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Abstract. This paper introduces a new concept of exceptional family of elements (abbreviated,
exceptional family) for a finite-dimensional nonlinear variational inequality problem. By using this
new concept, we establish a general sufficient condition for the existence of a solution to the problem.
Such a condition is used to develop several new existence theorems. Among other things, a sufficient
and necessary condition for the solvability of pseudo-monotone variational inequality problem is
proved. The notion of coercivity of a function and related classical existence theorems for variational
inequality are also generalized. Finally, a solution condition for a class of nonlinear complementarity
problems with so-calle®,-mappings is also obtained.
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1. Introduction

Let K be a closed convex subset®f. Assume that it is given as follows
K={xeR":g(x)<0,h(x) =0}

where g(x) = (g1(x), ..., gn ()T, h(x) = (h1(x), ... ly(x)", and g;(x)(i =
1,..,m)yandh;(x)(j = 1,..., 1) are convex and linear real-valued continuously
differentiable functions fromR” into R, respectively. Specially, if(x) = —x,
thenk = {x € R" : g(x) < 0} = R’} (nonnegative orthant).

Let f be a mapping fronR” into R". The finite-dimensional variational in-
equality problem, denoted by I (K, f), is to find a vectox* € K such that

x—xHTf(x*) >0, forallx € K.

Whenk = R, the above problem reduces to the following nonlinear complemen-
tarity problem, denoted by C P(f),

x>0, f(x)>0,x" f(x)=0.

The variational inequality problem has had many successful practical appli-
cations in the last three decades. It has been used to formulate and investigate
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equilibrium models arising in economics, transportation, regional science and op-
erations research (see [3, 5]). The development of solution conditions for this
problem has played a very important role in theory, algorithms and applications of
the problem. So far, a large number of existence conditions have been established
by many researchers, including Eaves [1, 2], Karamardian [8-11], Kojima [13],
Moré [18, 19], Smith [26], and Pang and Yao [21]. It should be noted that most of
the previous existence results & (K, f) are developed in general by means of
fixed point arguments and minimax theory (see [1, 2, 8-11, 13, 18, 19]). The topo-
logical degree theory are also used to develop solution conditions for variational
inequality and its various generalizations (see [21], for example)

Our analysis in this paper is motivated by the papers [26, 7, 28]. Smith [26]
introduced a concept of exceptional sequence for a continuous function and used
it to investigate the solution conditions of complementarity problems. Isac et al.
[7] using the topological degree generalized Simth’s concept and introduced the
notion of exceptional family of elements for continuous functions and applied it
to several kinds of complementarity problems. The applications of Smith’s results
in spatial price equilibrium problem and network equilibrium problem are given in
[26] and [4], respectively. Both [26] and [7] have shown that the nonexistence of
exceptional family is a sufficient condition for the solvability of complementarity
problem. However, under what conditions can one guarantee the nonexistence of
exceptional family? This problem is discussed a little both in [26] and [7] except
for the case of coercive functions. Recently, Zhao [28] extends the concepts and
results in [26] and [7] to variational inequality problems over polyhedral sets.

The present paper is intended to introduce the notion of a general exceptional
family of elements for nonlinear variational inequality problems. This concept is
so general that it includes as a special case the notions in [26] and [7]. Our notion
of exceptional family of elements for variational inequalities provides a unified
analysis for the investigation of the solvability B (K, f) from the point of view
that many well-known existence theorems %67 (K, f), which were proved by
different ways in the literature can be either generalized or reobtained by using
our analysis. In this paper, we focus our main attention on developing new exis-
tence theorems for I (K, f) by using the proposed concept of exceptional family.
Among other things, a necessary and sufficient condition for the solvability of
pseudo-monoton® I (K, f) is proved, and an existence result for quasi-monotone
problem is also established. The property of coercivity of a function and related ex-
istence results fovV I (K, f) are extended to so-callgdorder coercive functions.

We also establish a solution condition for a class of complementarity problems,
where the functions are nonline&;.-mappings which include several important
classes of functions as the special cases.

