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Abstract. This paper introduces a new concept of exceptional family of elements (abbreviated,
exceptional family) for a finite-dimensional nonlinear variational inequality problem. By using this
new concept, we establish a general sufficient condition for the existence of a solution to the problem.
Such a condition is used to develop several new existence theorems. Among other things, a sufficient
and necessary condition for the solvability of pseudo-monotone variational inequality problem is
proved. The notion of coercivity of a function and related classical existence theorems for variational
inequality are also generalized. Finally, a solution condition for a class of nonlinear complementarity
problems with so-calledP∗-mappings is also obtained.
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1. Introduction

LetK be a closed convex subset ofRn. Assume that it is given as follows

K = {x ∈ Rn : g(x) ≤ 0, h(x) = 0}
whereg(x) = (g1(x), ..., gm(x))

T , h(x) = (h1(x), ..., hl(x))
T , and gi(x)(i =

1, ..., m) andhj(x)(j = 1, ..., l) are convex and linear real-valued continuously
differentiable functions fromRn into R1, respectively. Specially, ifg(x) = −x,
thenK = {x ∈ Rn : g(x) ≤ 0} = Rn+ (nonnegative orthant).

Let f be a mapping fromRn into Rn. The finite-dimensional variational in-
equality problem, denoted byV I (K, f ), is to find a vectorx∗ ∈ K such that

(x − x∗)T f (x∗) ≥ 0, for all x ∈ K.
WhenK = Rn+, the above problem reduces to the following nonlinear complemen-
tarity problem, denoted byNCP(f ),

x ≥ 0, f (x) ≥ 0, xT f (x) = 0.

The variational inequality problem has had many successful practical appli-
cations in the last three decades. It has been used to formulate and investigate
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equilibrium models arising in economics, transportation, regional science and op-
erations research (see [3, 5]). The development of solution conditions for this
problem has played a very important role in theory, algorithms and applications of
the problem. So far, a large number of existence conditions have been established
by many researchers, including Eaves [1, 2], Karamardian [8–11], Kojima [13],
Moré [18, 19], Smith [26], and Pang and Yao [21]. It should be noted that most of
the previous existence results onV I (K, f ) are developed in general by means of
fixed point arguments and minimax theory (see [1, 2, 8–11, 13, 18, 19]). The topo-
logical degree theory are also used to develop solution conditions for variational
inequality and its various generalizations (see [21], for example)

Our analysis in this paper is motivated by the papers [26, 7, 28]. Smith [26]
introduced a concept of exceptional sequence for a continuous function and used
it to investigate the solution conditions of complementarity problems. Isac et al.
[7] using the topological degree generalized Simth’s concept and introduced the
notion of exceptional family of elements for continuous functions and applied it
to several kinds of complementarity problems. The applications of Smith’s results
in spatial price equilibrium problem and network equilibrium problem are given in
[26] and [4], respectively. Both [26] and [7] have shown that the nonexistence of
exceptional family is a sufficient condition for the solvability of complementarity
problem. However, under what conditions can one guarantee the nonexistence of
exceptional family? This problem is discussed a little both in [26] and [7] except
for the case of coercive functions. Recently, Zhao [28] extends the concepts and
results in [26] and [7] to variational inequality problems over polyhedral sets.

The present paper is intended to introduce the notion of a general exceptional
family of elements for nonlinear variational inequality problems. This concept is
so general that it includes as a special case the notions in [26] and [7]. Our notion
of exceptional family of elements for variational inequalities provides a unified
analysis for the investigation of the solvability ofV I (K, f ) from the point of view
that many well-known existence theorems forV I (K, f ), which were proved by
different ways in the literature can be either generalized or reobtained by using
our analysis. In this paper, we focus our main attention on developing new exis-
tence theorems forV I (K, f ) by using the proposed concept of exceptional family.
Among other things, a necessary and sufficient condition for the solvability of
pseudo-monotoneV I (K, f ) is proved, and an existence result for quasi-monotone
problem is also established. The property of coercivity of a function and related ex-
istence results forV I (K, f ) are extended to so-calledp-order coercive functions.
We also establish a solution condition for a class of complementarity problems,
where the functions are nonlinearP∗-mappings which include several important
classes of functions as the special cases.

In what follows, Section 2 develops the notion of exceptional family of elements
for V I (K, f ) and establishes a main theorem. Section 3 establishes several new
solution conditions forV I (K, f ). Final remarks is given in Section 4.
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2. Definition and main theorem

In this paper,‖·‖ denotes the Euclidean-norm,Rn+ denotes the nonnegative orthant,
andPK(·) denotes the projection operator on the convex setK with Euclidean-
norm, that is, for anyz ∈ Rn, the projectionPK(z) of z on the setK is the unique
solution to the following problem

min
y
{‖y − z‖ : y ∈ K}.

