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Abstract. For P0-complementarity problems, most existing non-interior-point path-following
methods require the existence of a strictly feasible point. (For a P∗-complementarity problem, the
existence of a strictly feasible point is equivalent to the nonemptyness and the boundedness of the
solution set). In this paper, we propose a new homotopy formulation for complementarity problems
by which a new non-interior-point continuation trajectory is generated. The existence and the
boundedness of this non-interior-point trajectory for P0-complementarity problems are proved under
a very mild condition that is weaker than most used conditions in the literature. One prominent
feature of this condition is that it may hold even when the often-assumed strict feasibility condition
fails to hold. In particular, for a P∗-problem, it turns out that the new non-interior-point trajectory
exists and is bounded if and only if the problem has a solution. We also study the convergence of
this trajectory and the characterization of its limiting point as the parameter approaches zero.
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1. Introduction. The standard complementarity problem (abbreviated, CP) is
to find a pair (x, y) ∈ Rn ×Rn such that

y = f(x), (x, y) ≥ 0 and xT y = 0,

where f : Rn → Rn is a continuous function. This problem has many applications in
optimization, economics, and engineering. See for example, Cottle, Pang, and Stone
[8], Harker and Pang [14], Heemels, Schumacher, and Weiland [15], van der Schaft
and Schumacher [37], and Lötstedt [23].

The first non-interior-point method for the CP was proposed by Chen and Harker
[5], and was based on the use of Chen-Harker-Kanzow-Smale smooth function. Due
to the impressive numerical performance of the algorithm as well as its ideal conve-
nience for the application to those CPs where interiority restriction on the iterates is
quite severe, there are a growing interest and fruitful results in the non-interior-point
methods for the CP, see, e.g., Kanzow [18], Burke and Xu [1, 2, 3, 4], Xu [35], Xu and
Burke [36], Chen and Chen [6], Hotta and Yoshise [16], Hotta, Inaba, and Yoshise
[17], Qi and Sun [26], and Tseng [32]. In the setting of P0-CPs, a common feature
of the above-mentioned non-interior-point methods is to make an assumption of the
strict feasibility condition (or the nonemptyness and the boundedness conditions on
the solution set) and a proper condition. For instance, Hotta and Yoshise [16] utilized
the following condition.
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Condition 1.1. (i) f is a P0-function, i.e., for any distinct vectors x, y in Rn

max
xi 6=yi

(xi − yi)(fi(x)− fi(y)) ≥ 0.

(ii) There exists a strictly feasible point (x0, y0), i.e., x0 > 0 and y0 = f(x0) > 0.
(iii) The set

U−1(D) = {(u, x, y) ∈ Rn
+ ×R2n : U(u, x, y) ∈ D}

is bounded for every compact subset D of Rn
+×V (Rn

++×R2n), where V : Rn
+×R2n →

Rn and U : Rn
+ ×R2n → Rn

+ ×R2n are given by

V (u, x, y) = x + y −
√

(x− y)2 + 4u

and

U(u, x, y) =




u

x + y −
√

(x− y)2 + 4u
y − f(x)


 =




u
V (u, x, y)
y − f(x)


 ,(1.1)

respectively. All the above algebraic operations are performed componentwise.
The following standard condition was widely used in interior-point methods and

non-interior-point methods. See for example, [2, 3, 6, 16, 17, 19, 20, 21, 26, 38].
Condition 1.2. (i) f is monotone, i.e., (x − y)T (f(x) − f(y)) ≥ 0 for any

(x, y) ∈ R2n.
(ii) There exists a strictly feasible point (x0, y0), i.e., x0 > 0 and y0 = f(x0) > 0.
Condition 1.2 implies Condition 1.1 (see, [16, 26]). Hotta and Yoshise [16] pointed

out that Condition 1.1 implies the well known Condition 1.5 in Kojima, Megiddo, and
Noma [19]. As observed by Zhao and Li [42] (see also section 3 of this paper), the
Condition 1.5 in [19] implies that the solution set of the CP is nonempty and bounded.
Thus, the above-mentioned Conditions 1.1 and 1.2 all imply that the solution set of
the CP is nonempty and bounded. Ravindran and Gowda (Corollary 5 in [27]) showed
that a P0-CP with a nonempty and bounded solution set must have a strictly feasible
point. Moreover, for monotone CPs, the converse is also true, i.e., the solution set of
the monotone CP is nonempty and bounded if and only if it has a strictly feasible
point. (See also Chen, Chen, and Kanzow [7]). This property of the monotone
problem can be extended to the case of P∗-CPs. We recall that a map f : Rn → Rn

is said to be a P∗-function if there exists a constant τ ≥ 0 such that

(1 + τ)
∑

i∈I+

(xi − yi)(fi(x)− fi(y)) +
∑

i∈I−

(xi − yi)(fi(x)− fi(y)) ≥ 0

for all distinct vectors x, y in Rn, where I+ = {i : (xi − yi)(fi(x) − fi(y)) > 0} and
I− = {1, ..., n} \ I+. (See, Cottle, Pang, and Venkateswaran [9], Kojima et al. [20],
Väliaho [33], Zhao and Han [38], and Zhao and Isac [39, 40]). Clearly, a monotone
function is a P∗-function, but the converse is not true. Zhao and Li [41, 42] pointed
out that for a P∗-CP the following three conditions are equivalent:

(i) There exists a strictly feasible point.
(ii) The solution set of the CP is nonempty and bounded.
(iii) The central path of the CP exists.
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Since most existing (interior-point and) non-interior-point path-following algo-
rithms for CPs are based on the use of certain continuation trajectory such as the
central path whose existence is closely related to the existence of a strictly feasible
point, we conclude that for P0-CPs these (interior-point and) non-interior-point al-
gorithms are, in fact, confined to solving a class of strictly feasible problems. Other
non-interior-point algorithms in the literature also suffer from the same restriction.
For instance, the algorithms developed by Chen and Harker [5], Burke and Xu [1],
and Chen and Chen [6] require the P0 and R0 assumption, which also implies that the
solution set of the CP is nonempty and bounded, and hence the problem is strictly
feasible. The strict feasibility condition plays an indispensable role in these known
non-interior-point methods. In section 3, we gave an example to show that the Hotta
and Yoshise’s non-interior-point trajectory [16] does not necessarily exist when the
problem has no strictly feasible point, in which case the solution set of the P0-CP is
unbounded provided that it is nonempty). An interesting question is how to circum-
vent this difficulty so that a non-interior-point path-following method can be designed
to solve a CP even when there is no strictly feasible point.

In this paper, we shall propose a new homotopy formulation of the CP. Based
on this formulation, a new non-interior-point continuation trajectory for the CP can
be generated. This new continuation trajectory possesses a desirable feature: For
P0-CPs, the existence and the boundedness of the continuation trajectory can be
ensured under a mild condition that is weaker than most existing conditions such as
Conditions 1.1 and 1.2. The often-assumed strict feasibility condition is not required
here. Particularly, for P∗-CPs, the proposed continuation trajectory exists and is
bounded if and only if the problem has a solution. In other words, the existence
and the boundedness of the trajectory for P∗-CPs do not require the strict feasibility
condition which is equivalent to the nonempty and the boundedness of the solution
set. We also (i) provide some sufficient conditions for the convergence of the entire
trajectory as the parameter approaches zero, and (ii) identify the properties of the
limiting point of this trajectory. The results presented in the paper bring us with a
theoretical basis for devising a new non-interior-point path-following method for CPs.
This method is expected to solve a general class of complementarity problems which
is broader than those to which most existing methods can be applied.

This paper is organized as follows: In section 2, we define a new homotopy for-
mulation for the CP. In section 3, we specify a new proper condition that will be used
to prove the existence and boundedness of a new continuation trajectory in section
4. We also compare this condition with several known ones in the literature. The
limiting behavior of the trajectory is studied in section 5. Final remarks are given in
section 6.

Notation: We denote by Rn the space of n-dimensional real vectors, and by
Rn

+(Rn
++, respectively) the nonnegative orthant (positive orthant, respectively). If

x ∈ Rn
+(Rn

++), we write x ≥ 0(x > 0) for simplicity. All vectors, unless otherwise
stated, are column vectors. T denotes the transpose of a vector. The symbol e denotes
the vector of all ones in Rn. For given vectors u,w, v in Rn, the triplet (u,w, v) (the
pair (x, y)) denotes the column vector (uT , wT , vT )T ( (xT , yT )T ). For any u ∈ Rn

+,
the symbol up denotes the pth power of the vector u, i.e., the vector (up

1, ..., u
p
n)T

where p > 0 is a positive scalar. In particular, when p = 1/2,
√

u denotes the
vector (

√
u1, ...,

√
un)T . The symbol diag(x) denotes the n×n diagonal matrix whose

(i, i)th entry is xi. For any x, y ∈ Rn with x ≤ y, we denote the rectangular box
[x1, y1]× · · · × [xn, yn] by [x, y].
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2. A new homotopy formulation for CPs. Let (ū, v̄, r̄) be a fixed point in
Rn

++ ×R2n and let

w̄ = {θ(ū, v̄, r̄) ∈ Rn
++ ×R2n : θ ∈ (0, 1]}.