In what follows, Section 2 develops the notion of exceptional family of elements
for VI(K, f) and establishes a main theorem. Section 3 establishes several new
solution conditions fo I (K, f). Final remarks is given in Section 4.
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2. Definition and main theorem

In this paper| - || denotes the Euclidean-nor; denotes the nonnegative orthant,
and Pk (-) denotes the projection operator on the convexiSetith Euclidean-
norm, that is, for any € R", the projectionPk (z) of z on the se is the unique
solution to the following problem

myin{IIy —zl:y e K}

Let D be an open bounded set &' , we denote byD and d(D) the closure
and boundary oD, respectively. LeC (D) denote the linear space of continuous
functions fromD — R™. If f € C(D) andy € R" such thaty ¢ f(3(D)), the
notation degf, D, y) is the topological degree associated wjthD and y. See
[15,20]. To show our main result, we will make use of the following lemmas.

LEMMA 2.1 [3]. x* is a solution ofVI(K, f) if and only ifx* is the solution of
the following equation

x = Pg(x = f(x) =0.

The following two results can be found in [15] and [20].

LEMMA 2.2 [Poincaré-Bohl]. Let D C R" be an open bounded set afidG €
C (D) be two continuous functions. The homotdpyy, ¢) is defined as follows

Hx,))=tGx)+(1—-1Fx),0<r <1

Lety be an arbitrary point inR". If y satisfies the following condition
yé¢{H(x,1):x € D andt € [0, 1]},

then
degG, D, y) = deqF, D, y).

LEMMA 2.3 [Kronecker]. Let D and F be given as in Lemma 2.2,yif¢ F(dD)
anddeg F, D, y) # 0, then the system of equatioAgx) = y has a solution inD.

It is well-known (see [6, 10, 19]) that thél (K, f) is solvable iff is a contin-
uous mapping on the nonempty compact convexsselo study the existence of a
solution toVI(K, f), there is nothing to do wheki is bounded. Thus, throughout
the remainder of this paper, we consider only the case kh& an unbounded
convex set. We now introduce the general concepkoéptional family of elements
for variational inequality problems.

DEFINITION 2.1. Letx be an arbitrary feasible point, i.e, ¢ K. A sequence
{x"},.10 C K is said to be an exceptional family of elements (abbreviated,
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exceptional family) for variational inequality problei/ (K, f), if the sequence
satisfies the following two conditions:

1. ||x"|| > +o0 asr — +o0.

2. There exists two vector sequendes} C RY, {u.} C R! and a positive
scalar sequendg, }, wherewa, > 1 for all r, such that the sequenée. x” +
(1—«a,)x} C K, and the following equations hold for all

fuw=—«n—h@f—@—%ﬁ@@m%ﬂ1—mﬁfm

+ Vh(a,x" + 1 — ) 1], (1)

O gl x" + (1 —a,)%) = 0. @)
WhereVg(-) andVh(-) denote the Jacobian matrix gfandh, respectively.

The above general definition of exceptional family fof (K, f) generalizes
the notions of exceptional sequence and exceptional family of elements for contin-
uous functions introduced in [26] and [7], respectively. To see this, let

K={xeR":g(x)=-x <0} =R],

then (1) and (2) is reduced to

1
f(xr) = —(a, — 1)(xr - XA) + 5)\';”

A)Tx" =0.
Settingx = 0, then the above equations can be further simplified as follows

fix") = —(a, = Dx;, if x7 >0, 3)

fif) = 50.0 2 0, if xf =0, )

which is just the definition oéxceptional family of elementer the continuous
functions introduced in [7]. Moreover, jiix” || = r for all » > 0O, the sequencéx”}
satisfying (3) and (4) is just the conceptexfceptional sequendetroduced in [26],
which is also discussed by G. Isac under the nanappbsite radial sequence

THEOREM 2.1.Let K be nonempty. Iff : R — R”" is a continuous function,
then there exists either a solution or an exceptional famiWfé(K, f).

Proof. By Lemma 2.1, the solvability oV 7 (K, f) is equivalent to the exis-
tence of a solution to the equatigiix) = 0, where

¢(x) =x — Pg(x — f(x)).
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It follows from the continuity of the mapping and the property of the projection
operator thaty(x) is continuous . Let be an arbitrary feasible point, i.€,€ K.
We consider the homotopy between the mappirgx and¢ (x), that is

Hx,t)=tx—x)+A-0¢(kx), 0<r=<l

Let M € R"™" be an arbitrary positive-definite matrix aadbe a vector inR".
Consider the following convex quadratic function in variable

c(x) =x"Mx +x"4.
The family of bounded open sets, denoted{ By}, . | ., is defined as follows
D, ={xeR":ckx)<r}.