Let D be an open bounded set ofRn , we denote byD and ∂(D) the closure
and boundary ofD, respectively. LetC(D) denote the linear space of continuous
functions fromD → Rn. If f ∈ C(D) andy ∈ Rn such thaty 6∈ f (∂(D)), the
notation deg(f,D, y) is the topological degree associated withf,D andy. See
[15,20]. To show our main result, we will make use of the following lemmas.

LEMMA 2.1 [3]. x∗ is a solution ofV I (K, f ) if and only ifx∗ is the solution of
the following equation

x − PK(x − f (x)) = 0.

The following two results can be found in [15] and [20].

LEMMA 2.2 [Poincaré–Bohl]. LetD ⊂ Rn be an open bounded set andF,G ∈
C(D) be two continuous functions. The homotopyH(x, t) is defined as follows

H(x, t) = tG(x)+ (1− t)F (x),0 ≤ t ≤ 1.

Lety be an arbitrary point inRn. If y satisfies the following condition

y /∈ {H(x, t) : x ∈ ∂D and t ∈ [0,1]},
then

deg(G,D, y) = deg(F,D, y).

LEMMA 2.3 [Kronecker]. LetD andF be given as in Lemma 2.2, ify /∈ F(∂D)
anddeg(F,D, y) 6= 0, then the system of equationsF(x) = y has a solution inD.

It is well-known (see [6, 10, 19]) that theV I (K, f ) is solvable iff is a contin-
uous mapping on the nonempty compact convex setK. To study the existence of a
solution toV I (K, f ), there is nothing to do whenK is bounded. Thus, throughout
the remainder of this paper, we consider only the case thatK is an unbounded
convex set. We now introduce the general concept ofexceptional family of elements
for variational inequality problems.

DEFINITION 2.1. Let x̂ be an arbitrary feasible point, i.e.,x̂ ∈ K. A sequence
{xr}r→+∞ ⊂ K is said to be an exceptional family of elements (abbreviated,
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exceptional family) for variational inequality problemV I (K, f ), if the sequence
satisfies the following two conditions:

1. ‖xr‖ → +∞ asr →+∞.
2. There exists two vector sequences{λr} ⊂ Rm+, {µr} ⊂ Rl and a positive

scalar sequence{αr}, whereαr > 1 for all r, such that the sequence{αrxr +
(1− αr)x̂} ⊂ K, and the following equations hold for allr

f (xr) =− (αr − 1)(xr − x̂)− 1

2
[∇g(αrxr + (1− αr)x̂)T λr

+∇h(αrxr + (1− αr)x̂)T µr ], (1)

(λr)
T g(αrx

r + (1− αr)x̂) = 0. (2)

Where∇g(·) and∇h(·) denote the Jacobian matrix ofg andh, respectively.

The above general definition of exceptional family forV I (K, f ) generalizes
the notions of exceptional sequence and exceptional family of elements for contin-
uous functions introduced in [26] and [7], respectively. To see this, let

K = {x ∈ Rn : g(x) = −x ≤ 0} = Rn+,
then (1) and (2) is reduced to

f (xr) = −(αr − 1)(xr − x̂)+ 1

2
λr,

(λr)
T xr = 0.

Settingx̂ = 0, then the above equations can be further simplified as follows

fi(x
r) = −(αr − 1)xri , if xri > 0, (3)

fi(x
r) = 1

2
(λr)i ≥ 0, if xri = 0, (4)

which is just the definition ofexceptional family of elementsfor the continuous
functions introduced in [7]. Moreover, if‖xr‖ = r for all r > 0, the sequence{xr}
satisfying (3) and (4) is just the concept ofexceptional sequenceintroduced in [26],
which is also discussed by G. Isac under the name ofopposite radial sequence.

THEOREM 2.1.LetK be nonempty. Iff : Rn → Rn is a continuous function,
then there exists either a solution or an exceptional family forV I (K, f ).

Proof. By Lemma 2.1, the solvability ofV I (K, f ) is equivalent to the exis-
tence of a solution to the equationφ(x) = 0, where

φ(x) = x − PK(x − f (x)).
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It follows from the continuity of the mappingf and the property of the projection
operator thatφ(x) is continuous . Let̂x be an arbitrary feasible point, i.e.,x̂ ∈ K.
We consider the homotopy between the mappingx − x̂ andφ(x), that is

H(x, t) = t (x − x̂)+ (1− t)φ(x), 0≤ t ≤ 1.

Let M ∈ Rn×n be an arbitrary positive-definite matrix andd be a vector inRn.
Consider the following convex quadratic function in variablex.

c(x) = xTMx + xT d.
The family of bounded open sets, denoted by{Dr}r→+∞, is defined as follows

Dr = {x ∈ Rn : c(x) < r}.
Hence the boundary∂Dr = {x ∈ Rn : c(x) = r}. Without loss of generality, we
assume thatr > c(x̂). Two cases are possible.

