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1 Introduction

Given finite X ⊂ Rd, and r > 0, the geometric graph G(X , r) has vertex set X and edge
set {{x, y} : ‖x− y‖ ≤ r}, where ‖ · ‖ is the Euclidean norm.

Motivation: radio stations/communications. Trees/disease. Stars/constellations.

A random geometric graph (RGG) is obtained by taking X to be a random set of
points.

Let ξ1, ξ2, . . . be independent random d-vectors, uniformly distributed over [0, 1]d (typ-
ically d = 2). Set

Xn := {ξ1, . . . , ξn}.

and Pn := {ξ1, . . . , ξNn} with Nn Poisson distributed with parameter n, independent of
(ξ1, ξ2, . . .). Then Pn is a Poisson point process with n times Lebesgue measure as its
mean measure, i.e.

Pn(A) ∼ Po[n|A|]; (1.1)

Pn(A1), . . . ,Pn(Ak) are independent for A1, . . . , Ak disjoint (1.2)

where X (A) means the number of points of X in A.

Exercise 1.1. (exPP) Prove this.

The RGGs we consider are G(Xn, rn) and G(Pn, rn), with (rn)n≥1 a specified sequence
of distance parameters.

One reason to study RGGs is to explore ‘typical’ properties of geometric graphs. An-
other reason is to assess statistical tests based on the graph G(Xn, rn), for example tests
for uniformity. It is of interest to compare this random graph model with others, such as
the Erdős-Rényi random graph G(n, p).
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Notation. Many of the results described in this course are asymptotic results as n→
∞. Unless stated otherwise, any limiting statement in the sequel is as n → ∞. Also,
for positive real-valued sequences an and bn we use the following asymptotic notational
conventions:

• an = O(bn) means lim sup(an/bn) <∞.

• an = Θ(bn) means that both an = O(bn) and bn = O(an).

• an = o(bn) means that an/bn → 0. This may also be written as an � bn or as
bn � an, or as bn = ω(an).

• an ∼ bn means an/bn → 1.

We let θ denote the volume of the unit ball in Rd.
Given two points x, y ∈ Rd, we shall say x lies to the left of y if x precedes y in the

lexicographic ordering on Rd.

Exercise 1.2. (Ex1) Prove that if rn → 0, then E[Degree(ξ1)] ∼ θnrdn.

If rn → 0, the expected number of edges incident to a ‘typical vertex’ of Xn or Pn goes
like θnrdn (in the case of Xn, Exercise 1.2 makes this statement precise).

As this suggests, we often get different limiting behaviour depending on the limit
behaviour of nrdn. We refer to cases with nrdn → 0 as the sparse limit, and nrdn → ∞ as
the dense limit, and nrdn = Θ(1) as the thermodynamic limit.

2 Edge counts

Let En be the number of edges of G(Xn, rn), and let E ′n be the number of edges of G(Pn, rn).
We consider the limiting behaviour of the probability distribution of En and E ′n. More
generally one could (by similar methods) also consider the limiting distribution of the
number of subgraphs isomorphic to some specified connected finite graph; see [3] for
details.

Note that if rn → 0 then

EEn ∼ θ(n2rdn)/2. (0802c) (2.1)

Exercise 2.1. (exExp) Prove this.

First we consider the sparse limit (nrdn → 0). In this case we can show En is well
approximated by a Poisson distributed variable (though if also n2rdn is large this is itself
well approximated by a normal random variable).

We prove this using the technique of dependency graphs. Suppose (V,∼) is a finite
graph without loops (i.e. for α, β ∈ V we write α ∼ β if α, β are adjacent.)

This is a dependency graph for a set of random variables (Wα, α ∈ V ) if whenever
A ⊂ V,B ⊂ V with A ∩B = ∅ and no edges connecting A to B,

(Wα, α ∈ A) is independent of (Wβ, β ∈ B).
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Lemma 2.2. (Poisson Approximation Lemma) [1], or [3, Theorem 2.1]. Suppose (V,∼)
is a finite graph and (Wα)α∈V is a family of 0− 1 valued random variables, having (V,∼)
as a dependency graph. For α, β ∈ V set pα = P[Wα = 1] and pαβ = P[Wα = 1,Wβ = 1].
Then if we set W =

∑
α∈V Wα and λ =

∑
α∈V pα, we have

∞∑
k=0

|P[W = k]− e−λλk/k!| ≤ min(2/λ, 6)×

(∑
α∈V

p2α +
∑
α

∑
β∼α

(pαβ + pαpβ)

)
. (2.2)

Proof. Omitted.

