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1 Boltzmann generation of Random Combinatorial Structures

Our aim is to describe a general purpose sampling algorithm for a given class of graphs.

Notation: we denote by A any class of graphs, and write A =
⋃

n≥0An, where An consists

of all elements of A that have n vertices. We will always assume that graphs are well-

labeled, meaning that each graph in An has labels from the set [n]. If a graph G is not

well-labeled, then we write ρ(G) for the graph obtained by relabeling G canonically, hence

ρ(G) is well-labeled.

Remark 1.1. A canonical relabeling is such that it preserves the order of the labels.

For every n ≥ 0, let us set an = |An|. We will write

A(z) :=
∞∑
n=0

an
n!
zn

for the exponential generating function of A. Analogously to the class of trees, we can

define the Rooted Class corresponding to A, which we will denote by

A•n := An × [n].

The corresponding exponential generating function becomes

A•(x) :=

∞∑
n=0

nan
n!

xn = xA′(x).
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1.1 Starting Point

The aim of this section is to look at possible decompositions and recursive description of

classes. We start by defining the Base Class X : this is the single graph, consisting of only

one vertex.

Suppose we are given two classes of graphs B and C with exponential generating functions

B(x) :=
∑∞

n=0 bnx
n/n! and C(x) :=

∑∞
n=0 cnx

n/n! respectively. Then, their disjoint union

is defined as

A = B + C, with B ∩ C = ∅,

and the corresponding exponential generating function will be A(x) = B(x)+C(x). Similarly,

we can define the labeled product A = B ∗ C as follows. Here A maps bijectively to the

following set. Consider (b, c) ∈ B×C and label the resulting structure arbitrarily so that it is

well-labeled. More formally, A is in bijection with⋃
b∈B, c∈C

b ∗ c,

where

b ∗ c := {(b′, c′) : (b′, c′) is well-labeled and ρ(b′) = b, ρ(c′) = c}.

Writing bk = |Bk| and ck = |Ck| we arrive at the relation

an =

n∑
k=0

bkcn−k

(
n

k

)
,

implying A(x) = B(x)C(x).

Remark 1.2. The factor 1/n! in the definition of the exponential generating function is

justified by the presence of labeling.

Next we consider the Set construction. A = Set(B) means that A is in bijection with an

unordered collection of graphs in the class B (where again the labels can be distributed in

any possible way). In particular, for every such collection with k graphs there are k! ordered

collections. Therefore,

A(x) =
∑
k≥0

(B(x))k

k!
= eB(x).

The last construction that we consider is the so-called substitution, denoted by A = B ◦ C.
For each k ≥ 0, write Setk(C) for the collection of sets in C with k elements, and Bk for the

set of graphs in B with k vertices.

In other words, for each two classes of graphs B and C, the class A consists of all graphs

that are obtained from graphs from B, where each node is replaced by a graph from C.
Hence, we can write

A =
∑
k≥0
Bk × Setk C,

which implies A(x) =
∑

k bk
(C(x))k

k! = B(C(x)).
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1.2 Sampling

In this section we aim at answering the following question.

Question. How do we sample randomly from a class that is specified in terms of “Base

Class”, “Disjoint Union”, “Product”, “Set”, “Substitution”?

In general, uniform sampling from An is difficult and/or computationally expensive, but

there is an indirect way of approaching the problem. The idea is to proceed as we did in the

case of trees, i.e., by dropping the requirement on the size of the sampler to be exactly n.

Assume that A(x) <∞, and to each a ∈ An (i.e., |a| = n) assign the probability

Px(a) =
x|a|

|a|!A(x)
=

xn

n!A(x)
. (1)

This is the so-called Boltzmann model, inspired from statistical physics (see [1]).

Remark 1.3. Sampling from Base Class and finite classes is easy.

Remark 1.4. The probability defined in (1) only depends on the size of the element a, and

not on a itself, hence (1) is uniform when conditioned on |a| = n.

