graph Γi is still an (n/4, 2)-

expander, is connected and non-Hamiltonian, has at most d0n + n edges, but the graph G has no

boosters with respect to Γi. This however does not happen typically due to Lemma 7. If so, the

process of edge addition eventually completes with a subgraph Γi ⊂ G, which is Hamiltonian. The

proof is complete!
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