Hence the boundar§D, = {x € R" : c(x) = r}. Without loss of generality, we
assume that > ¢(x). Two cases are possible.
Case 1. There existsra> c¢(x) such that

O0¢ {H(x,t):xe€dD,,t€[0,1]}.
Then by Lemma 2.2
deqg¢, D,,0) = degx — X, D,, 0)

It is clear that degx — x, D,, 0)| = 1, hence from the above and Lemma 2.3, the
equationg (x) = 0 has at least one solution.

Case 2. For each> c(x) there exists a point” € 9D, and a number. € [0, 1]
such that

O0=HG"6) =" =5 + A —1)[x" = Pg(x" — f(x")]
=x" =X = (1= 1) Pg(x" = f(x")). (5)

If t. = 0, by Lemma 2.1, (5) implies that" is a solution ofVI(K, f). On the
other hand, since(x") = r > c¢(x), x" # x. Thus it follows from (5) that, # 1.
Hence, in the rest of the proof, we consider only the caserthat (0, 1) for all
r > c(x). From (5) we have

1_trxr—1_tr)?:PK(xr—f(xr))€K. (6)

By thg property of projection operat j,rx’ — l’jf is the unique solution to the
following problem

minimize T (y) = |ly — (x" — f(x")|?
s.t. yeK={xeR":g(x) <0, h(x)=0}
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Since the problem is a convex quadratic program, the Karush—Kuhn—Tucker condi-
tions completely characterize the solution of the convex program. Therefore, there
exist two vectors., € R" andu, € R’ such that

r r T
vr (2 - I f) v (- )
1—¢ 1—14, 1—¢ 1—14, "

+ Vh X Y 0
- X r: k)
1—-14 1—14 "

x" t
)T - ———%)=0.
( )g<1—tr 1—t,x>

Denotex, = 1/1 — ¢t > 1 and note thaV T (y) = 2[y — (x" — f(x"))]. The above
two equations can be written as follows
1 N
FON) == (@ =D& =) = S[Veler" + L —-a)H)'2,

+ Vh(ox" + (1 — o))" 11,

O gopx” + (1 —a,)%) = 0.

Hence, to show the sequenjoé}, . .z is an exceptional family, it suffices to show
x| = 4+o0asr — oo and{x"} C K. It follows fromc(x") = r that||x"|| — o0
asr — oo. Note thatkX is convex, from (6) and € K, we have

x" t

1—¢t 1-—1,

x’:t,y%—i-(l—tr)[ )%]eK.

Hence{x"} C K. The proof is complete.

COROLLARY 2.1.1f the problemV I (K, f) has no exceptional family, then it has
at least a solution.

3. Applications

Theorem 2.1 in last section establishes a new sufficient condition of the existence
of a solution toV I (K, f). We will see that this sufficient condition is weaker than
several known solution conditions existing in literature. We will show that such a
sufficient condition is so weak that it is also necessary for the solvability of pseudo-
monotone variational inequality problem. The conclusion of Theorem 2.1 makes it
possible for us to develop new solution conditions ¥ar(K, f) via investigating

the conditions of nonexistence of the exceptional family ¥ar(K, f). Particu-

larly, an existence result for a class of nonlinear functions calechappings is
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established P,-mappings include as the special cases the monotone functions and
a subclass of uniform P-functions. Recently, the linBaamapping has obtained
special attention in the field of interior-point algorithm for linear complementarity
problems (see [14, 17, 22-25, 27] for example).

THEOREM 3.1.Let f : R" — R" be a continuous function, if there is a feasible
pointx € K such that for each sequen¢e’} C K with ||x"|| — oo, the following
inequality

" =H'f(x") =0 Q)

holds for a pointx” with ||x"|| # ||X]|. ThenVI(K, f) has no exceptional family,
and henceV I (K, f) is solvable.