Theorem 2.3. (PoLimEd) Suppose nrdn → 0. Let λn = EEn. Then

lim
n→∞

(
∞∑
k=0

|P[En = k]− e−λnλkn/k!|

)
= 0.

Proof. Let V = {α = {i, j} : 1 ≤ i ≤ j ≤ n} with α ∼ β if α ∩ β 6= ∅ and α 6= β. Set

W{i,j} = 1{‖ξi − ξj‖ ≤ rn}.

Then En =
∑

α∈V Wα and (V,∼) is a dependency graph for {Wα}. Now pα depends on n
but not α and

pα ∼ θrdn

and similarly for α ∼ β we have
pαβ ∼ (θrdn)2

so that

λn =
∑
α∈V

pα ∼
(
n

2

)
θrdn ∼

n2θrdn
2

and ∑
α∈V

p2α ∼
(
n

2

)
(θrdn)2 ∼ λn(θrdn)

while ∑
α∈V

∑
β∼α

(pαβ + pαpβ) ∼
(
n

2

)
× 2(n− 1)× θ2r2dn

= O(nrdnλn)

and since we assume nrdn → 0, Lemma 2.2 gives us the result.
The following lemma will be useful to us. It was called ‘Palm theory for the Poisson

process’ in [3] but here we call it the ‘Mecke formula’. In the proof we use notation

(n)(k) := n(n− 1) · · · (n− k + 1) for n, k ∈ N

(the so-called ‘descending factorial’). Also, in the following formula (and elsewhere) the
region of integration, when not specified otherwise, is to be taken to be [0, 1]d.
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Lemma 2.4. (Mecke formula.) Let k ∈ N. For any measurable real-valued function f ,
defined on the product of (Rd)k and the space of finite subsets of [0, 1]d, for which the
following expecation exists,

E
6=∑

X1,...,Xk∈Pn

f(X1, X2, . . . , Xk,Pn \{X1, . . . , Xk}) = nk
∫
dx1 · · ·

∫
dxkEf(x1, . . . , xk,Pn)

where
∑ 6= means the sum is over ordered k-tuples of distinct points of Pn.

Proof. We condition on the number of points of Pn. Then

E
6=∑

X1,...,Xk∈Pn

f(X1, X2, . . . , Xk,Pn \ {X1, . . . , Xk})

=
∞∑
m=k

(
e−n

nm

m!

)
(m)k

∫
dx1 · · ·

∫
dxmf(x1, . . . , xk, {xk+1, . . . , xm})

= nk
∫
dx1 · · ·

∫
dxk

∞∑
m=k

(
e−nnm−k

(m− k)!

)∫
dy1 · · ·

∫
dym−kf(x1, . . . , xk, {y1, . . . , ym−k})

= nk
∫
dx1 · · ·

∫
dxk

∞∑
r=0

(
e−nnr

r!

)∫
dy1 · · ·

∫
dyrf(x1, . . . , xk, {y1, . . . , xr})

= nk
∫
dx1 · · ·

∫
dxkEf(x1, . . . , xk,Pn)

where in the third line we made the substitution yj = xk+j for k < j ≤ m, and in the
fourth line we set r = m− k.

3 Edge counts: Normal approximation

Given x ∈ Rd and r > 0, let B(x; r) be the Euclidean ball of radius r centred at x.
We now give limit behaviour of the variance of E ′n in thermodynamic or dense limit.

For a more general result (considering number of induced subgraphs isomorphic to a
specified graph, rather than just number of edges), see [3, Proposition 3.7].

Proposition 3.1. (propvar) If lim inf(nrdn) > 0 and rn → 0 then

Var(E ′n) ∼ n[(θnrdn)2 + (1/2)θnrdn].

Note that in the dense limit this simplifies to Var(E ′n) ∼ n(θnrdn)2.

Exercise 3.2. (exfac) Prove that if X is a Poisson variable with parameter λ, and

k ∈ N, then E[(X)k] = λk.