1.2.1 Boltzmann Sampler for the Disjoint Union A = B + C

A Boltzmann sampler ΓA(x) for a class A is a process that produces objects from A according

to the corresponding Boltzmann model.

Now, suppose we have samplers ΓB(x) and ΓC(x), for the classes B and C. The Boltzmann

model associated to A(x) is a mixture of those associated to B(x) and C(x). Given a Bernoulli

generator defined as

Bern(p) = 1 with probability p, Bern(p) = 0 with probability 1− p,

the Boltzmann sampler ΓA(x) is obtained by the following idea. Given the values of B(x)

and C(x), we can consider the outcome of

Bern

(
B(x)

B(x) + C(x)

)
= Bern

(
B(x)

A(x)

)
.

and choose whether we sample from A of from B. We proceed as follows.

ΓA(x) : if Bern

(
B(x)

A(x)

)
= 1, then set γ := ΓB(x)

else set γ := ΓC(x)

return γ.
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Now let b ∈ B. Since we are dealing with Bernoulli random variables, the probability of

choosing a graph (in one “coin-flip”) in B among the ones in A is given by B(x)/A(x).

Therefore, in view of (1), we have that

P(ΓA(x) = b) =
B(x)

A(x)
P(ΓB(x) = b) =

B(x)

A(x)

x|b|

|b|!B(x)
=

x|b|

|b|!A(x)
.

The same calculation can be done to show that for every c ∈ C we have

P(ΓA(x) = c) =
x|c|

|c|!A(x)
.

1.2.2 Boltzmann Sampler for the Labeled Product A = B ∗ C

In a similar way as above, we assume that we have Boltzmann samplers for B and C, and

define (recursively ) the Boltzmann sampler ΓA(x).

ΓA(x) : (ΓB(x),ΓC(x)) –Note: the components are independent of each other–

γB := ΓB(x)

γC := ΓC(x)

return (γB, γC) with a randomly chosen relabeling.

Let a ∈ A. The definition of the labeled product implies that there are b ∈ B and c ∈ C such

that a maps bijectively to some well-labeled (b′, c′), where

ρ(b′) = b, and ρ(c′) = c.

Therefore

P(ΓA(x) = a) = P(ΓB(x) = b)P(ΓC(x) = c)P(relabeling is the correct one)

= P(ΓB(x) = b)P(ΓC(x) = c)

[(
|b|+ |c|
|b|

)]−1
=

x|b|

|b|!B(x)

x|c|

|c|!C(x)

|b|! |c|!
(|b|+ |c|)!

=
x|b|+|c|

B(x)C(x)

1

(|b|+ |c|)!
=

x|a|

|a|!A(x)
.

1.2.3 Boltzmann Sampler for the set construction

In the Boltzmann model, the chance that a random graph from A is a collection of k elements

of B is given by
B(x)k

k!

1

A(x)
= e−B(x)B(x)k

k!
.
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Since this is a Poisson distribution, the procedure to define ΓA(x) is as follows:

ΓA(x) : k is a random variable ∼ Po(B(x))

γ1 := ΓB(x)
...

...

γk := ΓB(x)

 independent copies!

return (γ1, . . . , γk) with a randomly chosen labeling.

Boltzmann Sampler for Substitution A = B ◦ C: Exercise!

Exercises

Exercise 1. Given the Substitution construction A = B ◦ C:

(i) Find its generating function.

(ii) Develop a Boltzmann Sampler.

Exercise 2. Let B be the class of binary trees (each vertex has either 0 or 2 children).

(i) Compute the generating function for B.

(ii) Develop a Boltzmann sampler for B.

(iii) Denote by Nx the size of the Boltzmann sampler. Show that the following hold:

E(Nx) =
xB′(x)

B(x)
;

Var(Nx) =
x2B′′(x) + xB′(x)

B(x)
−
(
xB′(x)

B(x)

)2

.

Exercise 3. Let T • be the class of rooted labeled trees.

(i) Define T • in terms of the product and set constructions.

(ii) Show that the sampler from Lecture 1 is actually a Boltzmann sampler for T •.
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