Proof. Suppose that there exists an exceptional farfifij for the problem
VI(K, f). By Definition 2.1, we havgx"} ¢ K and|x"|| — oo asr — oo and
there exist two vector sequencgs} C R’ and{u,} C R' and a scalar sequence
{,}, where eachy, > 1, such thatfe,x” + (1 — o)X} € K and the equations
(1) and (2) hold. Note thaf; (x)(i =1, ...,m) isconvex anth;(x)(j =1, ...,0) is
linear, we have that

g()?) = g(ar-xr + (l - Olr).f) + arvg(ar-xr + (l - C‘(r))}e)()}e - xr), (8)

h(x) = h(a,x" + (1 —a)x) + o, Vh(o,x" + (1 —a)x)(x —x"). 9

By (2), (8) and the feasibility of, we have
T r AR r 1 T /2
) Vgl + (=)D —x') = — () g(H) < 0. (10)

Sincea,x” + (1 — «,)x is feasible, (9) implies that
Vh(a,x" 4+ (1— a,)2) (& —x") = 0. (11)
Therefore by (1), (10) and (11), we have
" =DTfE) =" =D (e - D —5)
+ %Vg(arxr + Q=)D A + Vha(ex" + L—a)D) )l (12)
< —(oy — D" = |7
which implies that
(" =% f(x") <0, forall x| # [IX].

This is in contradiction with the hypothesis condition (7). Hericé(K, f) has no
exceptional family, and hendél (K, f) has a solution by Theorem 2.1.
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Harker and Pang (see Theorem 3.3 in [3]) show that the condition “there exists
avectors € K such that the s&k () = {x € K : (x — X)T f(x) < 0} is bounded
(possibly empty)” implies tha¥ I (K, f) has a solution. It should be noted that the
above Harker and Pang condition implies our condition in Theorem 3.1. Actually,
for each sequenda’} C K with ||x"|| — oo, if the setK (x) is bounded (possibly
empty), we have that” ¢ K (x) for sufficiently larger , i.e.,

(" — )T f(x") > 0 for all sufficiently larger
which implies the condition of Theorem 3.1.

From the proof of the above Theorem 3.1, one can actually prove the following
consequence.

THEOREM 31. Let f : R" — R" be a continuous function antlbe a point in
K,if VI(K, f) has an exceptional family, then the set

KX)={xeK:x—-5T"fx) <0}
must be nonempty and unbounded.

Harker and Pang’s result can be also viewed as an immediate consequence of the
above results. The next definition extends the coercivity of a function to so-called
p-order coercivity.

DEFINITION 3.1. A functionf : R" — R" is said to bep—order coercive with
respect taK if there exists some € (—oo, 1) andx € K such that

f@O =% _

xeK, ||x||—o0 [|x1|?

+o0. (13)

Whenp = 1 (13) reduces to the standard definition of coercivity of a function
in literature (see [19,3]). It is evident that the standard coercive function must be
p-order coercive, but the converse is not true in general. For example, we consider
the one-variable real functiori(z) = “/(1 + t*), where the scalar > 0. Let
K =[1, +00) for any p € (—oo, 1) and anyr® € [1, +00), we have

.0
i SO0

t>1,t—+o00 tp

+00

which implies thatf(¢) is p-order coercive with respect t&, but f(¢) is not
coercive, since that

.0
i JOe—1

t>1,t—+00 t

1

Coercivity property has played very important role in the existence theory of
VI(K, f) (see[3, 6, 7, 19, 26, 28]). Hartman and Stampacchia [6] and Moré [19]
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show that the standard coercivity implies thaf (K, f) has a solution (see also
Theorem 3.3 in [3]). This existence result is generalized to the cageanfler
coercivity in the following consequence.

COROLLARY 3.1.Let f : R" — R" be a continuous function, if there exists a
scalar p such thatf is p-order coercive, where-co < p < 1, then there exists no
exceptional family fo¥ I (K, f) , and hence the probleii/ (K, f) has a solution.

Proof. Itis easy to see that-order coercivity condition implies the condition
of Theorem 3.1. Actually, if 6< p < 1, then from (13), we have

lim  fx)T(x —%) = 4o0. (14)

xek,||x||—>o0
If —oco < p < 0, for any sequencge”} C K with ||x”|| — +o0, (13) implies that
f&xNH (" —x) > 0for sufficiently larger. (15)

Both (14) and (15) imply that the condition of Theorem 3.1 holds. Thus the desired
result is an immediate consequence of Theorem 3.1.

