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Introduction

Suppose we are given a class G of labeled graphs, i.e.,

G =
⋃
n≥0
Gn,

where Gn contains all elements of G that have n vertices.

Question. Consider a random graph Gn from the set Gn. How does it look like?

An example of such graph is the Erdős-Renyi random graph, typically denoted by Gn,p.

Here n is the number of vertices, and 0 < p < 1 is the probability that any two vertices

are connected by an edge. One of the key properties of Gn,p is that each edge appears

independently of all the others.

In this course we will consider other classes of graphs G, for example:

(i) trees and families of planar graphs.

(ii) Outerplanar graphs1, i.e., those which do not contain the complete graph K4 nor the

complete bipartite graph K2,3 as minors. (Recall that a graph H is said to be a minor

of G, if H can be constructed from G only by deletion of edges –and vertices– and by

contraction of edges.)

(iii) Series-parallel graphs, which do not contain K4 as minor.

In particular, we will study the global structure and some local properties (for example the

distribution of the degree sequence) of such families of graphs.

1An outerplanar graph can be embedded in the plane in such a way that there is a face containing all

the vertices.
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1 Trees

Denote by Tn the set of labeled trees with n vertices. By Cayley’s formula the number of

such trees is given by |Tn| = nn−2. We denote by

dk(T ) := #{vertices of T having degree k}.

Question. Let Tn be chosen uniformly at random from Tn. What can we say about the

distribution of the random variable dk(Tn)?

In order to answer this question, we need to proceed by steps.

First Step: Rooting. Define the family of rooted trees on n vertices to be

T •n := Tn × [n],

where [n] = {1, . . . , n}, and consider an element T •n chosen uniformly at random from T •n .

Then we have that

dk(T
•
n)

d
= dk(Tn),

meaning that the distribution of the degree sequence (like many other properties of such trees)

is not affected by the rooting.

Second Step: Sampler for rooted Trees. In order to create a sampler, we proceed as

follows:

(i) create a single “untouched” vertex (which will be the root),

(ii) while there are untouched vertices, perform the following actions.

– Select any untouched vertex (arbitrarily), denote it by v.

– Given a value nv distributed according to a Poisson random variable of parameter

1, and create nv untouched vertices.

– Connect the new vertices to v and declare v “touched”.

This is nothing else than a branching process whose offspring distribution follows a

Poisson of parameter 1.

(iii) Label the vertices uniformly at random, choosing the labels from a set S (with |S| equal

to the number of vertices in the tree).

We denote this sampler by ΓT •.

Remark 1.1. Note that we have no control over the size of the output, i.e., the number

vertices in the generated tree is a random variable.
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Remark 1.2. All choices made in the course of the execution of the sampler are independent.

Now we can state the following result.

Lemma 1.3. Let n ∈ N. Then the following is true.

(a) There is a c > 0 such that P (|ΓT •| = n) ∼ cn−3/2.

(b) Let T • ∈ T •n . Then

P(ΓT • = T • | |ΓT •| = n) = |T •n |−1 = n−n+1.

Thus, conditional on the event “|ΓT •| = n” we get the uniform distribution on T •n .

Proof. Let T • ∈ T •n . By induction we will show that

P(ΓT • = T •) =
e−n

n!
, (1)

from which (a) and (b) will follow rather straightforwardly. To see that (1) implies (b), it

suffices to notice that the right-hand-side does not depend on the tree itself, but only on its

size. To see that (a) is a consequence of (1), it suffices to observe that

P (|ΓT •| = n) = |T •|e
−n

n!
,

and the claim follows by applying Stirling’s formula.

Now we prove (1) inductively. It is straightforward to verify that (1) holds for = 1. Now

suppose that the root of T • has degree d. Denote by T •1 , . . . , T
•
d the d subtrees, where the

chosen order is arbitrary. Then

P(ΓT • = T •) =
1

n
P(Po(1) = d)P(T •1 , . . . , T

•
d ).

The factor 1/n corresponds to the probability that the root is assigned the correct label. The

quantity P(Po(1) = d) is the probability that the root has degree d. Finally, P(T •1 , . . . , T
•
d )

stands for the probability that the rest is correct, in the following sense. Since the T •i ’s can

be generated in any order, we have d! possible choices. Furthermore, the labels have to be

distributed correctly, which happens with probability

1(
n−1

|T •
1 |,...,|T •

d |
) =

∏d
i=1 |T •i |!