Let U : Rn
+ ×R2n → R3n be defined by (1.1). Denote

U−1(w̄) = {z = (u, x, y) ∈ Rn
++ ×R2n : U(z) = θ(ū, v̄, r̄) for some θ ∈ (0, 1]}.

Under Condition 1.1, Hotta and Yoshise [16] showed that the above set forms a
continuous trajectory leading to a solution of the CP. Based on this fact, they designed
a globally convergent path-following method for the CP. However, it is easy to see
that the strict feasibility condition plays an essential role in the existence of the
Hotta and Yoshise trajectory. In fact, it is impossible to remove the strict feasibility
condition from Condition 1.1 and Condition 1.2 without destroying the existence of
their trajectory, as we see in the following example.

Example 2.1. Let f(x) = Mx + q where

M =
(

0 −1
0 0

)
, q =

( −1
0

)
.

This function is a P0-function and there exists no strictly feasible point. The solution
set of the corresponding CP is unbounded. Let ū = (ū1, ū2)T ∈ R2

++, v̄ = (v̄1, v̄2)T ∈
R2 and r̄ = (r̄1, r̄2)T ∈ R2. From Lemma 1.1 in [16], the system U(u, x, y) = θ(ū, v̄, r̄)
can be written as follows:

u = θū, y = f(x) + θr̄, x− θv̄/2 > 0, y − θv̄/2 > 0,

diag(x− θv̄/2)(y − θv̄/2) = θū.

Note that y = f(x) + θr̄ =
( −x2 − 1 + θr̄1

θr̄2

)
. The last equation above can be

rewritten as

(x1 − θv̄1/2)(−x2 − 1 + θr̄1 − θv̄1/2) = θū1,(2.1)

(x2 − θv̄2/2)(θr̄2 − θv̄2/2) = θū2.

Since θ > 0, the second equation above reduces to

(x2 − θv̄2/2)(r̄2 − v̄2/2) = ū2.(2.2)

Case 1: r̄2 ≤ v̄2/2. Since x2 − θv̄2/2 > 0 and ū2 > 0, the above equation has no
solution, and thus the system U(u, x, y) = θ(ū, v̄, r̄) has no solution.

Case 2: r̄2 > v̄2/2. In this case, (2.2) can be written as

x2 = (r̄2 − v̄2/2)−1ū2 + θv̄2/2.

Hence, for all sufficiently small θ > 0, we have

−x2 − 1 + θr̄1 − θv̄1/2 = −(r̄2 − v̄2/2)−1ū2 − θv̄2/2− 1 + θr̄1 − θv̄1/2 < 0.

Since x1−θv̄1/2 > 0, we deduce from the above that the equation (2.1) has no solution
for all sufficiently small θ > 0. Thus, the Hotta-Yoshise trajectory [16] does not exist.
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Motivated by the above example, we now introduce a new homotopy formulation
for the CP. Let p ∈ (0,∞) and q ∈ [1,∞) be two fixed numbers throughout the paper.
Define the homotopy map H : Rn

+ ×R2n → R3n as follows:

H(u, x, y) =




u

x + y −
√

(x− y)2 + 4uq

y − (f(x) + diag (up)x)


 , (u, x, y) ∈ Rn

+ ×R2n.

The above homotopy map is the focus of our study. It is worth mentioning that for
each fixed vector u > 0, the function f(x) + diag (up)x can be viewed as a form of
the renowned Tikhonov regularization of f, which was originally utilized to handle
ill-posed problems. Recently, more attentions have been paid to such a technique,
see, e.g., Venkateswaran [34], Facchinei [10], Facchinei and Kanzow [11], Facchinei
and Pang [12], Ravindran and Gowda [27], Gowda and Tawhid [13], Sznajder and
Gowda [29], Qi [25], Sun [28], Tseng [31], and Zhao and Li [42]. To deal with the case
of nonexistence of a strictly feasible point (or unboundedness of the solution set), we
will see from the later discussion that it is a judicious choice to use the above new
homotopy formulation of the CP.

The above homotopy map encompasses several extra variants. For instance, when
q = 1 and p →∞, the above homotopy map, as u varies within the open rectangular
box (0, e), reduces to the one proposed by Hotta and Yoshise [16]. When q = 2 and
p →∞, the above homotopy map, as u varies within (0, e), is precisely the one studied
by Burke and Xu [2, 3, 4], and Qi and Sun [26].

It is not difficult to see that if H(u, x, y) = 0 then (x, y) is a solution to the CP;
Conversely, if (x, y) is a solution to the CP, then (0, x, y) is a solution to the equation
H(u, x, y) = 0. Thus, a CP can be solved by locating a solution to the nonlinear
equation H(u, x, y) = 0. The most widely used continuation method for solving this
equation is the path-following algorithm that traces certain continuation trajectory
leading to the solution set. We do not study such an numerical algorithm in this
paper. The purpose here is to establish a theoretical basis for constructing a new
non-interior-point path-following algorithm. Such a method can be used to solve a
class of problems that is broader than those to which most existing path-following
methods can be applied. Given (a, b, c) ∈ Rn

++ × R2n, we consider the following
system

H(u, x, y) = θ(a, b, c),(2.3)

where θ ∈ (0, 1]. Denote by Z̄ = {θ(a, b, c) : θ ∈ (0, 1]}. In section 4, we show that the
following set

H−1(Z̄) = {(u, x, y) ∈ Rn
++ ×R2n : H(u, x, y) = θ(a, b, c), θ ∈ (0, 1]}

forms a unique, continuous curve leading to a solution of the CP under certain mild
conditions. We now give two basic results that will be used later. The first result
below gives an equivalent formulation of the system (2.3). This result plays a critical
role in the analysis throughout the paper. For the given (a, b, c) ∈ Rn

++ × R2n, we
define the map Y : Rn × (0, 1] → Rn by

Y(x, θ) := x + f(x) + θpdiag (ap) x + θc

+
√

[x− (f(x) + θpdiag (ap) x + θc)]2 + 4θqaq − θb.(2.4)
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Lemma 2.1. The solutions of Y(x, θ) = 0 are in one-to-one correspondence to
that of H(u, x, y) = θ(a, b, c). Specifically, for the given scalar θ ∈ (0, 1], if (u, x, y) is
a solution to the system H(u, x, y) = θ(a, b, c), then x is a solution to the equation
Y(x, θ) = 0; Conversely, if x is a solution to the equation Y(x, θ) = 0, then (u, x, y),
where u = θa and y = f(x) + diag{up}x + θc, is a solution to the system H(u, x, y) =
θ(a, b, c).

Proof. The result is easy to show. Indeed, the equation H(u, x, y) = θ(a, b, c) is
equivalent to the following system.

u = θa,(2.5)

x + y −
√

(x− y)2 + 4uq = θb,(2.6)

y = f(x) + diag{up}x + θc.(2.7)

Substituting the first and the third equations into the second one yields Y(x, θ) = 0.

It is well known (see Lemma 1.1 in [16]) that for every nonnegative number µ ≥ 0,
a triplet (α, β, γ) ∈ R3 satisfies

φ(µ, α, β) = α + β −
√

(α− β)2 + 4µ = γ

if and only if (α − γ/2, β − γ/2) ≥ 0 and (α − γ/2)(β − γ/2) = µ ≥ 0. Moreover,
if µ > 0, then (α − γ/2, β − γ/2) > 0. By this fact, from (2.5)-(2.7), we have the
following Lemma.

Lemma 2.2. Let (a, b, c) ∈ Rn
++ ×R2n be a fixed vector. Then for any θ ∈ (0, 1],

the vector (u(θ), x(θ), y(θ)) is a solution to the system (2.3) if and only if it satisfies
the following system:

u(θ) = θa,(2.8)

y(θ) = f(x(θ)) + θpdiag (ap) x(θ) + θc,(2.9)

x(θ)− θb/2 > 0, y(θ)− θb/2 > 0,(2.10)

diag (x(θ)− θb/2) (y(θ)− θb/2) = θqaq.(2.11)

Remark 2.1. Since θ ∈ (0, 1] and f is continuous, it follows from (2.8) and (2.9)
that a sequence {(u(θk), x(θk), y(θk))}, where θk ∈ (0, 1], is unbounded if and only if
{x(θk)} is unbounded. This fact will be frequently used in the later sections.