Proof of Proposition 3.1 Let gn(x, y) = 1{0 < ‖x − y‖ ≤ rn} for x, y ∈ Rd. Then by
the Mecke formula

2EE ′n = E
6=∑

X,Y ∈Pn

gn(X, Y ) = n2

∫ ∫
gn(x, y)dxdy (0814a) (3.1)
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with all integrals over [0, 1]d in this proof. Thus,

EE ′n ∼ n2θrn/2. (0813a) (3.2)

Now consider (E ′n)2. This is the number of ordered pairs of edges in G(Pn, rn). We
may decompose this as

(E ′n)2 = Sn,0 + Sn,1 + Sn,2

where for i = 0, 1, 2 we let Sn,i be the number of ordered pairs of edges with i endpoints

in common. Then Sn,0 = 1
4

∑ 6=
U,V,X,Y ∈Pn

gn(U, V )gn(X, Y ) where
∑ 6= means the sum is

over ordered 4-tuples of distinct points in Pn. By the Mecke formula, followed by (3.1),

ESn,0 =
n4

4

∫ ∫ ∫ ∫
gn(u, v)gn(x, y)dudvdxdy = (EE ′n)2.

Also, Sn,2 = E ′n and therefore

Var(E ′n) = E[(E ′n)2]− (EE ′n)2 = ESn,1 + EE ′n (3.3)

Next consider Sn,1. We have

Sn,1 =
∑
X∈Pn

6=∑
Y,Z∈Pn\{X}

gn(X, Y )gn(X,Z) =
∑
X∈Pn

hn(X,Pn)

where hn(x;Pn) := (Pn(B(x; rn)\{x}))(2) and (n)(2) := n(n−1) is the descending factorial.
Using Exercise 3.2 , and the Mecke formula, we have

ESn,1 = E
∑
X∈Pn

hn(X;Pn) = n

∫
Ehn(x;Pn)dx ∼ n(θrdn)2. (3.4)

By combining (3.3), (3.4) and (3.2) we get the result.

We shall prove a central limit theorem for E′n in the thermodynamic or dense limit,
using the following result of Chen and Shao [2] (alternatively we could use Theorem 2.4 of
[3] which would give a slower rate of convergence in the CLT). We let Φ be the standard
normal cumulative distribution fuction, i.e. Φ(x) = (2π)−1/2

∫ x
−∞ e

−t2/2dt for x ∈ R.

Lemma 3.3. (Normal Approximation Lemma; see [2, Theorem 2.7].) Let Wi, i ∈ V, be
random variables indexed by the vertices of a dependency graph with |V | vertices, all of
degree at most D. Let W =

∑
i∈V Wi. Assume that E[W 2] = 1,E[Wi] = 0, and for some

β > 0, that E|Wi|3 ≤ β for all i ∈ V . Then

sup
t
|P [W ≤ t]− Φ(t)| ≤ 75D10|V |β.

Proof. Omitted. Lemmas 3.3 and 2.2 are both proved by versions of Stein’s method,
which is an important topic in its own right, but beyond the scope of this short course.

Now we can give our central limit theorem.

Theorem 3.4. Suppose rn → 0 but lim inf(nrdn) > 0. Then for all x ∈ Rd,

P

[
E ′n − EE ′n√

Var(E ′n)
≤ x

]
→ Φ(x) as n→∞.
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Proof. Given n, partition Rd into cubes of side rn, and let those cubes in the partition
that have non-empty intersection with [0, 1]d be denoted C1, . . . , Ckn . Then kn ∼ r−dn . Let
Mi := Mi(n) denote the number of edges of G(Pn, rn) with left-endpoint in Ci. Set

Wi := Wi(n) :=
Mi − EMi√

Var(E ′n)
.

Then
E ′n − EE ′n√

Var(E ′n)
=

kn∑
i=1

Wi.

Set V = {1, 2, . . . , kn} and for i, j ∈ V put i ∼ j if Ci and Cj are neighbouring cubes (i.e.
they touch, so allowing diagonal neighbours) or they have a common neighbour. Then
(V,∼) is a dependency graph for (Wi, i ∈ V ) and the maximal degree of this graph is at
most 5d − 1, independent of n.