In summary, the existence Theorem 3.3 in [3] (due to Harker and Pang) and
Theorem 3.2 in [3]( due to Moré, Hartman and Stampacchia) can be viewed as
the special cases of Theorem 3.1. It is worthwhile to mention that the aforemen-
tioned conclusion p-order coercivity implies nonexistence of exceptional fam-
ily for VI(K, f)" is also a generalized version of Proposition 4.7 in [26] and
Proposition 4 in [7] forNC P (f) under the standard coercivity assumption.

In what follows, we develop the sufficient and necessary condition for pseudo-
monotone typé/ I (K, f). Recall that a mapping : R" — R" is monotone orkK
if (f(x)— fO)T(x —y) > 0 holds for all distinct pair, y € K. A mapping f
is said to be pseudo- monotone &nif for every pair of distinct points;, y € K,
the condition(y — x)” £ (x) > 0 implies that(y — x)” f(y) > 0. Denote byK * the
dual cone of the convex sét, i.e.,

K*={yeR":y'x>0,Vx € K}.

It is well-known that for nonlinear pseudo-monotone functions the feasible condi-
tion “there exists a vector € K such thatf (x) € K*”is not a sufficient condition

for the solvability of VI (K, f). Megiddo [16] gave an example to show that this
feasibility can not guarantee the existence of the solutiol 0K, f) even for
nonlinear monotone mapping. If the feasibility condition is replaced by strictly
feasibility condition, i.e., there exists a vectore K such thatf (x) € int(K*),
where int.) denotes the interior of a set, Karamardian [11] and Moré [19] showed
that there exists a solution to the nonlinear complementarity proNen® (f).
Their results remain valid for pseudo-monotdné(K, f) (see Theorem 3.4 in [3]
due to Harker and Pang). It should be noted that the strictly feasibility is sufficient,
however, it is not necessary for the solvabilitylof (K, f) (see Corollary 3.2). The
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question how to weaken such a condition such that a relaxed solution condition is
not only sufficient but also necessary is answered in the next theorem. We make
use of the following definition.

DEFINITION 3.2. A functionf : R" — R" is said to bewveakly properon the set
K ifthere is a pointt € K such that for each sequené} C K with ||x"|| — oo,
there exists somesuch that

(" =T f(&) = 0and|lx"|| # IZ].

THEOREM 3.2Let f : R" — R”" be pseudo-monotone @, then the variational
inequality problemV I (K, f) has a solution if and only iff is weakly proper on
the setk .

Proof. Assume tha¥V I (K, f) has a solutiorx*, i.e.,

feHT(x —x*) >0, forallx € K

which implies thatf is weakly proper on the s&t with x = x*. Conversely,
assume thay is weakly proper on the s&. By Definition 3.2 there exists some
X € K, such that for each sequenpg} c K with ||x"|| — oo, the following two
relations hold for some

& =B fE) =0 and [x"|| # [I%].
Sincef is a pseudo-monotone map, we have
" =D"f&)=0 and |x"| # ],

which implies that the probler 7 (K, f) has no exceptional family by Theorem
3.1, thus the proble I (K, f) has at least one solution.

From Theorem 2.1 (Corollary 2.1), Theorem 3.2 and the above proof of Theo-
rem 3.2, we obtain the following immediate consequence.

THEOREM 3.3.If f : R" — R" be pseudo-monotone on the $ét then the
following two conditions are equivalent

1. VI(K, f) has no exceptional family

2. f is weakly proper orK
Therefore, the consequence of Theorem 3.2 can be restated as fol@ws:, 1)
has a solution if and only if it has no exceptional family.

However, it should be noted that in general the sufficient condition “without
exceptional family” is not necessary for the existence of the solutidn/tak’, ).
Such an example fa¥ C P (f) was given in [26] (see also [7]). On the other hand,
one example is also given in [26] to show that th€ P(f) may posses both a
solution and an exceptional sequence.
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The following result shows that strictly feasible condition is not a necessary for
the solvability of VI (K, f).