3. A new proper condition . In this section, we specify a new condition
that is used to prove the existence and boundedness of the trajectory in the next
section. To understand this condition better, we show first some properties of a
semimonotone function. A map f : Rn → Rn is said to be semimonotone if for
any distinct vectors x, y in Rn with x ≥ y, there exists a component i such that
xi > yi and fi(x) ≥ fi(y). It is evident that each P0-function is semimonotone. The
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following result is a generalization of Lemma 1 in Ravindran and Gowda [27]. The
proof is similar to the ones in such works as Tseng [30], Gowda and Tawhid [13], and
Facchinei and Kanzow [11].

Lemma 3.1. Let f : Rn → Rn be a continuous semimonotone function. Let {zk}
be an arbitrary sequence with ‖zk‖ → ∞ and zk ≥ z̄ for all k, where z̄ ∈ Rn is a fixed
vector. Then there exist a subsequence of {zk}, denoted by {zkj}, and a fixed index i0
such that z

kj

i0
→∞ and fi0(z

kj ) is bounded from below.
Proof. Passing through a subsequence, we may assume that there exists an index

set I such that zk
i →∞ for all i ∈ I, and {zk

i } is bounded for all i /∈ I. Construct {yk}
as follows: yk

i = z̄i if i ∈ I and yk
i = zk

i if i /∈ I. Then we have that zk 6= yk and zk ≥ yk

for all sufficiently large k. By the semimonotone property of f , for each sufficiently
large k there exists at least one index i such that zk

i > yk
i and fi(zk) ≥ fi(yk). Thus,

there exist an index i0 ∈ I and a subsequence of {zk}, denoted by {zkj}, such that
z

kj

i0
> y

kj

i0
and fi0(z

kj ) ≥ fi0(y
kj ) for all j. By the construction, {ykj} is bounded,

and so is {fi0(y
kj )}. Hence, {fi0(z

kj )} is bounded from below.
Given (a, b, c) ∈ Rn

++×R2n and θ ∈ (0, 1]. We define a function F(a,b,c,θ) : R2n →
R2n as follows:

F(a,b,c,θ)(x, y) =
(

Xy
y − f(x + θb/2)− θpdiag (ap) x− θc

)
,(3.1)

where X = diag(x). The next property of semimonotone functions is one of the
motivation for our new proper condition.

Proposition 3.1. Let f : Rn → Rn be a continuous semimonotone function.
Then for any (a, b, c, θ) ∈ Rn

++ ×R2n × (0, 1], the set

F−1
(a,b,c,θ)(D) = {(x, y) ∈ Rn

++ : F(a,b,c,θ)(x, y) ∈ D}

is bounded for any compact set D in Rn
+ ×Rn.

Proof. Assume the contrary that there exist certain (a′, b′, c′, θ′) ∈ Rn
++ ×R2n ×

(0, 1] and a compact set D′ ⊆ Rn
+ ×Rn such that F−1

(a′,b′,c′,θ′)(D
′) is unbounded. Let

{(xk, yk)} ⊆ F−1
(a′,b′,c′,θ′)(D

′) such that ‖(xk, yk)‖ → ∞. Notice that

F(a′,b′,c′,θ′)(xk, yk) =
(

Xkyk

yk − f(xk + θ′b′/2)− (θ′)pdiag ((a′)p) xk − θ′c′

)
∈ D′.

There is a sequence {(uk, vk)} ⊆ D′, where uk ∈ Rn
+ and vk ∈ Rn, such that for all k

we have

Xkyk = uk ≥ 0,(3.2)

yk = f(xk + θ′b′/2) + (θ′)pdiag ((a′)p) xk + θ′c′ + vk.(3.3)

Since {(uk, vk)} is bounded and since ‖(xk, yk)‖ → ∞, by continuity we conclude
that the sequence {xk} is unbounded. Thus, we may assume that ‖xk‖ → ∞. Since
xk ∈ Rn

+ for all k, passing through a subsequence we may assume that there exists an
index set I such that xk

i → ∞ for all i ∈ I, and {xk
i } is bounded for all i /∈ I. Since

xk
i →∞ for all i ∈ I, it follows from (3.2) that yk

i → 0 for all i ∈ I. Hence, from (3.3)
we have

fi(xk + θ′b′/2) = yk
i − (θ′)pdiag ((a′)p) xk

i − θ′c′i − vk
i → −∞
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for all i ∈ I. However, by Lemma 3.1, there exists an index i ∈ I such that {fi(xk +
θ′b′/2)} is bounded from below. This is a contradiction.

Particularly, Denote by Dr := [0, rv1]× [−rv2, rv3] ⊆ Rn
+×Rn where vi ∈ Rn

+(i =
1, 2, 3) and r is a nonnegative number. We deduce from the above proposition that the
set F−1

(a,b,c,r)(Dr) is bounded for any 0 < r < ∞ if f is continuous and semimonotone.
Inspired by this observation, we impose the following proper condition on the CP.

Condition 3.1. For any given (a, b, c) ∈ Rn
++ × R2n and scalar t̂ ≥ 0, there

exists a scalar 1 ≥ θ∗ > 0 such that
⋃

θ∈(0,θ∗]

F−1
(a,b,c,θ)(Dθ)

is bounded, where

F−1
(a,b,c,θ)(Dθ) := {(x, y) ∈ R2n

++ : F(a,b,c,θ)(x, y) ∈ Dθ}

and

Dθ := [0, θaq]× [−θt̂e, θt̂e] ⊆ Rn
+ ×Rn.

Notice that for a fixed θ̄ ∈ (0, 1), the above set Dθ ⊆ Dθ̄ := [0, θ̄e] × [−θ̄e, θ̄e]
for all sufficiently small θ. Thus, we can see that Condition 3.1 holds if the following
condition is satisfied.

Condition 3.2. For any given (a, b, c) ∈ Rn
++ × R2n, there exists a scalar 1 >

θ̄ > 0 such that
⋃

θ∈(0,θ̄]

F−1
(a,b,c,θ)(Dθ̄)

is bounded, where Dθ̄ = [0, θ̄e]× [−θ̄e, θ̄e] and

F−1
(a,b,c,θ)(Dθ̄) = {(x, y) ∈ Rn

++ : F(a,b,c,θ)(x, y) ∈ Dθ̄}.

The above Condition 3.1 may seem to be a little unusual at first glance. As we
will see subsequently, this condition is actually quite weak. A prominent feature of
Condition 3.1 is that it may hold even when the solution set of the CP is unbounded
or the strict feasibility condition fails to hold. Specifically, for P0-complementarity
problems, we will show that the previously known conditions such as Condition 1.1,
Condition 1.2, the nonemptyness and boundedness assumption of the solution set (in
particular, the P0 together with R0 property), and Condition 1.5 in [19] all imply the
above Condition 3.1. However, the converse is not true (Theorem 3.1). Before we
prove this fact, we list some helpful results. The following result is easy to prove by
using the compactness of S and continuity of f . Its proof is omitted.

Lemma 3.2. Let S be a compact set in Rn and (a, b, c) ∈ Rn
++ × R2n be a fixed

triplet. Let f be a continuous function from Rn into itself.
(i) Let

G(x) := x + f(x)−
√

(x− f(x))2.
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Define Ḡ : Rn × (0, 1]×Rn
+ ×Rn → Rn by

Ḡ(x, θ, w, v) = x + f(x) + θpdiag (ap) (x− θb/2) + θ(c + b/2) + v

−
√

[x− (f(x) + θpdiag (ap) (x− θb/2) + θ(c + b/2) + v)]2 + 4w − θb.

Then for any δ > 0, there exists a scalar θ̄ ∈ (0, 1] such that for all θ ∈ (0, θ̄] and
(w, v) ∈ [0, θ̄e]× [−θ̄e, θ̄e] ⊆ Rn

+ ×Rn, we have

sup
x∈S

‖Ḡ(x, θ, w, v)−G(x)‖ < δ.

(ii) Given any θ̂ ∈ (0, 1), then for any δ > 0 there exists a sufficiently small
scalar β > 0 such that

sup
x∈S

‖Y(x, θ)− Y(x, θ̂)‖ < δ for all θ such that |θ − θ̂| < β,

where Y(x, θ) is defined by (2.4).
The next result, which was pointed out by Gowda and Tawhid [13], is very useful

for the subsequent analysis.
Lemma 3.3. Let Φ(x, v) = x + f(x)−

√
(x− f(x))2 + v2 where v ∈ Rn.

(i) If f is a P0-function, then Φ(x, v) is a P0-function in x. Moreover, if v2 ∈
Rn

++, then Φ(x, v) is a P-function in x.
(ii) If f is a P-function, then Φ(x, v) is a P-function in x.
The following upper-semicontinuity property of a P0-function is due to Ravindran

and Gowda [27].
Lemma 3.4. Let g : Rn → Rn be a P0-function. Suppose that g−1(0) is nonempty

and compact. Then for any given ε > 0, there exists a scalar γ > 0 such that for any
P0-function h with

sup
Ω̄

‖h(x)− g(x)‖ < γ,

we have

∅ 6= h−1(0) ⊆ g−1(0) + εB

where B denotes the open unit ball in Rn and Ω̄ is the closure of the set Ω = g−1(0)+
εB.

