
Lecture 2

Long paths in random graphs

1 Introduction

In this lecture we treat the appearance of long paths and cycles in sparse random graphs. We

will work with the probability space G(n, p) of binomial random graphs, analogous results for the

sister model G(n,m) can be either proven using very similar arguments, or derived using available

equivalence statements between the two models.

Our goal here is two-fold: we first prove that already in the super-critical regime p = 1+ε
n , the

random graph G(n, p) contains typically a path of length linear in n; then we prove that in the regime

p = C
n , the random graph G(n, p) has typically a path, covering the proportion of vertices tending

to 1 as the constant C increases. We will invoke the approaches and results developed in Lecture 1

(the Depth First Search Algorithm and its consequences) to achieve both of these goals, and in fact

in a rather short and elegant way.

2 Linearly long paths in the supercritical regime

In their groundbreaking paper [2] from 1960, Paul Erdős and Alfréd Rényi made the following

fundamental discovery: the random graph G(n, p) undergoes a remarkable phase transition around

the edge probability p(n) = 1
n . For any constant ε > 0, if p = 1−ε

n , then G(n, p) has whp all connected

components of size at most logarithmic in n, while for p = 1+ε
n whp a connected component of linear

size, usually called the giant component, emerges in G(n, p) (they also showed that whp there is

a unique linear sized component). The Erdős-Rényi paper, which launched the modern theory of

random graphs, has had enormous influence on the development of the field. We will be able to

derive both parts of this result very soon.

Although for the super-critical case p = 1+ε
n the result of Erdős and Rényi shows a typical

existence of a linear sized connected component, it does now imply that a longest path in such a

random graph is whp linearly long. This was established some 20 years later by Ajtai, Komlós and

Szemerédi [1]. In this section we present a (relatively) simple proof of their result. We will not

attempt to achieve the best possible absolute constants, aiming rather for simplicity. Our treatment

follows closely that of [5].
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The most fundamental idea of the proof is to run the DFS algorithm on a random graph G ∼
G(n, p), constructing the graph “on the fly”, as the algorithm progresses. We first fix the order σ

on V (G) = [n] to be the identity permutation. When the DFS algorithm is fed with a sequence of

i.i.d. Bernoulli(p) random variables X̄ = (Xi)
N
i=1, so that is gets its i-th query answered positively if

Xi = 1 and answered negatively otherwise, the so obtained graph is clearly distributed according to

G(n, p). Thus, studying the component structure of G can be reduced to studying the properties of

the random sequence X̄. This is a very useful trick, as it allows to “flatten” the random graph by

replacing an inherently two-dimensional structure (a graph) by a one-dimensional one (a sequence

of bits). In particular, observe crucially that as long as T 6= ∅, every positive answer to a query

results in a vertex being moved from T to U , and thus after t queries and assuming T 6= ∅ still, we

have |S ∪ U | ≥
∑t

i=1Xi. (The last inequality is strict in fact as the first vertex of each connected

component is moved from T to U “for free”, i.e., without need to get a positive answer to a query.)

On the other hand, since the addition of every vertex, but the first one in a connected component,

to U is caused by a positive answer to a query, we have at time t: |U | ≤ 1 +
∑t

i=1Xi.

The probabilistic part of our argument is provided by the following quite simple lemma.

Lemma 2.1 Let ε > 0 be a small enough constant. Consider the sequence X̄ = (Xi)
N
i=1 of i.i.d.

Bernoulli random variables with parameter p.

1. Let p = 1−ε
n . Let k = 7

ε2
lnn. Then whp there is no interval of length kn in [N ], in which at

least k of the random variables Xi take value 1.