COROLLARY 3.2.Under the pseudo-monotonicity assumption, the strict feasibil-
ity assumption implies that is weakly proper ork, the converse is not true.

Proof. By Theorem 3.3, the first consequence is obvious since the strictly feasi-
bility implies thatV I (K, f) has a solution. Now we give an example to show that
the converse is not true. L&t = R’, f = 0 on R", there exists no poiit € K
such thatf (¥) € [(K*), the strictly feasibility condition does not hold. However,
it is easy to see that is weakly proper oK.

We now develop an existence theorem for quasi-monoidohek, f). A map-
ping is said to be quasi-monotone if for any distinct pair of paing in K , we
have that

(y—x)Tf(x) >0 impliesthat (y —x)! f(y) > 0.

A pseudo-monotone function is quasi-monotone, but the converse is not true,
some examples can be found in [12].

DEFINITION 3.3. The functionf : R" — R" is said to bestrictly weakly proper
on the setX, if there exists somé& € K such that for every sequen¢e’} C K
with ||x" || — oo, there exists somesuch that

" =HTf(E) >0 and [Ix"|| # lI%].

Similar to the second part of the proof of Theorem 3.2, we can show the fol-
lowing result that further extends the aforementioned existence results on pseudo-
monotonicity.

THEOREM 3.4.Let f : R" — R" be quasi-monotone o, and f be strictly
weakly proper orK , thenV I (K, f) has no exceptional family, and henéé (K, f)
is solvable.

We now consider a special caseglix) i = 1, ..., m) is positively homoge-
neous of degrep; > 0 = 1, ...,m) (i.e., g (rx) = rPig(x) for all » > 0), then
the feasible sek = {x € R" : g(x) < 0} is a closed convex cone iR".

COROLLARY 3.3.Let f be quasi-monotone oki and K be pointed solid closed
convex cone irR" (see Definition 2.1 in [11]), if there exist some= K such that
f(X) € [(K*), thenVI(K, f) has no exceptional family.

Proof. Under the above assumption, by Lemma 2.1 in [11]dlet f(x) €
int(K*), a = f(£)Tx > 0), it is easy to see that the following set is bounded

SH={xeK:(x-3"f&) <0



324 Y.B. ZHAO AND J. HAN

For each unbounded sequerigé} C K, sinceS(x) is bounded, there must exist
somer with ||x"|| # ||x]| such thate” ¢ S(x), i.e.,

x-»TfE)>0.

Hence, f is strictly weakly proper on the s&. The desired result follows by
Theorem 3.3.

So far, we have developed several new existence theoremsIfde, f), and
some of these results relax several classical existence conditions. The proposed
sufficient condition, i.e., “without exceptional family” is so weak that it becomes a
necessary condition for the solvability pseudo-monoturig€k, f). In the rest of
the paper we establish a solution condition for a class of nonlinear complementarity
problems, where the mappings are so-called nonlifgamappings that include
monotone functions and a subclass of unifaPafunctions as the particular cases,
but in general aP,-mapping is neither a monotone mapping nor a unifaPm
function.

DEFINITION 3.4. A mappingf : R* — R" is said to be aP,-mapping, if there
exists a nonnegative constapitsuch that the following inequality holds for any
distinct pointsy, y € R"

A+y) D @ —y(fi@ = £0))

Jely(x,y,f)
+ ) =) = fi(00) =0, (16)
Jel-(x,y.f)
where
Li(x,y, ) ={j:(x; —y)(fi(x) — f;(y) > 0} (7)
I-(x,y, f)=1{j: @ =y = f;(») < O} (18)

It is easy to see that (16) can be written as follows

=N = f) =~y Z (xj =y (fi(x) = f; (). (19)

Jeli(x.y. /)

PROPOSITION 3.1Let f = (fi,..., f,)T € R" be a monotone map, where
fi(i =1, ...,n)is areal-valued function fron®” into R*. Thenf is a P,-mapping.
Moreover, if the scalat; # Oforall i =1, ..., n, then each scaled mapping

FO = (fo, oo, firrsdi fis firts s f)7, (G =1, m)

is also aP, -mapping.
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Proof. Since (19) holds for monotone mapping with constant= 0, any
monotone mappings must e-mappings. It is evident that each scaled mapping
is not necessary monotone, however, we now show/liais also aP,-mapping.
Let x, y be any distinct points iR". We have

(x = NFOx) - FO>y)
=@ =) = FO) +(di = D(fi(x) = LN — y) (20)

> = — ) (FP @) — FP ().