Case 1. There exists ar > c(x̂) such that

0 /∈ {H(x, t) : x ∈ ∂Dr, t ∈ [0,1]}.
Then by Lemma 2.2

deg(φ,Dr,0) = deg(x − x̂, Dr,0)

It is clear that|deg(x − x̂, Dr,0)| = 1, hence from the above and Lemma 2.3, the
equationφ(x) = 0 has at least one solution.

Case 2. For eachr > c(x̂) there exists a pointxr ∈ ∂Dr and a numbertr ∈ [0,1]
such that

0= H(xr, tr ) = tr (xr − x̂)+ (1− tr )[xr − PK(xr − f (xr ))]
= xr − tr x̂ − (1− tr )PK(xr − f (xr )). (5)

If tr = 0, by Lemma 2.1, (5) implies thatxr is a solution ofV I (K, f ). On the
other hand, sincec(xr ) = r > c(x̂), xr 6= x̂. Thus it follows from (5) thattr 6= 1.
Hence, in the rest of the proof, we consider only the case thattr ∈ (0,1) for all
r > c(x̂). From (5) we have

1

1− tr x
r − tr

1− tr x̂ = PK(x
r − f (xr )) ∈ K. (6)

By the property of projection operator,11−tr x
r − tr

1−tr x̂ is the unique solution to the
following problem

minimizeT (y) = ‖y − (xr − f (xr))‖2
s.t. y ∈ K = {x ∈ Rn : g(x) ≤ 0, h(x) = 0}.
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Since the problem is a convex quadratic program, the Karush–Kuhn–Tucker condi-
tions completely characterize the solution of the convex program. Therefore, there
exist two vectorsλr ∈ Rm+ andµr ∈ Rl such that

∇T
(

xr

1− tr −
tr

1− tr x̂
)
+∇g

(
xr

1− tr −
tr

1− tr x̂
)T
λr

+∇h
(

xr

1− tr −
tr

1− tr x̂
)T
µr = 0,

(λr)
T g

(
xr

1− tr −
tr

1− tr x̂
)
= 0.

Denoteαr = 1/1− tr > 1 and note that∇T (y) = 2[y− (xr −f (xr ))]. The above
two equations can be written as follows

f (xr) =− (αr − 1)(xr − x̂)− 1

2
[∇g(αrxr + (1− αr)x̂)T λr

+∇h(αrxr + (1− αr)x̂)T µr ],

(λr)
T g(αrx

r + (1− αr)x̂) = 0.

Hence, to show the sequence{xr}r>c(x̂) is an exceptional family, it suffices to show
‖xr‖ → +∞ asr →∞ and{xr} ⊂ K. It follows from c(xr ) = r that‖xr‖ → ∞
asr →∞. Note thatK is convex, from (6) and̂x ∈ K, we have

xr = tr x̂ + (1− tr )
[
xr

1− tr −
tr

1− tr x̂
]
∈ K.

Hence{xr} ⊂ K. The proof is complete.

COROLLARY 2.1.If the problemV I (K, f ) has no exceptional family, then it has
at least a solution.

3. Applications

Theorem 2.1 in last section establishes a new sufficient condition of the existence
of a solution toV I (K, f ). We will see that this sufficient condition is weaker than
several known solution conditions existing in literature. We will show that such a
sufficient condition is so weak that it is also necessary for the solvability of pseudo-
monotone variational inequality problem. The conclusion of Theorem 2.1 makes it
possible for us to develop new solution conditions forV I (K, f ) via investigating
the conditions of nonexistence of the exceptional family forV I (K, f ). Particu-
larly, an existence result for a class of nonlinear functions calledP∗-mappings is
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established.P∗-mappings include as the special cases the monotone functions and
a subclass of uniform P-functions. Recently, the linearP∗-mapping has obtained
special attention in the field of interior-point algorithm for linear complementarity
problems (see [14, 17, 22–25, 27] for example).

THEOREM 3.1.Letf : Rn → Rn be a continuous function, if there is a feasible
point x̂ ∈ K such that for each sequence{xr } ⊂ K with ‖xr‖ → ∞, the following
inequality

(xr − x̂)T f (xr) ≥ 0 (7)

holds for a pointxr with ‖xr‖ 6= ‖x̂‖. ThenV I (K, f ) has no exceptional family,
and henceV I (K, f ) is solvable.