2. Let p = 1+ε
n . Let N0 = εn2

2 . Then whp
∣∣∣∑N0

i=1Xi − ε(1+ε)n
2

∣∣∣ ≤ n2/3.
Proof 1) For a given interval I of length kn in [N ], the sum

∑
i∈I Xi is distributed binomially with

parameters kn and p. Applying the Chernoff bound to the upper tail of B(kn, p), and then the union

bound, we see that the probability of the existence of an interval violating the assertion of the lemma

is at most

(N − k + 1)Pr[B(kn, p) ≥ k] < n2 · e−
ε2

3
(1−ε)k < n2 · e−

ε2(1−ε)
3

7
ε2

lnn = o(1) ,

for small enough ε > 0.

2) The sum
∑N0

i=1Xi is distributed binomially with parameters N0 and p. Hence, its expectation is

N0p = εn2p
2 = ε(1+ε)n

2 , and its standard deviation is of order n. Applying the Chebyshev inequality,

we get the required estimate. 2

Now we are ready to formulate and to prove the result of this section.

Theorem 2.2 Let ε > 0 be a small enough constant. Let G ∼ G(n, p).

1. Let p = 1−ε
n . Then whp all connected components of G are of size at most 7

ε2
lnn.

2. Let p = 1+ε
n . Then whp G contains a path of length at least ε2n

5 .
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In both cases, we run the DFS algorithm on G ∼ G(n, p), and assume that the sequence X̄ = (Xi)
N
i=1

of random variables, defining the random graph G ∼ G(n, p) and guiding the DFS algorithm, satisfies

the corresponding part of Lemma 2.1.

Proof 1) Assume to the contrary that G contains a connected component C with more than k =
7
ε2

lnn vertices. Let us look at the epoch of the DFS when C was created. Consider the moment

inside this epoch when the algorithm has found the (k+ 1)-st vertex of C and is about to move it to

U . Denote ∆S = S ∩ C at that moment. Then |∆S ∪ U | = k, and thus the algorithm got exactly k

positive answers to its queries to random variables Xi during the epoch, with each positive answer

being responsible for revealing a new vertex of C, after the first vertex of C was put into U in the

beginning of the epoch. At that moment during the epoch only pairs of edges touching ∆S ∪ U
have been queried, and the number of such pairs is therefore at most

(
k
2

)
+ k(n − k) < kn. It thus

follows that the sequence X̄ contains an interval of length at most kn with at least k 1’s inside – a

contradiction to Property 1 of Lemma 2.1.

2) Assume that the sequence X̄ satisfies Property 2 of Lemma 2.1. We claim that after the first

N0 = εn2

2 queries of the DFS algorithm, the set U contains at least ε2n
5 vertices (with the contents of

U forming a path of desired length at that moment). Observe first that |S| < n
3 at time N0. Indeed,

if |S| ≥ n
3 , then let us look at a moment t where |S| = n

3 (such a moment surely exists as vertices

flow to S one by one). At that moment |U | ≤ 1 +
∑t

i=1Xi <
n
3 by Property 2 of Lemma 2.1. Then

|T | = n − |S| − |U | ≥ n
3 , and the algorithm has examined all |S| · |T | ≥ n2

9 > N0 pairs between S

and T (and found them to be non-edges) – a contradiction. Let us return to time N0. If |S| < n
3

and |U | < ε2n
5 then, we have T 6= ∅. This means in particular that the algorithm is still revealing

the connected components of G, and each positive answer it got resulted in moving a vertex from

T to U (some of these vertices may have already moved further from U to S). By Property 2 of

Lemma 2.1 the number of positive answers at that point is at least ε(1+ε)n
2 − n2/3. Hence we have

|S ∪ U | ≥ ε(1+ε)n
2 − n2/3. If |U | ≤ ε2n

5 , then |S| ≥ εn
2 + 3ε2n

10 − n
2/3. All |S||T | ≥ |S|

(
n− |S| − ε2n

5

)
pairs between S and T have been probed by the algorithm (and answered in the negative). We thus

get:

εn2

2
= N0 ≥ |S|

(
n− |S| − ε2n

5

)
≥
(
εn

2
+

3ε2n

10
− n2/3

)(
n− εn

2
− ε2n

2
+ n2/3

)
=

εn2

2
+
ε2n2

20
−O(ε3)n2 >

εn2

2

(we used the assumption |S| < n
3 ), and this is obviously a contradiction, completing the proof. 2

Let us discuss the obtained result and its proof. First, given the probable existence of a long

path in G(n, p), that of a long cycle is just one short step further. Indeed, we can use sprinkling as

follows. Let p = 1+ε
n for small ε > 0. Write 1 − p = (1 − p1)(1 − p2) with p2 = ε

2n ; thus, most of

the probability p goes into p1 ≥ 1+ε/2
n . Let now G ∼ G(n, p), G1 ∼ G(n, p1), G2 ∼ G(n, p2), we can

represent G = G1 ∪G2. By Theorem 2.2, G1 whp contains a linearly long path P . Now, the edges
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of G2 can be used to close most of P into a cycle – there is whp an edge of G2 between the first and

the last n2/3 (say) vertices of P .

The dependencies on ε in both parts of Theorem 2.2 are of the correct order of magnitude – for

p = 1−ε
n a largest connected component of G(n, p) is known to be whp of size Θ(ε−2) log n while for

p = 1+ε
n a longest cycle of G(n, p) is whp of length Θ(ε2)n.

Observe that using a Chernoff-type bound for the tales of the binomial random variable instead

of the Chebyshev inequality would allow to claim in the second part of Lemma 2.1 that the sum∑N0
i=1Xi is close to ε(1+ε)n

2 with probability exponentially close to 1. This would show in turn,

employing the argument of Theorem 2.2, that G(n, p) with p = 1+ε
n contains a path of length linear

in n with exponentially high probability, namely, with probability 1− exp{−c(ε)n}.
As we have mentioned in Lecture 1, the DFS algorithm is applicable equally well to directed

graphs. Hence essentially the same argument as above, with obvious minor changes, can be applied

to the model D(n, p) of random digraphs. It then yields the following theorem:

Theorem 2.3 Let p = 1+ε
n , for ε > 0 constant. Then the random digraph D(n, p) has whp a

directed path and a directed cycle of length Θ(ε2)n.

This recovers the result of Karp [4].

3 Nearly spanning paths

Consider now the regime p = C
n , where C is a (large) constant. Our goal is to prove that whp in

G(n, p), the length of a longest path approaches n as C tends to infinity. This too is a classical result

due to Ajtai, Komlós and Szemerédi [1], and independently due to Fernandez de la Vega [3]. It is

fairly amusing to see how easily it can be derived using the DFS-based tools we developed in Lecture

1.

Theorem 3.1 For every ε > 0 be a small enough constant there exists C = C(ε) > 0 such that the

following is true. Let G ∼ G(n, p), where p = C
n . Then whp G contains a path of length at least

(1− ε)n.

Proof Let k = b εn2 c. By Proposition 2.2 from Lecture 1 it suffices to show that G ∼ G(n, p) contains

whp an edge between every pair of disjoint subsets of size k of V (G). For a given pair of disjoint

sets S, T of size |S| = |T | = k, the probability that G contains no edges between S and T is exactly

(1−p)k2 (all k2 pairs between S and T come out non-edges in G). Using the union bound, we obtain

that the probability of the existence of a pair violating this requirement is at most(
n

k

)(
n− k
k

)
(1− p)k2 <

(
n

k

)2

(1− p)k2 <
(en
k

)2k
e−

p(k−1)k
2n <

[(en
k

)2
· e−

C(k−1)
2n

]k
.

Recalling the value of k and taking C = 3 ln(5/ε2)
ε guarantees that the above estimate vanishes (in

fact exponentially fast in n), thus establishing the claim. 2
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A similar statement holds for the probability space D(n, p) of random directed graphs, with an

essentially identical proof.
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