We now show that several well-known existing conditions used in the literature
of interior-point and non-interior-point methods imply Condition 3.1. However, the
converse is not true since Condition 3.1 may hold for P0-CPs in the absence of the
strict feasibility condition.

Theorem 3.1. Let f be a P0-function. If one of the following condition holds,
(i) Condition 1.1,
(ii) Condition 1.2,
(iii) Condition 1.5 in Kojima et al. [19],
(iv) the solution set of the CP is nonempty and bounded,
(v) f is a P0 and R0 function [1, 6],

then Condition 3.1 holds. However, the converse is not true, i.e., Condition 3.1 does
not imply any one of the above conditions.
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Proof. The implication (ii) ⇒ (i) is pointed out in [16, 26]. It is easy to verify
that (i) ⇒ (iv). In fact, if (i) holds, Hotta and Yoshise [16] showed that their non-
interior-point trajectory exists and a subtrajectory is bounded, and hence each of the
accumulation points of the subtrajectory is a solution to the CP. Hence, the solution
set of the CP is not empty. We further demonstrate that it is bounded. Indeed, by
Condition 1.1, there is a point x0 > 0 such that f(x0) > 0. It follows from Lemma 2.1
in [16] that Rn

−×Rn
+ ⊆ V (Rn

++×R2n). Thus by Condition 1.1 again, the set U−1(D)
is bounded for every compact subset D of Rn

+ ×Rn
− ×Rn

+. In particular, set

D := {(0, 0, 0)} ⊆ Rn
+ ×Rn

− ×Rn
+.

Then the set U−1(0) is bounded. The set U−1(0) coincides with the solution set of
the CP. Hence (i) ⇒ (iv).

By the proof similar to the above, we can show that (iii)⇒ (iv). The implication
of (v) ⇒ (iv) is a known result.

Therefore, to show each condition of (i)-(v) implies Condition 3.1, it is sufficient
to prove that (iv) implies Condition 3.1. Indeed, assume that f is a P0-function and
the solution set of the CP is nonempty and bounded. We show that Condition 3.2
holds (and hence Condition 3.1 holds). Let G : Rn → Rn be given by

G(x) := x + f(x)−
√

(x− f(x))2,

which is a P0-function (Lemma 3.3). Since G−1(0) = {x ∈ Rn : G(x) = 0} coincides
with the solution set of the CP, by the assumption, the set G−1(0) is nonempty and
bounded, in fact, a compact set by the continuity of f . For any scalar ε > 0, by
Lemma 3.4, there is a scalar δ > 0 such that for any P0-function h : Rn → Rn with

sup
x∈Ω̄

‖h(x)−G(x)‖ < δ,(3.4)

where Ω = G−1(0) + εB, then

0 6= h−1(0) ⊆ G−1(0) + εB.(3.5)

Let (a, b, c) be a fixed triplet in Rn
++×R2n, and let Ḡ(x, θ, w, v) be given as in Lemma

3.2, where θ ∈ (0, 1] and (w, v) ∈ Rn
+ ×Rn. Clearly, the function

f(x) + diag (θpap) (x− θb/2) + θ(c + b/2) + v

is a P-function in x. Since w ∈ Rn
+, it follows from (ii) of Lemma 3.3 that Ḡ(x, θ, w, v)

is a P-function in x. By (i) of Lemma 3.2, there exists a sufficiently small number
θ̄ ∈ (0, 1) such that for all θ ∈ (0, θ̄] and (w, v) ∈ [0, θ̄e]× [−θ̄e, θ̄e], we have

sup
x∈Ω̄

‖Ḡ(x, θ, w, v)−G(x)‖ < δ.

Thus setting h(x) := Ḡ(x, θ, w, v) in (3.4), we have from (3.5) that

∅ 6= Ḡ−1
(θ,w,v)(0) ⊆ G−1(0) + εB,

for all θ ∈ (0, θ̄] and (w, v) ∈ [0, θ̄]× [−θ̄e, θ̄e], where

Ḡ−1
(θ,w,v)(0) = {x ∈ Rn : Ḡ(x, θ, w, v) = 0}.
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Hence,
⋃

(θ,w,v)∈(0,θ̄]×Dθ̄

Ḡ−1
(θ,w,v)(0) ⊆ G−1(0) + εB,

where Dθ̄ = [0, θ̄e]× [−θ̄e, θ̄e]. On the other hand, it is easy to verify that

Ḡ(x, θ, w, v) = 0, θ ∈ (0, θ̄], (w, v) ∈ Dθ̄

if and only if

x− θb/2 ≥ 0, y − θb/2 ≥ 0,

diag(x− θb/2)(y − θb/2) = w,

y − θb/2− f(x)− θpdiag (ap) (x− θb/2)− θc = v,

θ ∈ (0, θ̄], (w, v) ∈ Dθ̄.

Denote by x̄ = x− θb/2 and ȳ = y − θb/2. The above system can be rewritten as

F(a,b,c,θ)(x̄, ȳ) ∈ Dθ̄, (x̄, ȳ) ≥ 0, θ ∈ (0, θ̄],

where F(a,b,c,θ) is defined by (3.1). Denote

F−1
(a,b,c,θ)(Dθ̄) = {(u, v) ∈ R2n

++ : F(a,b,c,θ)(u, v) ∈ Dθ̄}.

Then from the above discussion, we deduce that

{x ∈ Rn : x = x̄ + θb/2, (x̄, ȳ) ∈ F−1
(a,b,c,θ)(Dθ̄), θ ∈ (0, θ̄]}

⊆ {x ∈ Rn : x = x̄ + θb/2,F(a,b,c,θ)(x̄, ȳ) ∈ Dθ̄, (x̄, ȳ) ≥ 0, θ ∈ (0, θ̄]}
=

⋃

(θ,w,v)∈(0,θ̄]×Dθ̄

Ḡ−1
(θ,w,v)(0)

⊆ G−1(0) + εB.

Since G−1(0) + εB is bounded, we deduce from the above that
⋃

θ∈(0,θ̄]

F−1
(a,b,c,θ)(Dθ̄)

is bounded. Hence, Condition 3.2 is satisfied, and hence Condition 3.1 holds.
Since each of the conditions listed in the theorem implies the existence of a strictly

feasible point, to show that Condition 3.1 does not imply each of these conditions, it
suffices to prove that Condition 3.1 may hold even when there is no strictly feasible
point. Now consider, in R2, the following example:

f(x) =
(

0 0
0 2

)(
x1

x2

)
+

(
0
−1

)
=

(
0

2x2 − 1

)
,

which is a P0-function. Clearly, f has no strictly feasible point, and the correspond-
ing complementarity problem has an unbounded solution set. However, this exam-
ple does satisfy Condition 3.1. Indeed, choose p ∈ (0, 1] and q ∈ [1,∞] and let
(a, b, c) ∈ R2

++ × R2 × R2 be a fixed vector. We show for each scalar 0 < θ∗ < 1
that the set ∪θ∈(0,θ∗]F−1

(a,b,c,θ)(Dθ) is bounded set, where all symbols are defined as
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in Condition 3.1. Assume that {(xk, yk)} is an arbitrary sequence contained in the
set. Then, (xk, yk) > 0 and for each (xk, yk) there is a scalar θk ∈ (0, θ∗] such
that F(a,b,c,θk)(xk, yk) ∈ Dθk

. By the definitions of Dθk
and F(a,b,c,θ), there exist two

vectors dk ∈ [0, aq] and d̄k ∈ [−t̂e, t̂e], such that

Xkyk = θkdk ∈ [0, θkaq]
yk − f(xk + θkb/2)− θp

kdiag(ap)xk − θkc = θkd̄k ∈ θk[−t̂e, t̂e]

where Xk = diag(xk). For this example, the second equation above can be rewritten
as

yk
1 = (θka1)pxk

1 + θkc1 + θkd̄k
1 ,

yk
2 = 2(xk

2 + θkb2/2)− 1 + (θka2)pxk
2 + θkc2 + θkd̄k

2 .

Thus, from Xkyk = θkdk, we have

θkdk
1 = xk

1yk
1 = (θka1)p(xk

1)2 + θkxk
1c1 + θkxk

1 d̄k
1 ,

i.e.,

θ1−p
k dk

1 = ap
1(x

k
1)2 + θ1−p

k (c1 + d̄k
1)xk

1 ,

and

θkdk
2 = xk

2yk
2 = (2 + (θka2)p)(xk

2)2 + [θk(b2 + c2 + d̄k
2)− 1]xk

2 .