Proof. Suppose that there exists an exceptional family{xr } for the problem
V I (K, f ). By Definition 2.1, we have{xr} ⊂ K and‖xr‖ → ∞ asr → ∞ and
there exist two vector sequences{λr} ⊂ Rm+ and{µr} ⊂ Rl and a scalar sequence
{αr}, where eachαr > 1, such that{αrxr + (1− αr)x̂} ⊂ K and the equations
(1) and (2) hold. Note thatgi(x)(i = 1, ..., m) is convex andhj(x)(j = 1, ..., l) is
linear, we have that

g(x̂) ≥ g(αrxr + (1− αr)x̂)+ αr∇g(αrxr + (1− αr)x̂)(x̂ − xr ), (8)

h(x̂) = h(αrxr + (1− αr)x̂)+ αr∇h(αrxr + (1− αr)x̂)(x̂ − xr ). (9)

By (2), (8) and the feasibility of̂x, we have

(λr)
T∇g(αrxr + (1− αr)x̂)(x̂ − xr) ≤ 1

αr
(λr)

T g(x̂) ≤ 0. (10)

Sinceαrxr + (1− αr)x̂ is feasible, (9) implies that

∇h(αrxr + (1− αr)x̂)(x̂ − xr ) = 0. (11)

Therefore by (1), (10) and (11), we have

(xr − x̂)T f (xr) = −(xr − x̂)T [(αr − 1)(xr − x̂)
+ 1

2
∇g(αrxr + (1− αr)x̂)T λr +∇h(αrxr + (1− αr)x̂)T µr)] (12)

≤ −(αr − 1)‖xr − x̂‖2

which implies that

(xr − x̂)T f (xr) < 0, for all ‖xr‖ 6= ‖x̂‖.
This is in contradiction with the hypothesis condition (7). Hence,V I (K, f ) has no
exceptional family, and henceV I (K, f ) has a solution by Theorem 2.1.
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Harker and Pang (see Theorem 3.3 in [3]) show that the condition “there exists
a vectorx̂ ∈ K such that the setK(x̂) = {x ∈ K : (x − x̂)T f (x) < 0} is bounded
(possibly empty)” implies thatV I (K, f ) has a solution. It should be noted that the
above Harker and Pang condition implies our condition in Theorem 3.1. Actually,
for each sequence{xr } ⊂ K with ‖xr‖ → ∞, if the setK(x̂) is bounded (possibly
empty), we have thatxr /∈ K(x̂) for sufficiently larger , i.e.,

(xr − x̂)T f (xr) ≥ 0 for all sufficiently larger

which implies the condition of Theorem 3.1.

From the proof of the above Theorem 3.1, one can actually prove the following
consequence.

THEOREM 3.1′. Let f : Rn → Rn be a continuous function and̂x be a point in
K, if V I (K, f ) has an exceptional family, then the set

K(x̂) = {x ∈ K : (x − x̂)T f (x) < 0}
must be nonempty and unbounded.

Harker and Pang’s result can be also viewed as an immediate consequence of the
above results. The next definition extends the coercivity of a function to so-called
p-order coercivity.

DEFINITION 3.1. A functionf : Rn → Rn is said to bep−order coercive with
respect toK if there exists somep ∈ (−∞,1) andx̂ ∈ K such that

lim
x∈K,‖x‖→∞

f (x)T (x − x̂)
‖x‖p = +∞. (13)

Whenp = 1 (13) reduces to the standard definition of coercivity of a function
in literature (see [19,3]). It is evident that the standard coercive function must be
p-order coercive, but the converse is not true in general. For example, we consider
the one-variable real functionf (t) = tα/(1+ tα), where the scalarα ≥ 0. Let
K = [1,+∞) for anyp ∈ (−∞,1) and anyt0 ∈ [1,+∞), we have

lim
t≥1,t→+∞

f (t)(t − t0)
tp

= +∞

which implies thatf (t) is p-order coercive with respect toK, but f (t) is not
coercive, since that

lim
t≥1,t→+∞

f (t)(t − t0)
t

= 1.

Coercivity property has played very important role in the existence theory of
V I (K, f ) (see [3, 6, 7, 19, 26, 28]). Hartman and Stampacchia [6] and Moré [19]
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show that the standard coercivity implies thatV I (K, f ) has a solution (see also
Theorem 3.3 in [3]). This existence result is generalized to the case ofp-order
coercivity in the following consequence.

COROLLARY 3.1.Let f : Rn → Rn be a continuous function, if there exists a
scalarp such thatf isp-order coercive, where−∞ < p < 1, then there exists no
exceptional family forV I (K, f ) , and hence the problemV I (K, f ) has a solution.

Proof. It is easy to see thatp-order coercivity condition implies the condition
of Theorem 3.1. Actually, if 0≤ p < 1, then from (13), we have

lim
x∈K,‖x‖→∞

f (x)T (x − x̂) = +∞. (14)

If −∞ < p < 0, for any sequence{xr } ⊂ K with ‖xr‖ → +∞, (13) implies that

f (xr)(xr − x̂) > 0 for sufficiently larger. (15)

Both (14) and (15) imply that the condition of Theorem 3.1 holds. Thus the desired
result is an immediate consequence of Theorem 3.1.

In summary, the existence Theorem 3.3 in [3] (due to Harker and Pang) and
Theorem 3.2 in [3]( due to Moré, Hartman and Stampacchia) can be viewed as
the special cases of Theorem 3.1. It is worthwhile to mention that the aforemen-
tioned conclusion “p-order coercivity implies nonexistence of exceptional fam-
ily for V I (K, f )” is also a generalized version of Proposition 4.7 in [26] and
Proposition 4 in [7] forNCP(f ) under the standard coercivity assumption.