By Proposition 3.1 we have that Var(E ′n) = Θ(n(nrdn)2). Therefore by Lemma 3.3 it
suffices to prove that

(0813b)kn max
1≤i≤kn

E[|Mi − EMi|3]
(n1/2nrdn)3

→ 0. (3.5)

We shall estimate E[|Mi − EMi|3] by first estimating E[|Mi − EMi|4] (which is the same
as E[(Mi − EMi)

4]), and then using Hölder’s inequality. By the Binomial Theorem,

E[(Mi − EMi)
4] =

4∑
j=0

(
4

j

)
(−EMi)

4−jE[M j
i ]. (0813c) (3.6)

Note that
E[M4

i ] = E
∑
e

∑
e′

∑
e′′

∑
e′′′

1

where each sum runs through all edges of the G(Pn, rn) having left-endpoint in the cube
Ci. The leading order term in this expectation comes from when all of e, e′, e′′, e′′′ have
distinct endpoints and using the Mecke formula, we have that the this leading order term
is

E
6=∑

X1,Y1,...,X4,Y4∈Pn

gi,n(X1, Y1) · · · gi,n(X4, Y4)

where gi,n(x, y) is the indicator of the event that ‖x − y‖ ≤ rn and also x ∈ Ci and also
x lies to the left of y. Therefore by the Mecke formula, the leading term equals

n8

∫
· · ·
∫
dx1 · · · dx4dy1 · · · dy4

4∏
i=1

gi,n(xi, yi)

=

(
n2

∫ ∫
dxdygi,n(x, y)

)4

= (E[Mi])
4

(recall that all integrals are over [0, 1]d unless specified otherwise).
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Similarly, the leading-order term in EM3
i (coming from triples of edges with no end-

points in common) is equal to (E[Mi])
3, and the leading-order term in EM2

i (coming from
pairs of edges with no endpoints in common) is equal to (E[Mi])

2. Therefore if we collect
together all the leading-order terms in (3.6) we get

4∑
j=1

(
4

j

)
(−EMi)

4−j(EMi)
j

which is equal to (EMi − EMi)
4 and therefore comes to zero.

Next we consider second order terms. Let Ri be the number of ordered pairs of edges
having a common endpoint and both with left endpoint in Ci. Then

ERi = E
6=∑

X,Y,Z∈Pn

(gi,n(X, Y ) + gi,n(Y,X))(gi,n(X,Z) + gi,n(Z,X))

=

∫ ∫ ∫
(gi,n(x, y) + gi,n(y, x))(gi,n(x, z) + gi,n(z, x))dxdydz

where the last line comes from the Mecke formula.
The second order term in EM4

i comes from quadruples of edges e, e′, e′′, e′′′ having
seven distinct endpoints between them (so having precisely one common endpoint among
the four edges). There are 6 ways to choose which two of the edges e, e′, e′′, e′′′ share an
endpoint, and therefore the second-order term in EM4

i comes to

6

6=∑
X,Y,Z,X1,X2,Y1,Y2∈Pn

(gi,n(X, Y ) + gi,n(Y,X))(gi,n(X,Z) + gi,n(Z,X))gi,n(X1, Y1)gi,n(X2, Y2)

and by the Mecke formula this comes to

6n7

∫
· · ·
∫
dxdydzdx1dy1dx2dy2(gi,n(x, y) + gi,n(y, x))(gi,n(x, z) + gi,n(z, x))

×gi,n(x1, y1)gi,n(x2, y2)

= 6(EMi)
2ERi

Similarly, the second order term in EM3
i comes to 3EMiERi, and the second order term

in EM2
i comes to ERi. There is no second order term in EMi.

Therefore, combining all second-order terms in (3.6) we get

(EMi)
2ERi

((
4

4

)
× 6−

(
4

3

)
× 3 +

(
4

2

)
× 1

)
= 0.

Therefore the leading order non-zero term in (3.6) comes from the third-order terms.
The third-order term in EM4

i comes from 4-tuples of edges e, e′, e′′, e′′′ having two shared
endpoints between them (so with a total of six distinct endpoints). This is bounded by
some combinatorial constant, times

6=∑
X1,...,X6∈Pn

h∗i,n(X1, . . . , Xn)
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where h∗i,n(x1, . . . , x6) is the indicator of the event that x1, . . . , x6 all lie in Ci or in one of
the neighbouring cubes. Therefore by the Mecke formula, the third-order term in EM4

i is
bounded by a constant times

n6

∫
· · ·
∫
h∗i,n(x1, . . . , x6)dx1 · · · dx6

and thus is O((nrdn)6). Similarly the higher order terms are O((nrdn)5). Combining all
this, we find from (3.6) that

E[(Mi − EMi)
4] = O((nrdn)6)

and also by Hölder’s inequality for any random variable X we have E[|X|3] ≤ (EX4)3/4,
so that

E[|Mi − EMi|3] = O((nrdn)9/2),

uniformly over i ≤ kn. Therefore

kn max
1≤i≤kn

E[|Mi − EMi|3]
(n1/2nrdn)3

= O
(
r−dn (nrdn)3/2n−3/2

)
= O(rd/2n )

which tends to zero so we have (3.5) as required.