From the above two relations, we conclude that the sequence {xk} is bounded, and
by continuity so is {yk}. Therefore, the set ∪θ∈(0,θ∗]F−1

(a,b,c,θ)(Dθ) is bounded, i.e.,
Condition 3.1 is satisfied.

4. Existence and boundedness of the trajectory. The purpose of this sec-
tion is to show the existence and the boundedness of the proposed continuation tra-
jectory for P0-CPs under Condition 3.1. To begin with, we recall a useful result on
the degree of a continuous function. Let Ω be a bounded open set in Rn. The symbols
Ω̄ and ∂Ω denote the closure and boundary of Ω, respectively. Let h be a continuous
function from Ω̄ into Rn. For any vector y ∈ Rn such that y /∈ h(∂Ω), then the degree
of h at y with respect to Ω is defined by deg(h,Ω, y). The following result can be
found in Lloyd [22].

Lemma 4.1. (i) If h is injective on Rn, then for any y ∈ h(Ω), |deg(h, Ω, y)| = 1.
(ii) If deg(h, Ω, y) 6= 0, then the equation h(x) = y has a solution in Ω.
(iii) Let g be a continuous function from Ω̄ → Rn. Let

H(x, t) = tg(x) + (1− t)h(x), 0 ≤ t ≤ 1.

If y /∈ {H(x, t) : x ∈ ∂Ω, t ∈ [0, 1]}, then deg(g, Ω, y) = deg(h, Ω, y).
We are ready to prove a general and essential result.
Theorem 4.1. Let (a, b, c) be a fixed vector in Rn

++ × R2n. Let f : Rn → Rn be
a continuous semimonotone function.

(i) For each θ ∈ (0, 1], the system (2.3) has a solution.
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(ii) If Condition 3.1 holds, then the set

{(u, x, y) ∈ Tθ : θ ∈ (0, 1]} :=
⋃

θ∈(0,1]

Tθ(4.1)

is bounded, where

Tθ := {(u, x, y) : H(u, x, y) = θ(a, b, c)}.
Proof. Let f be a continuous semimonotone function. We show the result by

contradiction. Assume that there is a scalar θ̂ ∈ (0, 1] such that the system (2.3) has
no solution.

Let H : Rn × [0, 1] → Rn be defined by

H(x, t) = t(x− θ̂b/2) + (1− t)Y(x, θ̂), t ∈ [0, 1],

where Y is given by (2.4). We first show that the set

S = {x ∈ Rn : H(x, t) = 0 for some t ∈ [0, 1]}
is unbounded. Indeed, assume the contrary that S is bounded. Then for any fixed
ε > 0, the set D := ({θ̂b/2} ∪ S) + εB is a bounded open set in Rn, where B is the
open unit ball in Rn. Clearly, the intersection of S and the boundary of D is empty,
i.e., for all x ∈ ∂D,H(x, t) 6= 0 for all t ∈ [0, 1]. Therefore,

|deg(Y(·, θ̂), D, 0)| = |deg(g, D, 0)| = 1,

where g(x) := x− θ̂b/2. The first equation above follows from (iii) of Lemma 4.1, and
the second equation follows from (i) of Lemma 4.1 since g is an injective mapping.
Thus it follows from (ii) of Lemma 4.1 that the equation Y(x, θ̂) = 0 has a solution
(in D). Thus by Lemma 2.1, H(u, x, y) = θ̂(a, b, c) has a solution. This contradicts
our assumption at the beginning of the proof. Therefore, the set S is unbounded.

Since S is unbounded, there is a sequence {xk} contained in S such that ‖xk‖ →
∞. We now show that {xk} satisfies the relations

xk − θ̂b/2 > 0

and

f(xk) ≤ −θ̂pdiag (ap) xk + 2θ̂q
[
diag

(
xk − θ̂b/2

)]−1

aq + θ̂(b/2− c)

for all sufficiently large k. Indeed, since ‖xk‖ → ∞, there is a k0 > 0 such that
‖xk − θ̂b/2‖ > 0 for all k > k0. Since xk ∈ S, by the definition of S, there is a scalar
tk ∈ [0, 1] such that

H(xk, tk) = tk(xk − θ̂b/2) + (1− tk)Y(xk, θ̂) = 0.

Since xk 6= θ̂b/2 for all k > k0, we deduce from the above that tk 6= 1 for all k > k0.

Since the system (2.3) has no solution (by the assumption), i.e., Y(x, θ̂) 6= 0 for all
x ∈ Rn (Lemma 2.1), it follows from the above equation that tk 6= 0. Therefore, we
have that tk ∈ (0, 1) for all k > k0. The above equation can be written as

tk(xk − θ̂b/2) + (1− tk)[(xk − θ̂b/2) + (yk − θ̂b/2)]

−(1− tk)
√

[(xk − θ̂b/2)− (yk − θ̂b/2)]2 + 4θ̂qaq = 0,
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where

yk = f(xk) + θ̂pdiag (ap) xk + θ̂c.

Denote by

x̂k = xk − θ̂b/2, ŷk = yk − θ̂b/2.

The above equation can be further written as

x̂k + (1− tk)ŷk = (1− tk)
√

(x̂k − ŷk)2 + 4θ̂qaq.(4.2)

Squaring both sides of the above equation and simplifying (all the algebraic operations
are performed componentwise), we obtain

tk(2− tk)(x̂k)2 + 2(1− tk)(2− tk)X̂kŷk = 4(1− tk)2θ̂qaq,

where X̂k = diag(x̂k). It follows from the above that x̂k
i 6= 0 for all i = 1, 2, ..., n.

Multiplying both sides of the above by (X̂k)−1 and dividing both sides by 2(1 −
tk)(2− tk) yield

ŷk = − tk

2(1− tk)
x̂k +

2(1− tk)θ̂q

2− tk
(X̂k)−1aq.

Thus, we have

x̂k + (1− tk)ŷk =
(

1− tk

2

)
x̂k +

2(1− tk)2θ̂q

2− tk
(X̂k)−1aq.

If x̂k
i ≤ 0 for some i, then we have from the above that x̂k

i + (1 − tk)ŷk
i ≤ 0 which

contradicts the right-hand side of (4.2). Thus {x̂k} ⊆ Rn
++ and

ŷk ≤ 2(1− tk)θ̂q

2− tk
(X̂k)−1aq ≤ 2θ̂q(X̂k)−1aq.

That is, xk − θ̂b/2 > 0 and

f(xk) ≤ −θ̂pdiag (ap) xk + 2θ̂q
[
diag

(
xk − θ̂b/2

)]−1

aq + θ̂(b/2− c)(4.3)

for all k > k0. Passing through a subsequence, we may suppose that there is an index
set I such that xk

i → ∞ for all i ∈ I and {xk
i } is bounded for i /∈ I. It follows from

(4.3) that fi(xk) → −∞ for all i ∈ I. This contradicts the consequence of Lemma 3.1
which states that there exists an index i ∈ I such that fi(xk) is bounded from below.
Hence, Item (i) of the theorem is shown.

We now prove Item (ii) of the theorem, i.e., the boundedness of the set (4.1).
Assume the contrary that the set {(u, x, y) ∈ Tθ : θ ∈ (0, 1]} is unbounded, i.e.,
there exists an unbounded sequence {(u(θk), x(θk), y(θk))} contained in the set, where
0 < θk ≤ 1. Thus the sequence {x(θk)} is unbounded (Remark 2.1). Without loss of
generality, we assume that ‖x(θk)‖ → ∞ as k →∞. Note that {(u(θk), x(θk), y(θk))}
satisfy the system (2.8)-(2.11) where θ is replaced by θk. By the unboundedness of
{x(θk)} and x(θk) ≥ θ̂b/2, it follows from Lemma 3.1 that there exist a subsequence
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of {x(θk)} denoted also by {x(θk)} and an index m such that xm(θk) → ∞ and
fm(x(θk)) is bounded from below. From (2.11), we have

ym(θk)− θkbm/2 =
θq

kaq
m

xm(θk)− θkbm/2
,

and by using (2.9) we have

fm(x(θk)) = θkbm/2 +
θq

kaq
m

xm(θk)− θkbm/2
− θkcm − (θkam)pxm(θk).

Since xm(θk) →∞ and fm(x(θk)) is bounded from below, we deduce from the above
that θp

k → 0, and thus θk → 0. Denote

x̂(θk) = x(θk)− θkb/2, ŷ(θk) = y(θk)− θkb/2.

By (2.10) and (2.11), we have

(x̂(θk), ŷ(θk)) > 0, X̂(θk)x̂(θk) = θq
kaq.

By using (2.9) again, we have

ŷ(θk)− f(x̂(θk) + θkb/2)− θp
kdiag (ap) x̂(θk)− θkc

= y(θk)− θkb/2− f(x(θk))− θp
kdiag (ap) x(θk) + θp

kdiag (ap) (θkb/2)− θkc

= −θkb/2 + θp
kdiag (ap) (θkb/2)

= θk[−b/2 + θp
kdiag (ap) b/2].