In what follows, we develop the sufficient and necessary condition for pseudo-
monotone typeV I (K, f ). Recall that a mappingf : Rn→ Rn is monotone onK
if (f (x) − f (y))T (x − y) ≥ 0 holds for all distinct pairx, y ∈ K. A mappingf
is said to be pseudo- monotone onK if for every pair of distinct pointsx, y ∈ K,
the condition(y− x)T f (x) ≥ 0 implies that(y− x)T f (y) ≥ 0. Denote byK∗ the
dual cone of the convex setK, i.e.,

K∗ = {y ∈ Rn : yT x ≥ 0,∀x ∈ K}.
It is well-known that for nonlinear pseudo-monotone functions the feasible condi-
tion “there exists a vector̂x ∈ K such thatf (x) ∈ K∗” is not a sufficient condition
for the solvability ofV I (K, f ). Megiddo [16] gave an example to show that this
feasibility can not guarantee the existence of the solution toV I (K, f ) even for
nonlinear monotone mappingf . If the feasibility condition is replaced by strictly
feasibility condition, i.e., there exists a vectorx̂ ∈ K such thatf (x̂) ∈ int(K∗),
where int(·) denotes the interior of a set, Karamardian [11] and Moré [19] showed
that there exists a solution to the nonlinear complementarity problemNCP(f ).

Their results remain valid for pseudo-monotoneV I (K, f ) (see Theorem 3.4 in [3]
due to Harker and Pang). It should be noted that the strictly feasibility is sufficient,
however, it is not necessary for the solvability ofV I (K, f ) (see Corollary 3.2). The
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question how to weaken such a condition such that a relaxed solution condition is
not only sufficient but also necessary is answered in the next theorem. We make
use of the following definition.

DEFINITION 3.2. A functionf : Rn→ Rn is said to beweakly properon the set
K if there is a point̂x ∈ K such that for each sequence{xr} ⊂ K with ‖xr‖ → ∞,
there exists somer such that

(xr − x̂)T f (x̂) ≥ 0 and‖xr‖ 6= ‖x̂‖.
THEOREM 3.2.Letf : Rn→ Rn be pseudo-monotone onK, then the variational
inequality problemV I (K, f ) has a solution if and only iff is weakly proper on
the setK.

Proof. Assume thatV I (K, f ) has a solutionx∗, i.e.,

f (x∗)T (x − x∗) ≥ 0, for all x ∈ K
which implies thatf is weakly proper on the setK with x̂ = x∗. Conversely,
assume thatf is weakly proper on the setK. By Definition 3.2 there exists some
x̂ ∈ K, such that for each sequence{xr } ⊂ K with ‖xr‖ → ∞, the following two
relations hold for somer

(xr − x̂)T f (x̂) ≥ 0 and ‖xr‖ 6= ‖x̂‖.
Sincef is a pseudo-monotone map, we have

(xr − x̂)T f (xr) ≥ 0 and ‖xr‖ 6= ‖x̂‖,
which implies that the problemV I (K, f ) has no exceptional family by Theorem
3.1, thus the problemV I (K, f ) has at least one solution.

From Theorem 2.1 (Corollary 2.1), Theorem 3.2 and the above proof of Theo-
rem 3.2, we obtain the following immediate consequence.

THEOREM 3.3.If f : Rn → Rn be pseudo-monotone on the setK, then the
following two conditions are equivalent

1. V I (K, f ) has no exceptional family
2. f is weakly proper onK

Therefore, the consequence of Theorem 3.2 can be restated as follows:V I (K, f )

has a solution if and only if it has no exceptional family.

However, it should be noted that in general the sufficient condition “without
exceptional family” is not necessary for the existence of the solution toV I (K, f ).
Such an example forNCP(f ) was given in [26] (see also [7]). On the other hand,
one example is also given in [26] to show that theNCP(f ) may posses both a
solution and an exceptional sequence.
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The following result shows that strictly feasible condition is not a necessary for
the solvability ofV I (K, f ).

COROLLARY 3.2.Under the pseudo-monotonicity assumption, the strict feasibil-
ity assumption implies thatf is weakly proper onK, the converse is not true.

Proof. By Theorem 3.3, the first consequence is obvious since the strictly feasi-
bility implies thatV I (K, f ) has a solution. Now we give an example to show that
the converse is not true. LetK = Rn+, f ≡ 0 onRn, there exists no point̂x ∈ K
such thatf (x̂) ∈ ∫ (K∗), the strictly feasibility condition does not hold. However,
it is easy to see thatf is weakly proper onK.

We now develop an existence theorem for quasi-monotoneV I (K, f ). A map-
ping is said to be quasi-monotone if for any distinct pair of pointx, y in K , we
have that

(y − x)T f (x) > 0 implies that (y − x)T f (y) ≥ 0.