4 The maximum degree

Let ∆n be the maximum degree of vertices in G(Xn, rn), and let ∆′n be the maximum
degree in G(Pn, rn). Given k ∈ N let N≥k(n) (respectively N ′≥k(n)) be the number of
vertices of G(Xn, rn) (respectively G(Pn, rn)) of degree at least k. Also set Nk(n) :=
N≥k(n) − N≥k+1(n) and N ′k(n) := N ′≥k(n) − N ′≥k+1(n) (the number of vertices of degree
exactly k).

First consider the sparse limit with nrdn → 0. As long as this convergence to zero is
not very slow, we can show that the maximum degree remains bounded in probability.

Indeed, suppose for some k ∈ N that in fact nrdn = o(n−1/k).
Then n(k+1)/krdn → 0, and nk+1(rdn)k → 0. For λ > 0, let Po(λ) denote a Poisson

distributed random variable with parameter λ. Note that P[Po(λ) ≥ k] ∼ λk/k! as λ ↓ 0.
Therefore using the Mecke formula we have

EN ′≥k(n) ∼ n(θnrdn)k/k!

which tends to zero, so by Markov’s inequality P[N ′≥k(n) > 0] → 0 and hence P[∆′n ≥
k]→ 0.

Similarly, if nrdn = ω(n−1/k) then EN ′≥k(n) → ∞, and in fact it can also be shown in

this case that P[∆′n ≥ k]→ 1. Therefore if n−1/k � nrdn � n−1/(k+1) then P[∆′n = k]→ 1.
If nrdn ∼ αn−1/k for some positive finite constant α then limn→∞ P[∆n = k] exists and

lies in (0, 1), and
lim
n→∞

P[∆n ∈ {k − 1, k}] = 1.

This last fact is the so-called two-point concentration (or focusing) property of the distri-
bution of ∆n.
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We prove the above assertions only for k = 1. In this case if nrdn ∼ αn−1, then
n2rdn → α, and EEn → θα/2 by (2.1). Then by Theorem 2.3 we have

P[∆n = 0] = P[En = 0]→ exp(−θα/2)

but also since nrdn = o(n−1/2) we have P[∆′n ≥ 2]→ 0.

Exercise 4.1. Using the preceding statement and monotonicity, prove that if n2rdn →∞
then P[∆n = 0]→ 0.

Next we briefly consider the thermodynamic limit with nrdn → α for some α ∈ (0,∞).
For any k,

EN ′k ∼ n exp(−θα)(θα)k/k!

which tends to ∞ as k →∞.

Exercise 4.2. Prove that P[Nk ≥ 1] → 1, i.e. P[∆′n ≥ k] → 1, in the case where
lim inf nrdn > 0.

Thus in this case, and in the previous case, ∆′n � nrdn in probability.

Now we consider the case with

nrdn
log n

→ α, α ∈ (0,∞) (connlim) (4.1)

In this case we shall find it is not the case that ∆n � nrdn in probability. We shall give a
strong law showing ∆n/(nr

d
n) tends to a positive constant almost surely.

To state the result we shall need more notation. Define the function H : (0,∞)→ R
by

H(a) = 1− a+ a log a.

Some simple calculus shows that H(1) = 0 is the unique minimum value of H(·) with H(·)
increasing on (0,∞) and decreasing on (0, 1); also lima↓0H(a) = 1 and lima→∞H(a) =
+∞.

For x > 0 let h−1+ (x) be the a ∈ (1,∞) with H(a) = x, and if 0 < x < 1 let let h−1+ (x)
be the a ∈ (0, 1) with H(a) = x.

Theorem 4.3. (Thmax) Suppose (4.1) holds. Then ∆n/(nθr
d
n)→ H−1+ (1/α) almost

surely.