=4
Three cases are possible. _ '

Case 1d; > 1. Lety =d; — 1> 0. If (x; — y)(F"” (x) — F\”(y)) = 0, from
(20) we have that

x=»"Fx) - FP() =0.
Hence,
x=»'F@) - FO)
>—y Y. = y)FE @) = F () (21)
JelL(x,y, F®)

holds trivially. If (x; — yi)(F” (x) — F”(y)) < 0, note that in the case

> = ypFE) = FP ()
Jeli(x,y, F®)
= Y =y = ;00 (22)
JELL(x,y. f)
By the monotonicity off, we have
D =@ = £00)

Jeli(x,y, )
+ ) =) = () =0 (23)
JEl-(x,y,[)
Therefore, by (22) and (23)
0> (x; — y)(F(x) — F ()
=d;(x; — y)(fi(x) = fi(y)
>—di Y =y i) = f;00)

Jeli(x,y, )
=—di Y (& —-y)F ®) - F o).

JeLi(x,y, F®)
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Combining (20) and the above inequality, we again obtain (21).
Case2.0< d; < 1. Lety = (1—d;)/d; > 0. If (x;—y))(F" (x) - F" (y)) > 0,
then from (20)
x =" FP@0) = FO(y)
> —y(xi — ) (F(x) = FY (1)
>—y Y = yFE @ = F ).

JeLL(x,y, F®)

If (i — y)(F”(x) — F(y)) < 0, then from (20), the above inequality holds
trivially.

Case 3d; < 0. Lety = 1—d; > 0. The desired results can be shown by the
similar argument to the above proof.

PROPOSITION 3.2Let f be a uniformP-function with modulug > 0, that is,
max(x; = y)(f;(x) = f;0)) z clx = y|*forall x, y € R". (24)
If there exists a number (possibly negative)

x = (f@) — fO)) = Allx — y|*forall x, y € R", (25)

then f is a P,-mapping.
Proof. By (24) and (25), we have

x =& = £ = Alx — y)?
> —[Alllx — ylI?
A
_I max(x; — y;)(f;(x) — f;()
Cc 1<j=zn
oA

v

Z (x; =y (i) = f;(0),

JEl+(x.y, )

thus f is a P,-mapping.

If f is Lipschitz continuous, i.e., there exists a scdlasuch that| f(x) —
FOI < L|x — y|l, then we can verify (25) holding with = —L. Indeed, it
follows from

1x =T (F@) — FOD] < llx =yl fF &) — FDI < Lix — ylI?
that

x =" (f&x) = fO) = —Lllx =yl
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When £ is a linear function, that isf = Mx+q, whereM € R"™" andq € R",
then (25) holds trivially. Indeed,

=@ =fO)=x—"Mx-y)
l T T
=5(x—y) M+ M ](x —y)
> Aminllx _)’”2,

where Amin is the least eigenvalue ¢ + M7)/2 . For linear mapping, (24) is
equivalent to saying tha¥ is P-matrix (the class of matrices with all principal
minors positive). Therefore we have the following corollary.

COROLLARY 3.4 ([14]).Each linear mappingf = Mx + ¢, whereM is a P-
matrix, is aP*-mapping.

Since the class oP,-mappings includes monotone mappings, the feasibility
condition can not guarantee the solvabilitylof (K, f) (see [16]). The next con-
sequence declares that the strictly feasibility can guarantee the solvability of non-
linear P,-complementarity problem.

THEOREM 3.5.For nonlinear P,-mappingf : R" — R", if there exists a point
u € R such thatf(u) > 0, i.e, f(u) e int(RY}), then the complementarity
problem NC P(f) has no exceptional family, and hence the probl&@ P (f)
has a solution.