A pseudo-monotone function is quasi-monotone, but the converse is not true,
some examples can be found in [12].

DEFINITION 3.3. The functionf : Rn → Rn is said to bestrictly weakly proper
on the setK, if there exists somêx ∈ K such that for every sequence{xr} ⊂ K

with ‖xr‖ → ∞, there exists somer such that

(xr − x̂)T f (x̂) > 0 and ‖xr‖ 6= ‖x̂‖.
Similar to the second part of the proof of Theorem 3.2, we can show the fol-

lowing result that further extends the aforementioned existence results on pseudo-
monotonicity.

THEOREM 3.4.Let f : Rn → Rn be quasi-monotone onK, andf be strictly
weakly proper onK, thenV I (K, f ) has no exceptional family, and henceV I (K, f )
is solvable.

We now consider a special case. Ifgi(x) (i = 1, ..., m) is positively homoge-
neous of degreepi > 0(i = 1, ..., m) (i.e.,gi(rx) = rpi g(x) for all r > 0), then
the feasible setK = {x ∈ Rn : g(x) ≤ 0} is a closed convex cone inRn.

COROLLARY 3.3.Letf be quasi-monotone onK andK be pointed solid closed
convex cone inRn (see Definition 2.1 in [11]), if there exist somex̂ ∈ K such that
f (x̂) ∈ ∫ (K∗), thenV I (K, f ) has no exceptional family.

Proof. Under the above assumption, by Lemma 2.1 in [11] (letd = f (x̂) ∈
int(K∗), α = f (x̂)T x̂ > 0), it is easy to see that the following set is bounded

S(x̂) = {x ∈ K : (x − x̂)T f (x̂) ≤ 0}.
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For each unbounded sequence{xr} ⊂ K, sinceS(x̂) is bounded, there must exist
somer with ‖xr‖ 6= ‖x̂‖ such thatxr /∈ S(x̂), i.e.,

(x − x̂)T f (x̂) > 0.

Hence,f is strictly weakly proper on the setK. The desired result follows by
Theorem 3.3.

So far, we have developed several new existence theorems forV I (K, f ), and
some of these results relax several classical existence conditions. The proposed
sufficient condition, i.e., “without exceptional family” is so weak that it becomes a
necessary condition for the solvability pseudo-monotoneV I (K, f ). In the rest of
the paper we establish a solution condition for a class of nonlinear complementarity
problems, where the mappings are so-called nonlinearP∗-mappings that include
monotone functions and a subclass of uniformP -functions as the particular cases,
but in general aP∗-mapping is neither a monotone mapping nor a uniformP -
function.

DEFINITION 3.4. A mappingf : Rn → Rn is said to be aP∗-mapping, if there
exists a nonnegative constantγ such that the following inequality holds for any
distinct pointsx, y ∈ Rn

(1+ γ )
∑

j∈I+(x,y,f )
(xj − yj )(fj (x)− fj (y))

+
∑

j∈I−(x,y,f )
(xj − yj )(fj (x)− fj (y)) ≥ 0, (16)

where

I+(x, y, f ) = {j : (xj − yj )(fj (x)− fj (y)) > 0}. (17)

I−(x, y, f ) = {j : (xj − yj )(fj (x)− fj (y)) < 0}. (18)

It is easy to see that (16) can be written as follows

(x − y)T (f (x)− f (y)) ≥ −γ
∑

j∈I+(x,y,f )
(xj − yj )(fj(x)− fj (y)). (19)

PROPOSITION 3.1.Let f = (f1, ..., fn)
T ∈ Rn be a monotone map, where

fi(i = 1, ..., n) is a real-valued function fromRn intoR1. Thenf is aP∗-mapping.
Moreover, if the scalardi 6= 0 for all i = 1, ..., n, then each scaled mapping

F (i) = (f1, ..., fi−1, difi, fi+1, ..., fn)
T , (i = 1, ..., n)

is also aP∗ -mapping.
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Proof. Since (19) holds for monotone mapping with constantγ = 0, any
monotone mappings must beP∗-mappings. It is evident that each scaled mapping
is not necessary monotone, however, we now show thatF (i) is also aP∗-mapping.
Let x, y be any distinct points inRn. We have

(x − y)T (F (i)(x)− F (i)(y))
= (x − y)T (f (x)− f (y))+ (di − 1)(fi(x)− fi(y))(xi − yi) (20)

≥ di − 1

di
(xi − yi)(F (i)i (x)− F (i)i (y)).

Three cases are possible.
Case 1.di ≥ 1. Letγ = di − 1 ≥ 0. If (xi − yi)(F (i)i (x)− F (i)i (y)) ≥ 0, from

(20) we have that

(x − y)T (F (i)(x)− F (i)(y)) ≥ 0.