Remark. It can be shown that for the random geometric graph in the torus, if (4.1) holds
with α > 1 and δn denotes the minimum degree of G(Xn, rn) then δn/(nθr

d
n)→ H−1− (1/α)

almost surely.
The function H arises from the following large-deviations results concerning the Pois-

son distribution.

Lemma 4.4. (LDlem) It is the case that if np = µ then

P[Po(λ) ≥ k] ≤ exp(−λH(k/λ)), k ≥ λ (LD3) (4.2)

P[Po(λ) ≤ k] ≤ exp(−λH(k/λ)), k ≤ λ (LD4) (4.3)

and for any a > 1 and ε > 0, there exists λ0 ∈ (0,∞) such

P[Po(λ) ≥ aλ] ≥ exp(−(1 + ε)λH(a)), λ ≥ λ0. (LD5) (4.4)
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Proof. Set X = Po(λ). For z ≥ 1, by Markov’s inequality applied to the random
variable zX ,

P[P(λ) ≥ k] ≤ z−kE[zX ] = z−keλ(z−1). (0814b) (4.5)

and similarly for z ≤ 1,

P[P(λ) ≤ k] ≤ z−kE[zX ] = z−keλ(z−1). (0815a) (4.6)

Put z = k/λ. If k ≥ λ then this choice of z satisfies z ≥ 1 so by (4.5) we obtain

P[P(λ) ≥ k] ≤
(
λ

k

)k
ek−λ = exp(−λH(k/λ))

which proves (4.2). If k ≤ λ then the same choice of z satisfies z ≤ 1 so we obtain (4.3)
from (4.6).

Finally to prove (4.4), we use the following inequality (a weak form of Stirling’s for-
mula):

log k! =
k∑
i=1

log i ≤
∫ k+1

1

log x = (k + 1) log(k + 1)− k

so k! ≤ (k + 1)k+1e−k. Thus if we fix a > 1 and put k = daλe we obtain

P[Po(λ) ≥ aλ] ≥ P[Po(λ) = k] = e−λλk/k!

≥ e−λekλk

(k + 1)k+1

and hence

λ−1 logP[Po(λ) ≥ aλ] ≥ −1 + (k/λ)− (k/λ) log((k + 1)/λ)− λ−1 log(k + 1)

≥ −H(a)(1 + ε), λ large.

which proves (4.4)

Proof of Theorem 4.3. Assume nθrdn/ log n→ α ∈ (0,∞).
Let β < H−1+ (1/α), so that H(β) > 1/α. Let δ > 0 and let ε > 0 (to be chosen later).
Cover [0, 1]d by balls of radius εrn. The number of balls required, denoted kn, is O(r−dn )

and therefore is O(n/ log n).
Let the centres of these balls be denoted x1, . . . , xkn .
If ∆n ≥ nθrdnβ, then there is a point X of Pn with degree at least nθrdnβ in G(Pn, rn),

and this must lie in one of the balls B(xi, εrn), 1 ≤ i ≤ kn, say for i = I. Then by the
triangle inequality, we must have

Pn(B(xI , (1 + ε)rn)) ≥ nθrdnβ.

Therefore by the union bound,

P[∆n ≥ nθrdnβ] ≤
kn∑
i=1

P[Pn(B(xi, (1 + ε)rn)) ≥ nθrdnβ]. (0815b) (4.7)
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Now for each i ≤ kn, the random variable Wi := Pn(B(xi, (1+ε)rn)) is Poisson distributed
with mean satisfying

EWi ≤ nθ(1 + ε)drdn ≤ (1 + ε)d+1α log n

so that by Lemma 4.4,

P[Wi > nθrdnβ] ≤ exp

[
−(1 + ε)d+1α(log n)H

(
nθrdnβ

nθ(1 + ε)drdn

)]
= exp

[
(1 + ε)d+1α(log n)H

(
β

(1 + ε)d

)]
and if we choose ε small enough so that

(1 + ε)d+1αH(β/(1 + ε)d) > 1 + δ

then we have
P[Wi > nθrdnβ] ≤ n−(1+δ).

Therefore

kn∑
i=1

P
[
Wi ≥ nθ(1 + ε)drdn

]
= O((n/ log n)n−(1+δ))

which is summable in n, and therefore by (4.7) we have for any β > H−1+ (1/α).