Proof. Assume the contrary, lgk"} C K = R’} be an exceptional family for
NCP(f), then there are vector sequerfég} C R’} and scalar sequen¢e, > 1}
such that (3) and (4) hold. Thus, for each {1, ..., n}, by (3) and (4), we have

—[(a, = Dx;] + fi(w)](x] —u;) if x] >0,
—[*)i/2 = fi(u))u;] if x; =0.
(26)
Since||x"|| - oo, if necessary we choose a subsequence, there exists one compo-
nent indexig such thatxl.’o — 400 asr — +oo. Note thate, > 1 for all »r and
f () > 0, from (26), we have
(fio ") = fro@) (= uig) = [ty — Dxf + fig(x], — i) — —00.
(27)
Therefore, the cardinalityZ, (x",u, f)| < n — 1 and|I_(x",u, f)| = 1 for
sufficiently larger. Hence, we have

max(fi(x') = f)(xf = u)

(fi ") = fi)(x; —ui) = {

1
>— Y, (A6 = )] —u). (28)
iely(x"u,f)
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There is a subsequence, denotedby}(r; - +ocasj — +oo.j =1,2,..),
such that for some fixed indekx the following equation

(Fte) = fe)(ef! =) = Max(fi&") = f) )’ —u) (29)

holds for allr;(j = 1,2, ...). On the other hand, Sincg is a P.-mapping, there
exists some constamt > 0 such that

A+y) D (&) = @G —w)

i€l (x" ,u, f)

+ Y (FET) = fi) —u) = 0. (30)

iel-(x"1u, f)

We now consider the component sequel{lclrg'}. From (27), we see that <
I_(x",u, f) for sufficiently largej, Hence from (30), (28) and (29), we deduce
that

(fio&") = fio@)(x;) — uiy)
>—+y) Y ()= )G —u)

iel (x"7u. f)
> (14 y)(n = 1) Max(f;(x") = f;)(x;’ = uy)
= —(1+ ) — D(fix) = fi) (x| — up).
Combining (27) and the above inequality yields
— [, — Dx;) + fio)]0x;) — uiy)
> —(1+y)n— D(flx) — filw)x — uy) (31)

Without loss of generality, assume thats sufficiently large. For eacli, three
cases are possible.
Case 1x,:f = 0. It follows from (26) and,; € R that

(i) = fi@) ) —w) = =[O )De/2 = fr@)ux < filw)uy. (32)
By using (31) and (32), we deduce that
—(A+ ) =D fiwur < —[(er — Dx;) + fio)1(x;] — uz) > —00
which is a contradiction.
Case 2. O< x;” < u;. By using (31) and (26), we have
— [ey, = Dx;) + fio1Cx;) — uiy)
> —(1+y)(n — D, — Dx; + fiw)l(uy — x;)
> —(1+y)n = Dl(ey; — Dug + fie(w)Juy
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which is a contradiction sincég — 400 and f;,(u) > 0.
Case 3x,” > u;. By using (26) and (31)

= [, = D] + fio)]0xj) — o)
> 1+ )= Dle, = Dy + fi@)]0 — i)

which is also a contradiction since the left-hand side tendstoas;j — oo, but
the right-hand side is positive.

Therefore, the probleW C P(f) has no exceptional family, and hence there
exists a solution t&VC P ( f) according to Theorem 2.1.

4. Final remarks

In the last there decades, the solvability of variational inequality problems includ-
ing complementarity problems has been studied extensively by many authors. A
large number of solution conditions have been developed in the literature. A com-
prehensive survey in this field can be found in reference [3]. In this paper, we
have extended the concepts of exceptional sequence and exceptional family of ele-
ments for a continuous function introduced in [26] and [7] to nonlinear variational
inequality problems. We think that the proposed concept provides some unified
argument for the solvability of variational inequality problems from the point of
view that many known existence theorems can be generalized or reobtained by
the proposed concept of exceptional family. The condition “without exceptional
family” is a sufficient condition for the solvability of variational inequality prob-
lem provided that the mapping is continuous inR". This sufficient condition is

also necessary for pseudo-monotone problems. It is worth noting that for quasi-
monotone variational inequalities we have developed a sufficient condition for
its solvability. Is there a solution condition which is not only sufficient but also
necessary for the solvability of quasi-monotone variational inequality problems?
Such a topic is also worth investigating in the future.
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