Let t̂ = ‖ − b/2‖∞ + ‖diag(ap)b/2‖∞. Then, for any θk ∈ (0, 1], we have −t̂e ≤
−b/2 + θp

kdiag(ap)b/2 ≤ t̂e. Therefore,

θq
kaq = θk(θq−1

k aq) ∈ [0, θkaq],

θk(−b/2 + θp
kdiag (ap) b/2) ∈ θk[−t̂e, t̂e].

Therefore,

F(a,b,c,θk)(x̂(θk), ŷ(θk)) =
(

X̂(θk)ŷ(θk)
ŷ(θk)− f(x̂(θk) + θkb/2)− θp

kdiag (ap) x̂(θk)− θkc

)

∈ [0, θkaq]× θk[−t̂e, t̂e] =: Dθk

for all θk ∈ (0, 1]. Thar is, (x̂(θk), ŷ(θk)) ∈ F−1
(a,b,c,θk)(Dθk

) for all θk ∈ (0, 1]. Hence,
for any 1 ≥ θ∗ > 0, the sequence

{(x̂(θk), ŷ(θk)) : θk ∈ (0, θ∗]} ⊆
⋃

θk∈(0,θ∗]

F−1
(a,b,c,θk)(Dθk

) ⊆
⋃

θ∈(0,θ∗]

F−1
(a,b,c,θ)(Dθ).

By Condition 3.1, there exists a θ∗ ∈ (0, 1] such that the right-hand side of the above is
bounded. However, the left-hand side is an unbounded sequence. This contradiction
shows that the set (4.1) is indeed bounded. The proof is complete.

Since Condition 3.2 implies Condition 3.1, the following result is an immediate
consequence of Theorem 4.1.
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Corollary 4.1. Let f : Rn → Rn be a continuous semimonotone function. If
Condition 3.2 holds, then the set (4.1) is bounded.

While the system (2.3) has a solution for a continuous semimonotone function
if Condition 3.1 holds, it is not clear if the solution of the system (2.3) is unique
for each θ ∈ (0, 1]. However, for continuous P0-functions which are special cases of
continuous semimonotone functions, it is easy to prove that for each θ ∈ (0, 1] the
system (2.3) has a unique solution which is also continuous in θ. We summarize the
result as follows.

Theorem 4.2. Let f : Rn → Rn be a continuous P0-function.
(i) For each θ ∈ (0, 1], the system (2.3) has a unique solution (u(θ), x(θ), y(θ))

which is continuous in θ.
(ii) If Condition 3.1 (in particular, Condition 3.2) is satisfied, then the entire

trajectory {(u(θ), x(θ), y(θ)) : θ ∈ (0, 1]} is bounded. Hence, there exists at least
a convergence subsequence (u(θk), x(θk), y(θk)) converging, as θk → 0, to (0, x∗, y∗)
where x∗ is a solution to the CP.

(iii) If f is continuously differentiable, then (u(θ), x(θ), y(θ)) is also continuously
differentiable in θ. In this case, the set {(u(θ), x(θ), y(θ)) : θ ∈ (0, 1]} forms a smooth
trajectory.

Proof. Since each P0-function is a semimonotone function, by Theorem 4.1, the
system (2.3) has at least one solution. It is sufficient to show that the system has at
most one solution. Let

g(x, a, c, θ) = f(x) + θpdiag (ap)x + θc.

Since f is a P0-function and a ∈ Rn
++, the function g(x, a, c, θ) is a P-function in x.

Thus, by Lemma 3.3, the map

Y(x, θ) = x + g(x, a, c, θ)−
√

(x− g(x, a, c, θ))2 + 4θqaq − θb

is a P-function in x. Since every P-function is univalent (one-to-one), the equation
Y(x, θ) = 0 has at most one solution. Hence, the system (2.3) has at most one solution
by Lemma 2.1.

The continuity of (u(θ), x(θ), y(θ)) follows easily from Lemma 3.4. Indeed, given
θ̂ ∈ (0, 1), in order to show the continuity of (u(θ), x(θ), y(θ)) at θ̂, it is sufficient to
prove the continuity of x(θ) at θ̂. Since Y(x, θ) is a P-function in x, x(θ̂) is the unique
element in Y−1

θ̂
(0) = {x : Y(x, θ̂) = 0}. By Lemma 3.4, for any ε > 0 there exists a

scalar δ > 0 such that for any P0-function h satisfying

sup
x∈Ω̄

‖h(x)− Y(x, θ̂)‖ < δ,(4.4)

where Ω = Y−1

θ̂
(0) + εB, then we have

∅ 6= h−1(0) ⊆ Y−1

θ̂
(0) + εB = x(θ̂) + εB.(4.5)

For this given δ, it follows from (ii) of Lemma 3.2 that there is a scalar β > 0 such
that

sup
x∈Ω̄

‖Y(x, θ)− Y(x, θ̂)‖ < δ

for all θ > 0 such that |θ − θ̂| < β. Setting h(x) := Y(x, θ) in (4.4), we deduce from
(4.5) that Y−1

θ (0) = {x : Y(x, θ) = 0} ⊆ x(θ̂) + εB for all θ with |θ − θ̂| < β. By
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the P-property of Y, x(θ) is unique element in Y−1
θ (0). Thus, ‖x(θ) − x(θ̂)‖ < ε for

all θ > 0 such that |θ − θ̂| < β, i.e., x(θ) is continuous at θ̂. Item (i) of the theorem
follows.

Item (ii) follows immediately from Theorem 4.1 since P0-functions are semimono-
tone. We now prove Item (iii). Consider the following 3n× 3n matrix

A :=




I 0 0
−2qU q−1D I − (X − Y )D I + (X − Y )D
pUp−1X −(f ′(x) + diag(up)) I




where U = diag(u), X = diag(x), Y = diag(y) and D = diag(d) with d = (d1, ..., dn)T

where

di = 1/
√

(xi − yi)2 + 4uq
i , i = 1, 2, ..., n.

If u ∈ Rn
++, then it is easy to see that I − (X − Y )D and I + (X − Y )D are positive

diagonal matrices for every (x, y) ∈ R2n. Thus, by Lemma 5.4 in Kojima et al. [19],
the matrix (

I − (X − Y )D I + (X − Y )D
−(f ′(x) + diag(up)) I

)

is nonsingular when f is a P0-function. Hence A is a nonsingular matrix for every
(u, x, y) ∈ Rn

++ × R2n. Since the matrix A coincides with the Jacobian matrix (with
respect to (u, x, y)) of the equation

H(u, x, y)− θ(a, b, c) = 0,

by the implicit function theorem, there is a unique smooth (i.e., continuously differ-
entiable) curve (u(t), x(t), y(t)) such that

H(u(t), x(t), y(t)) = t(a, b, c)

for all t sufficiently close to θ and

(u(t), x(t), y(t))|t=θ = (u(θ), x(θ), y(θ)).

Particularly, (u(·), x(·), y(·)) is continuously differentiable at θ.
Furthermore, if f is a P∗-function, we can obtain a much stronger result. We

now consider this important situation and show that for a P∗-function the proposed
trajectory exists and is bounded provided that the solution set of the CP is nonempty.
For simplicity, we consider the case of (a, b, c) ∈ Rn

++ × Rn
− × Rn, i.e., the vector b

is confined to Rn
−. We also consider the case of c ∈ Rn

++ when it is necessary. The
stipulation that b ∈ Rn

− has also been used in some non-interior-point algorithms, see
Burke and Xu [3] and Hotta et al. [17], where the iterate {(xk, yk)} is required to
satisfy

xk + yk −
√

(xk − yk)2 + 4µk ≤ 0

which is equivalent to the requirement of “b ∈ Rn
−”.

Lemma 4.2. Let v∗ be an arbitrary solution of the CP and (a, b, c) ∈ Rn
++×Rn

−×
Rn be a fixed vector. Let (u(θ), x(θ), y(θ)) satisfy the system (2.8) - (2.11) for each
θ ∈ (0, 1]. Then, the following inequality holds.

(xi(θ)− v∗i )(fi(x(θ))− fi(v∗)) ≤ θqeT aq − θbT f(v∗)/2− θp min
1≤i≤n

Mi,
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where

Mi = ap
i xi(θ)(xi(θ)− v∗i ) + θ1−p(ci − bi/2)(xi(θ)− v∗i ).