∞∑
n=1

P[∆n ≥ nθrdnβ] <∞,

and therefore by the first Borel-Cantelli lemma

P[lim sup
n→∞

∆n/(nθr
d
n) > β] = 0, β > H−1+ (1/α). (0815c) (4.8)

Now suppose β < H−1+ (1/α), so that H(β) < 1/α. Let ε > 0 and choose δ > 0, to
be chosen below. Choose a maximal collection of points x1, . . . , xjn such that the balls
B(xi, (1− δ)rn), 1 ≤ i ≤ jn are disjoint and all contained in [0, 1]d. Then jn = Θ(r−dn ) =
θ(n/ log n). For 1 ≤ i ≤ jn, define the event

Ai = {Pn(B(xi, δrn)) ≥ 1} ∩ {Pn(B(xi, (1− δ)rn) \B(xi, δrn)) ≥ nθrdnβ}.

Then we have the event inclusion

∪jni=1Ai ⊂ {∆′n ≥ nθrdnβ} (0815d) (4.9)

Now, Vi := Pn(B(xi, (1− δ)rn) \B(xi, δrn)) is Poisson with mean

EVi = nθ((1− δ)d − δd)rdn > (1− δ)d+1α log n

where the last inequality holds for all large enough n. So

P[Vi ≥ nθrdnβ] ≥ exp

[
−α(log n)H

(
β

(1− δ)d

)]
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and if δ is chosen so small that αH
(

β
(1−δ)d

)
> (1− ε), we obtain that

P[Vi ≥ nθrdnβ] ≥ exp(−(1− δ) log n) = nδ−1.

Since the event {Pn(B(xi, δrn)) ≥ 1} has probability greater than 1/2 (for large enough
n) and is independent of the event {Vi ≥ nθrdnβ}, we have P[Ai] ≥ (1/2)nδ−1. Therefore,
since the events A1, . . . , Ajn are independent we have for some c > 0 that

P[∩jni=1A
c
i ] ≤ (1− 1

2
n1−δ)jn ≤ exp(−cnδ−1 × (n/ log n))

which tends to zero. Combined with (4.9), this shows that

∞∑
n=1

P[∆′n < βnθrdn] ≤
∞∑
n=1

[
∪jni=1Ai

]
→ 1,

and hence by the Borel-Cantelli lemma,

P[lim inf
n→∞

∆′n/(θr
d
n) < β] = 0, β < H−1+ (1/α).

Combined with (4.8) this gives us the result.

5 Connectivity

Let K be the class of connected graphs, and let

ρ′n = min{r : G(Pn, r) ∈ K}

which is a random variable determined by the configuration of Pn. It is called the con-
nectivity threshold. Similarly define

ρn = min{r : G(Pn, r) ∈ K}.

In this section we prove the following result. Recall that for random variables Xn and

any constant c, we say Xn
P−→ c if for all ε > 0 we have P[|Xn − c| > ε]→ 0.

Theorem 5.1. (Thconn) Assume d = 2. Then

nθ(ρ′n)2/ log n
P−→ 1. (0815e) (5.1)

Remarks.

(i) The retriction to d = 2 arises because boundary effects become more important in
higher dimensions (and d = 1 is different because 1-space is ‘less connected’.).

(ii) The convergence (5.1) actually holds with almost sure convergence, and these hold
with ρ′n replaced by ρn, but proving these extensions is beyond the scope of these
lectures.

12



(iii) A further extension of (5.1) is the following convergence in distribution result: for
any t ∈ R,

lim
n→∞

P[nθ(ρ′n)2 − log n ≤ t]→ exp(−e−t).

Proving this is also beyond our scope here.

Recall that δ′n denotes the minimum degree of G(Pn). If δ′n = 0 then clearly G(Pn) /∈
K′.

Theorem 5.2. (Thmin) If nθrdn/ log n→ α < 1 then P[δ′n > 0]→ 1 and

Proof. Let ε > 0 be chosen so that α(1 + ε)d < 1− ε. Choose a maximal collection of
points xi ∈ [0, 1]2, 1 ≤ i ≤ kn such that the balls B+

i := B(xi, rn(1 + ε)), 1 ≤ i ≤ kn are
disjoint and contained in [0, 1]d. Note that rdn = Θ((log n)/n) and kn = Θ(n/ log n).