Hence,

(x − y)T (F (i)(x)− F (i)(y))
≥ −γ

∑
j∈I+(x,y,F (i))

(xj − yj )(F (i)j (x)− F (i)j (y)) (21)

holds trivially. If (xi − yi)(F (i)i (x)− F (i)i (y)) < 0, note that in the case∑
j∈I+(x,y,F (i))

(xj − yj )(F (i)j (x)− F (i)j (y))

=
∑

j∈I+(x,y,f )
(xj − yj )(fj (x)− fj (y)). (22)

By the monotonicity off , we have∑
j∈I+(x,y,f )

(xj − yj )(fj (x)− fj (y))

+
∑

j∈I−(x,y,f )
(xj − yj )(fj (x)− fj (y)) ≥ 0 (23)

Therefore, by (22) and (23)

0> (xi − yi)(F (i)i (x)− F (i)i (y))
= di(xi − yi)(fi(x)− fi(y))
≥ −di

∑
j∈I+(x,y,f )

(xj − yj )(fj(x)− fj (y))

= −di
∑

j∈I+(x,y,F (i))
(xj − yj )(F (i)j (x)− F (i)j (y)).
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Combining (20) and the above inequality, we again obtain (21).
Case 2. 0< di < 1. Letγ = (1−di)/di > 0. If (xi−yi)(F (i)i (x)−F (i)i (y)) > 0,

then from (20)

(x − y)T (F (i)(x)− F (i)(y))
≥ −γ (xi − yi)(F (i)i (x)− F (i)i (y))
≥ −γ

∑
j∈I+(x,y,F (i))

(xj − yj )(F (i)j (x)− F (i)j (y)).

If (xi − yi)(F (i)i (x) − F (i)i (y)) ≤ 0, then from (20), the above inequality holds
trivially.

Case 3.di < 0. Letγ = 1− di > 0. The desired results can be shown by the
similar argument to the above proof.

PROPOSITION 3.2.Letf be a uniformP -function with modulusc > 0, that is,

max
1≤j≤n

(xj − yj )(fj (x)− fj (y)) ≥ c‖x − y‖2 for all x, y ∈ Rn. (24)

If there exists a numberλ (possibly negative)

(x − y)T (f (x)− f (y)) ≥ λ‖x − y‖2 for all x, y ∈ Rn, (25)

thenf is aP∗-mapping.
Proof. By (24) and (25), we have

(x − y)T (f (x)− f (y)) ≥ λ‖x − y‖2
≥ −|λ|‖x − y‖2

≥ −|λ|
c

max
1≤j≤n

(xj − yj )(fj (x)− fj (y))

≥ −|λ|
c

∑
j∈I+(x,y,f )

(xj − yj )(fj (x)− fj (y)),

thusf is aP∗-mapping.

If f is Lipschitz continuous, i.e., there exists a scalarL such that‖f (x) −
f (y)‖ ≤ L‖x − y‖, then we can verify (25) holding withλ = −L. Indeed, it
follows from

|(x − y)T (f (x)− f (y))| ≤ ‖x − y‖‖f (x)− f (y)‖ ≤ L‖x − y‖2

that

(x − y)T (f (x)− f (y)) ≥ −L‖x − y‖2.
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Whenf is a linear function, that is,f = Mx+q, whereM ∈ Rn×n andq ∈ Rn,
then (25) holds trivially. Indeed,

(x − y)T (f (x)− f (y)) = (x − y)TM(x − y)
= 1

2
(x − y)T [M +MT ](x − y)

≥ λmin‖x − y‖2,
whereλmin is the least eigenvalue of(M + MT )/2 . For linear mapping, (24) is
equivalent to saying thatM is P -matrix (the class of matrices with all principal
minors positive). Therefore we have the following corollary.

COROLLARY 3.4 ([14]).Each linear mappingf = Mx + q, whereM is a P -
matrix, is aP ∗-mapping.

Since the class ofP∗-mappings includes monotone mappings, the feasibility
condition can not guarantee the solvability ofV I (K, f ) (see [16]). The next con-
sequence declares that the strictly feasibility can guarantee the solvability of non-
linearP∗-complementarity problem.

THEOREM 3.5.For nonlinearP∗-mappingf : Rn → Rn, if there exists a point
u ∈ Rn+ such thatf (u) > 0, i.e, f (u) ∈ int(Rn+), then the complementarity
problemNCP(f ) has no exceptional family, and hence the problemNCP(f )
has a solution.

Proof. Assume the contrary, let{xr } ⊂ K = Rn+ be an exceptional family for
NCP(f ), then there are vector sequence{λr} ⊂ Rn+ and scalar sequence{αr > 1}
such that (3) and (4) hold. Thus, for eachi ∈ {1, ..., n}, by (3) and (4), we have

(fi(x
r)− fi(u))(xri − ui) =

{ −[(αr − 1)xri + fi(u)](xri − ui) if xri > 0,
−[(λr)i/2− fi(u))ui] if xri = 0.