Proof. Denote by ȳi(θ) = yi(θ) − θbi/2 and x̄i(θ) = xi(θ) − θbi/2. Let v∗ be an
arbitrary solution to the CP. By (2.11) and noting that (x̄(θ), ȳ(θ)) > 0, we have for
each i,

(ȳi(θ)− fi(v∗))(x̄i(θ)− v∗i ) = ȳi(θ)x̄i(θ)− fi(v∗)x̄i(θ)− ȳi(θ)v∗i
≤ ȳi(θ)x̄i(θ) = θqaq

i .(4.6)

We also note that

(xi(θ)− v∗i )(fi(x(θ))− fi(v∗))
= (xi(θ)− v∗i )(yi(θ)− (θai)pxi(θ)− θci − fi(v∗))
= (x̄i(θ)− v∗i + θbi/2)(ȳi(θ) + θbi/2− (θai)pxi(θ)− θci − fi(v∗))
= (x̄i(θ)− v∗i )(ȳi(θ)− fi(v∗)) + (x̄i(θ)− v∗i )(θbi/2− (θai)pxi(θ)− θci)

+(θbi/2)(ȳi(θ) + θbi/2− (θai)pxi(θ)− θci − fi(v∗)).

Thus, by (4.6) and noting that b ≤ 0 and ȳ(θ) > 0, we have the following for all i

(xi(θ)− v∗i )(fi(x(θ)− fi(v∗))
≤ θqaq

i + (xi(θ)− v∗i − θbi/2)(θbi/2− (θai)pxi(θ)− θci)
+(θbi/2)(θbi/2− (θai)pxi(θ)− θci − fi(v∗))

= θqaq
i − (θai)pxi(θ)(xi(θ)− v∗i )

+(θbi/2− θci)(xi(θ)− v∗i )− θbifi(v∗)/2
≤ θqeT aq − θbT f(v∗)/2
−θp min

1≤i≤n
[ap

i xi(θ)(xi(θ)− v∗i ) + θ1−p(ci − bi/2)(xi(θ)− v∗i )].

The last inequality follows from the fact that aq
i ≤ eT aq and −bifi(v∗) ≤ −bT f(v∗)

since b ≤ 0 and f(v∗) ≥ 0. The proof is complete.
We are ready for proving the following result.
Theorem 4.3. Let f be a continuous P∗-function and (a, b, c) ∈ Rn

++×Rn
−×Rn

be a fixed vector. Assume that the solution set of the CP is nonempty.
(i) If p ≤ 1 and q ∈ [1,∞), then the trajectory {(u(θ), x(θ), y(θ)) : θ ∈ (0, 1]}

generated by (2.3) is bounded.
(ii) If p > 1, q ∈ [1,∞) and c ∈ Rn

++, then the trajectory {(u(θ), x(θ), y(θ)) : θ ∈
(0, 1]} generated by (2.3) is bounded.

Proof. We still use the notation

(x̄(θ), ȳ(θ)) = (x(θ)− θb/2, y(θ)− θb/2).

By (2.11), and noting that b ≤ 0 and (x̄(θ), ȳ(θ)) > 0, we have

x(θ)T y(θ) = (x̄(θ) + θb/2)T (ȳ(θ) + θb/2)
≤ θqeT aq + θ2‖b‖2/4.(4.7)
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Let v∗ be an arbitrary solution of the CP. By the P∗-property of f and Lemma 4.2,
we have

(v∗)T y(θ) + f(v∗)T x(θ)
= −(x(θ)− v∗)T (y(θ)− f(v∗)) + x(θ)T y(θ)
= −(x(θ)− v∗)T (f(x(θ)) + θpdiag(ap)x(θ) + θc− f(v∗)) + x(θ)T y(θ)
= −(x(θ)− v∗)T (f(x(θ))− f(v∗))− θp[diag(ap)x(θ)]T (x(θ)− v∗)
−θcT (x(θ)− v∗) + x(θ)T y(θ)

≤ τ
∑

i∈I+

(xi(θ)− v∗i )T (fi(x(θ))− fi(v∗))

−θp[diag(ap)x(θ)]T (x(θ)− v∗)− θcT (x(θ)− v∗) + x(θ)T y(θ)
≤ τn max

1≤i≤n
(xi(θ)− v∗i )T (fi(x(θ))− fi(v∗))

−θp[ diag(ap)x(θ)]T (x(θ)− v∗)− θcT (x(θ)− v∗) + x(θ)T y(θ)

≤ τn

(
θqeT aq − θbT f(v∗)/2− θp min

1≤i≤n
Mi

)

−θp[diag(ap)x(θ)]T (x(θ)− v∗)− θcT (x(θ)− v∗) + x(θ)T y(θ).

The last inequality follows from Lemma 4.2 and Mi is given as in Lemma 4.2. By
(4.7) and the above inequality, we have

(v∗)T ȳ(θ) + f(v∗)T x̄(θ)
= (v∗)T y(θ) + f(v∗)T x(θ)− θbT (v∗ + f(v∗))/2
≤ θq(1 + τn)eT aq + θ2‖b‖2/4− θτnbT f(v∗)/2− θpτn min

1≤i≤n
Mi

−θp[ diag (ap)x(θ)]T (x(θ)− v∗)− θcT (x(θ)− v∗)− θbT (v∗ + f(v∗))/2.(4.8)

(i) We now consider the case of p ≤ 1. Notice that the left-hand side is nonneg-
ative. Dividing both sides of the above inequality by θp and rearranging terms we
have

[diag(ap)x(θ)]T (x(θ)− v∗) + θ1−pcT (x(θ)− v∗) + τn min
1≤i≤n

Mi

≤ θq−p(1 + τn)eT aq + θ2−p‖b‖2/4− θ1−pτnbT f(v∗)/2
−θ1−pbT (v∗ + f(v∗))/2.(4.9)

Since ap ∈ Rn
++, p ≤ 1 and q ∈ [1,∞), we conclude from the above inequality that

the set {x(θ) : θ ∈ (0, 1]} is bounded, and by continuity the set {y(θ) : θ ∈ (0, 1]} is
also bounded. Item (i) of the theorem is proved.

(ii) If p > 1 and c ∈ Rn
++. In this case, since (x̄(θ), ȳ(θ)) > 0 and b ≤ 0, we have

Mi ≥ −ap
i v
∗
i xi(θ) + θ1−p(ci − bi/2)(x̄i(θ) + θbi/2− v∗i )

≥ −ap
i v
∗
i x̄i(θ) + θ1−p(ci − bi/2)(θbi/2− v∗i )

≥ −[diag(ap)x̄(θ)]T v∗ + θ1−p min
1≤i≤n

(ci − bi/2)(θbi/2− v∗i ).(4.10)

Since the left-hand side of (4.8) is nonnegative, by (4.10) and (4.8), we have

0 ≤ θq(1 + τn)eT aq + θ2‖b‖2/4− θτnbT f(v∗)/2
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+θpτn[diag(ap)x̄(θ)]T v∗ − θτn min
1≤i≤n

(ci − bi/2)(θbi/2− v∗i )

+θp[diag(ap)x(θ)]T v∗ − θcT x(θ) + θcT v∗ − θbT (v∗ + f(v∗))/2
≤ θq(1 + τn)eT aq + θ2‖b‖2/4− θτnbT f(v∗)/2

+θp(1 + τn)[diag(ap)x̄(θ)]T v∗ − θτn min
1≤i≤n

(ci − bi/2)(θbi/2− v∗i )

+θp[diag(ap)v∗]T b/2− θcT x̄(θ)− θcT b/2 + θcT v∗ − θbT (v∗ + f(v∗))/2.

Dividing both sides of the above by θ and rearranging terms, we have

(
c− θp−1(1 + τn)diag(ap)v∗

)T
x̄(θ)

≤ θq−1(1 + τn)eT aq + θ‖b‖2/4− τnbT f(v∗)/2
−τn min

1≤i≤n
(ci − bi/2)(θbi/2− v∗i )

+θp−1[diag (ap)v∗]T b/2− cT b/2 + cT v∗ − bT (v∗ + f(v∗))/2

Since p > 1 and c ∈ Rn
++, there must exist a δ ∈ (0, 1) such that for all θ ∈ (0, δ],

we have that c− θp−1(1 + τn)diag(ap)v∗ ≥ c/2 > 0. Thus we can see from the above
inequality that the set {x̄(θ) : θ ∈ (0, δ]} is bounded. Thus, the set {x(θ) : θ ∈ (0, δ]}
is bounded. The boundedness of the set {x(θ) : θ ∈ [δ, 1]} can be obtained by (4.8)
again. Indeed, if a subsequence in {x(θ) : θ ∈ [δ, 1]} is unbounded, then there exists a
subsequence denoted by {x(θk)} such that ‖x(θk)‖ → ∞ as k →∞ where θk ∈ [δ, 1].
Applying (4.8) to this sequence, the left-hand side of it is nonnegative. The right-hand
side of the inequality (4.8), however, tends to −∞. This is a contradiction. Therefore,
we conclude that the entire set {x(θ) : θ ∈ (0, 1]} is bounded. So is {y(θ) : θ ∈ (0, 1]}
by continuity.