(n− 1)!

By induction assumption on the subtrees, one gets the statement.

Denote by Z1, Z2, . . . the random choices made to build up ΓT •. Then the Zi’s are iid

Po(1) random variables.

Let d•k(T
•) denote the number of vertices different from the root that have degree k. Then,

d•k(T
•) ∈ {dk(T •), dk(T •)− 1}.
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Remark 1.4. Conditional on the event {|ΓT •| = n}, we have

d•k(ΓT
•) =

n∑
i=2

1{Zi=k−1}.

The following is a useful a concentration result, known as Chernoff bounds.

Theorem 1.5 (Chernoff bounds). Let X ∼ Bin(n, p), with µ := E(X) = np. Then, for all

t ≥ 0, we have:

P(X ≥ µ+ t) ≤ exp

{
− t2

2(µ+ t/3)

}
,

as well as

P(X ≤ µ− t) ≤ exp

{
− t

2

2µ

}
.

By definition of the Zi’s we have

P(Zi = k − 1) =
e−1

(k − 1)!
, (2)

hence denote by µk := n−1
e(k−1)! . Then by (2), for every 0 < ε < 1 we obtain

P

(∣∣ n∑
i=2

1{Zi=k−1} − µk
∣∣ ≥ εµk

)
≤ 2e−ε

2µk/4.

Such a statement should also hold for a random tree, since the conditioning in Lemma 1.3

does not seem too “severe”. This is indeed the case.

Theorem 1.6. Let k ∈ N and ε > 0. Then, for n sufficiently large

P(d•k(T
•
n) ∈ (1± ε)µk) ≥ 1− e−ε2µk/5.

Proof. As a shorthand for the notation, let us define

I = I(ε, k, n) := (1± ε)µk.

We observe that

P
(
d•k(T

•
n) /∈ I

)
= P

(
d•k(ΓT

•) /∈ I | |ΓT •| = n
)

=
(
P
(
|ΓT •| = n

))−1 P(d•k(ΓT •) /∈ I, |ΓT •| = n
)
.

By Lemma 1.3 we know that P
(
|ΓT •| = n

)
∼ cn−3/2, for some c > 0. Hence(

P
(
|ΓT •| = n

))−1 P(d•k(ΓT •) /∈ I, |ΓT •| = n
)
∼ cn3/2P

(
d•k(ΓT

•) /∈ I, |ΓT •| = n
)

≤ n3/2P

(
n∑
i=2

1{Zi=k−1} /∈ I

)
.
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The last equality is due to Remark 1.4. At this point the Chernoff bounds yield

P
(
d•k(T

•
n) /∈ I

)
≤ n3/2P

( n∑
i=2

1{Zi=k−1} /∈ I
)
≤ 2n3/2 exp

{
−ε

2

4
µk

}
.

Now we can choose n so large that

ε2

100
µk =

ε2(n− 1)

100e(k − 1)!
> log(2n3/2).

Hence the claim follows.

Remark 1.7. Remarks about main ideas that have been used.

(i) Sequence of iid random variables relates to a combinatorial object;

(ii) the probability to have a sampler of size n is not too small;

(iii) exploit exponentially rare events.

We will see in the forthcoming lectures how this can be generalized to many other classes

of graphs.

Exercises

1. Prove Lemma 1.3 (a) probabilistically by performing the following steps:

(i) Show that

{|ΓT •| = n} =

{
n∑
i=1

Zi = n− 1, ∀1 ≤ N ≤ n− 1 :
N∑
i=1

Zi ≥ N

}
.

(ii) Let z1, . . . , zn ∈ N0 be such that
∑n

i=1 zi = n− 1. Show that there is exactly one

index 1 ≤ I ≤ n such that the rotated sequence

y1, . . . yn = zI+1 . . . znz1 . . . zI

has the property ∀1 ≤ N ≤ n− 1 :
∑N

i=1 yi ≥ N .

(iii) Use (i) and (ii) to show that there is a c > 0 such that P (|ΓT •| = n) ∼ cn−3/2.

2. Extend Theorem 1.6 to the case where we deal with degrees k = k(n). In particular,

show that the conclusion still holds if k ≤ (1− ε) log(n)/ log log(n), for any ε > 0.

3. Let ∆(G) be the maximum degree of G. Show that there is a constant C > 0 such that

with high probability

∆(Tn) ≤ C log(n)/ log log(n).
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