(26)

Since‖xr‖ → ∞, if necessary we choose a subsequence, there exists one compo-
nent indexi0 such thatxri0 → +∞ asr → +∞. Note thatαr > 1 for all r and
f (u) > 0, from (26), we have

(fi0(x
r)− fi0(u))(xri0 − ui0) = −[(αr − 1)xri0 + fi0(u)](xri0 − ui0)→ −∞.

(27)

Therefore, the cardinality|I+(xr , u, f )| ≤ n − 1 and |I−(xr , u, f )| ≥ 1 for
sufficiently larger. Hence, we have

max
1≤i≤n

(fi(x
r )− fi(u))(xri − ui)

≥ 1

n− 1

∑
i∈I+(xr,u,f )

(fi(x
r )− fi(u))(xri − ui). (28)
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There is a subsequence, denoted by{xrj }(rj → +∞ asj → +∞.j = 1,2, ...),
such that for some fixed indexk, the following equation

(fk(x
rj )− fk(u))(xrjk − uk) = max

1≤i≤n
(fi(x

rj )− fi(u))(xrji − ui) (29)

holds for allrj (j = 1,2, ...). On the other hand, Sincef is aP∗-mapping, there
exists some constantγ ≥ 0 such that

(1+ γ )
∑

i∈I+(xrj ,u,f )
(fi(x

rj )− fi(u))(xrji − ui)

+
∑

i∈I−(xrj ,u,f )
(fi(x

rj )− fi(u))(xrji − ui) ≥ 0. (30)

We now consider the component sequence{xrji0 }. From (27), we see thati0 ∈
I−(xrj , u, f ) for sufficiently largej , Hence from (30), (28) and (29), we deduce
that

(fi0(x
rj )− fi0(u))(xrji0 − ui0)

≥ −(1+ γ )
∑

i∈I+(xrj ,u,f )
(fi(x

rj )− fi(u))(xrji − ui)

≥ −(1+ γ )(n− 1) max
1≤i≤n

(fi(x
rj )− fi(u))(xrji − ui)

= −(1+ γ )(n− 1)(fk(x
rj )− fk(u))(xrjk − uk).

Combining (27) and the above inequality yields

− [(αrj − 1)x
rj
i0
+ fi0(u)](xrji0 − ui0)

≥ −(1+ γ )(n− 1)(fk(x
rj )− fk(u))(xrjk − uk) (31)

Without loss of generality, assume thatj is sufficiently large. For eachj , three
cases are possible.

Case 1.x
rj
k = 0. It follows from (26) andλrj ∈ Rm+ that

(fk(x
rj )− fk(u))(xrjk − uk) = −[(λrj )k/2− fk(u)]uk ≤ fk(u)uk. (32)

By using (31) and (32), we deduce that

−(1+ γ )(n− 1)fk(u)uk ≤ −[(αr − 1)x
rj
i0
+ fi0(u)](xrji0 − ui0)→ −∞

which is a contradiction.
Case 2. 0< x

rj
k ≤ uk. By using (31) and (26), we have

− [(αrj − 1)x
rj
i0
+ fi0(u)](xrji0 − ui0)

≥ −(1+ γ )(n− 1)[(αrj − 1)x
rj
k + fk(u)](uk − xrjk )

≥ −(1+ γ )(n− 1)[(αrj − 1)uk + fk(u)]uk
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which is a contradiction sincex
rj
i0
→+∞ andfi0(u) > 0.

Case 3.x
rj
k > uk . By using (26) and (31)

− [(αrj − 1)x
rj
i0
+ fi0(u)](xrji0 − ui0)

≥ (1+ γ )(n− 1)[(αrj − 1)x
rj
k + fk(u)](xrjk − uk)

which is also a contradiction since the left-hand side tends to−∞ asj →∞, but
the right-hand side is positive.

Therefore, the problemNCP(f ) has no exceptional family, and hence there
exists a solution toNCP(f ) according to Theorem 2.1.

4. Final remarks

In the last there decades, the solvability of variational inequality problems includ-
ing complementarity problems has been studied extensively by many authors. A
large number of solution conditions have been developed in the literature. A com-
prehensive survey in this field can be found in reference [3]. In this paper, we
have extended the concepts of exceptional sequence and exceptional family of ele-
ments for a continuous function introduced in [26] and [7] to nonlinear variational
inequality problems. We think that the proposed concept provides some unified
argument for the solvability of variational inequality problems from the point of
view that many known existence theorems can be generalized or reobtained by
the proposed concept of exceptional family. The condition “without exceptional
family” is a sufficient condition for the solvability of variational inequality prob-
lem provided that the mappingf is continuous inRn. This sufficient condition is
also necessary for pseudo-monotone problems. It is worth noting that for quasi-
monotone variational inequalities we have developed a sufficient condition for
its solvability. Is there a solution condition which is not only sufficient but also
necessary for the solvability of quasi-monotone variational inequality problems?
Such a topic is also worth investigating in the future.
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