Then let B−i := B(xi, rnε), for 1 ≤ i ≤ kn, and define the events

Ei := {Pn(B+
i ) = P(B−i ) = 1}, 1 ≤ i ≤ kn.

Then, writing | · | for Lebesgue measure, we have

P[Ei] = e−n|B
−
i |(n|Bi|)× e−n|B

+
i \B

−
i |

= exp(−nθ(rn(1 + ε))d)× nθ(rnε)d

≥ exp(−(1− ε) log n)×Θ(log n) = Θ(nε−1 log n)

and so there is a constant such that

P[∩rni=1E
c
i ] ≤ (1− cnε−1 log n)kn ≤ exp(−kncnε−1 log n)

≤ exp(−Θ(nε))→ 0

and therefore
P[δ′n > 0] ≥ P[∪kni=1Ei]→ 1

as claimed .

Corollary 5.3. Given ε > 0 we have P[nθ(ρ′n)d/ log n > 1− ε]→ 1.

This follows from Theorem 5.2 and the fact that if the minimum degree of a graph is
zero, then it is not connected.

P[G(Pn, rn) ∈ K]→ 0.
For the rest of this section we assume d = 2.
To complete the proof of Theorem 5.1, it suffices to prove the following:

Theorem 5.4. Suppose nθrdn/ log n→ α > 1. Then P[G(Pn, rn ∈ Kn)→ 1].

The proof of this is long, and requires a series of lemmas. It proceeds by discretization
of space.

Let ε ∈ (0, 1/2), to be chosen below. Assume d = 2 and rn is as above. Divide [0, 1]2

into squares of side εrn (we shall ignore the fact that 1/εrn is not an integer).
Let Ln be the set of centres of these square (a finite lattice). then |Ln| = Θ(n/ log n).
List the squares as Qi, 1 ≤ i ≤ |Ln|, and the corresponding centres of squares (i.e.,

the elements of Ln) as qi, 1 ≤ i ≤ |Ln|.
Let us say qi ∈ Ln is occupied if Pn(Qi) > 0. Let On be the (random) set of sites

qi ∈ Ln that are occupied.
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Lemma 5.5. (conlem1) If G(Pn, rn) is disconnected, then so is G(On, rn(1− 2ε)).

Proof. If qi, qj ∈ Ln with ‖qi − qj‖ ≤ rn(1 − 2ε), then for any X ∈ Pn ∩ Qi and
Y ∈ Pn ∩Qj, by the triangle inequality we have

‖X − Y ‖ ≤ ‖X − qi‖+ ‖qi − qj‖+ ‖Y − qj‖ ≤ rnε+ rn(1− 2ε) + rnε = rn

and therefore if G(On, rn(1− 2ε)) is connected, so is G(Pn, rn).

Let A denote the set of σ ⊂ Ln with m elements such that G(σ, rn(1−ε)) is connected
(sometimes called ‘lattice animals’).

Let A2
n,m be the set of σ ∈ An,m such that dist(σ, ∂[0, 1]2) > 2rn, i.e. all elements of σ

are distant at least 2rn from the boundary of [0, 1]2.
Let A1

n,m be the set of σ ∈ An,m such that σ is distant less than 2rn from just one
edge of [0, 1]2.

Let A0
n,m := A0

n,m \ (A2
n,m ∪A1

n,m), the set of σ ∈ An,m such that σ is distant less than
2rn from two edges of [0, 1]2 (i.e. near a corner of [0, 1]2).

Lemma 5.6. (countlem) Given m ∈ N, there is constant C = C(m) such that

|An,m ≤ C(n/ log n), |A1
n,m ≤ C(n/ log n)1/2, |A0

n,m ≤ C

for all n.

Proof. Fix m. Consider how many ways there are to choose σ ∈ An,m.
There are at most r−2n choices, and hence O(n/ log n) choices, for the first element of

σ in the lexicographic ordering. Having chosen the first element of σ, there are a bounded
number of ways to choose the rest of σ.

Consider how many ways there are to choose σ ∈ A1
n,m. In this case there are O(r−1n ) =

O((n/ log n)1/2) ways to choose the first element of σ, and then a bounded number of ways
to choose the rest of σ.

Finally consider how many ways there are to choose σ ∈ A0
n,m. In this case there are

O(1) ways to choose the first element of σ, and then a bounded number of ways to choose
the rest of σ.
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