Remark 4.1. The above result shows that the nonempty of the solution set implies
the boundedness of the entire trajectory {(x(θ), y(θ)) : θ ∈ (0, 1]}. Notice that the
boundedness of this trajectory in turn implies the nonemptyness of the solution set.
Therefore, we may conclude that the boundedness of this trajectory is equivalent to
the solvability of the problem.

5. Limiting behavior of the trajectory. We have shown that Condition 3.1
(and hence most of the known conditions used in interior-point and non-interior-point
methods) can guarantee the boundedness of the proposed continuation trajectory.
Thus, there exists at least one convergent subsequence {(u(θk), x(θk), y(θk))} whose
limiting point is a solution to the CP. Two natural questions arise: (i) When is the
entire trajectory convergent? (ii) What can be said about the limiting point of it? This
section is devoted to these questions. For 0 < p < 1 and (a, b, c) ∈ Rn

++ × Rn
− × Rn

or 0 < p ≤ q and (a, b, c) ∈ Rn
++ × {0} × {0}, we show (Theorems 5.1) that if f

is a P∗-function and the CP has a least element solution, then the entire trajectory
{(u(θ), x(θ), y(θ))} generated by (2.3) converges, as θ → 0, to the unique least element
solution, and that if f is monotone, then the entire trajectory is convergent as θ → 0,
and the limiting point is the N -norm least solution, where N = diag(ap). For p > q
and (a, b, c) ∈ Rn

++ × {0} × {0}, we show, among other things, that any limiting
point of the sequence {(u(θk), x(θk), y(θk))} as θ → 0 is a maximal complementarity
solution (Theorem 5.2).

To begin, we recall some concepts that will be used in this section. An element
x∗ of the set S is said to be the N -norm least element, where N is a positive definite
matrix, if ‖N1/2x∗‖ ≤ ‖N1/2u‖ for all u ∈ S. Particularly, if N = I, the solution x∗ is
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called the least 2-norm element of S. An element x∗ of the set S is said to be a least
element of S if x∗ ≤ u for all u ∈ S (Pang [24]). An element x∗ of the set S is said
to be a weak Pareto minimal element if there is no element u in S such that u < x∗

(Sznajder and Gowda [29]). It is evident that the (unique) least element is a weak
Pareto minimal element, but the converse is not true. If the solution set SOLcp(f)
is convex, it is known that there exists a unique partition of the index set {1, ..., n}
denoted by I, J and O such that {1, ..., n} = I ∪ J ∪ O, and the intersection of each
pair of them is empty. In fact,

I = {i : x∗i > 0 for some x∗ ∈ SOLcp(f)},

J = {j : fj(x∗) > 0 for some x∗ ∈ SOLcp(f)},

O = {k : x∗k = fk(x∗) = 0, for all x∗ ∈ SOLcp(f)}.
Since the solution set is convex, there must exist a solution x∗ satisfying x∗i > 0 for
all i ∈ I, fi(x∗) > 0 for all i ∈ J and x∗i = fi(x∗) = 0 for all i ∈ O. Such a solution is
called a maximal complementarity solution. When O = ∅, i.e., x∗ + f(x∗) > 0, x∗ is
called a strict complementarity solution. We now prove the following result.

Theorem 5.1. Assume that the solution set SOLcp(f) is nonempty. Let p, q and
(a, b, c) satisfy one of the following conditions:

(C1) 0 < p < 1, q ∈ [1,∞) and (a, b, c) ∈ Rn
++ ×Rn

− ×Rn.
(C2) 0 < p < q, q ∈ [1,∞) and (a, b, c) ∈ Rn

++ × {0} × {0}.
Then the following results hold:
(i) If f is a continuous P∗-function and the least element solution of the CP

exists, then the entire trajectory {x(θ) : θ ∈ (0, 1]} generated by (2.3) converges, as
θ → 0, to the unique least element solution.

(ii) If f is a continuous monotone mapping, then the entire continuation trajec-
tory {x(θ) : θ ∈ (0, 1]} generated by system (2.3) converges, as θ → 0, to a solution of
the CP. This solution denoted by x∗ is a N -norm least solution, i.e.,

‖N1/2x∗‖ ≤ ‖N1/2v∗‖ for all v∗ ∈ SOLcp(f),

where N = diag(ap). Particularly, if a = αe where α > 0 is a positive scalar, then
this solution is the (unique) least 2-norm solution.

Proof. We show first the result holds under condition (C1). Let v∗ be an arbitrary
solution of the CP. Then, (4.9) holds. By (i) of Theorem 4.3 the entire continuation
trajectory {(u(θ), x(θ), y(θ))} is bounded provided that the solution set of the CP
is nonempty. Let x∗ be an arbitrary accumulation point of {x(θ)} as θ → 0. Since
0 < p < 1 and q ∈ [1,∞), letting θ → 0 in (4.9), we have

τn min
1≤i≤n

ap
i x
∗
i (x

∗
i − v∗i ) + [diag(ap)(x∗)]T (x∗ − v∗) ≤ 0.(5.1)

Note that v∗ is an arbitrary solution of the CP. If the problem has a least element
solution u∗, setting v∗ = u∗ in the above inequality, we deduce that x∗ = u∗. Since
the least element solution is unique, we conclude that the entire trajectory converges
to the solution.

Since each monotone map is a P∗-function with the constant τ = 0, the inequality
(5.1), in this case, reduces to

[diag(ap)(x∗)]T (x∗ − v∗) ≤ 0,(5.2)
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where v∗ is an arbitrary solution of the CP. To show the the convergence of the entire
trajectory, it is sufficient to show that x∗ is unique. Indeed, if there exists another
vector u∗ such that u∗ is also an accumulation point to the trajectory, then we have
that

[diag(ap)(u∗)]T (u∗ − v∗) ≤ 0,(5.3)

for all solution v∗. Since x∗ and u∗ are solutions to the CP, setting v∗ = u∗ in (5.2)
and v∗ = x∗ in (5.3), and adding the two inequalities, we obtain

(x∗ − u∗)T [diag(ap)](x∗ − u∗) ≤ 0.

Since ap ∈ Rn
++, it follows from the above that x∗ = u∗. Hence, the trajectory is

convergent because it has a unique limiting point. It follows from (5.2) that

‖N1/2x∗‖2 ≤ ‖N1/2x∗‖‖N1/2v∗‖,
where N = diag(up) and v∗ is an arbitrary solution of the CP. Therefore, ‖N1/2x∗‖ ≤
‖N1/2v∗‖ for any solution v∗, i.e., x∗ is a least N -norm solution. Particularly, if
a = αe for some positive scalar α > 0, then (5.2) reduces to (x∗)T (x∗ − v∗) ≤ 0 for
all solution v∗, which implies that x∗ is the unique least 2-norm solution.

We now show the result under (C2). It is evident that under condition (C2), the
inequality (4.8) can be written as:

(v∗)T ȳ(θ) + f(v∗)T x̄(θ)
≤ θq(1 + τn)eT aq − θpτn min

1≤i≤n
ap

i xi(θ)(xi(θ)− x∗i )

−θp[diag(ap)x(θ)]T (x(θ)− v∗).

Dividing both sides of the above inequality by θp and noting that the left-hand side
is nonnegative, we have

0 ≤ θq−p(1 + τn)eT aq − τn min
1≤n

ap
i xi(θ)(xi(θ)− v∗i )

−[diag(ap)x(θ)]T (x(θ)− v∗).

Since p < q, the above inequality implies that {x(θ) : θ ∈ (0, 1]} is bounded, so is
{y(θ) : θ ∈ (0, 1)} by continuity. Let x∗ be an arbitrary accumulation point of {x(θ)}
as θ → 0. Letting θ → 0 in the above inequality, we obtain the inequality (5.1) again.
It suffices to repeat the proof of (C1).

The above result states that when p < q the trajectory of the monotone CP
converges to a N -norm least solution. The next result studies the case of p ≥ q.

Theorem 5.2. Assume that f is a monotone function.
(i) Let p ≥ q and (a, b, c) ∈ Rn

++ ×{0}× {0}. If the trajectory {x(θ) : θ ∈ (0, 1]}
generated by (2.3) has an accumulation point as θ → 0, then any accumulation point
of the trajectory, as θ → 0, is a maximal complementarity solution of the CP.

(ii) Let p > q and (a, b, c) ∈ Rn
++ × {0} × {0}. Assume that the CP has a strict

complementarity solution and the trajectory {x(θ) : θ ∈ (0, 1]} generated by (2.3) has
an accumulation point as θ → 0. Then any accumulation point (x̂, ŷ) of the trajectory
as θ → 0 is a maximal strict complementarity solution in the sense that

∑

i∈I

aq
i log v∗i +

∑

j∈J

aq
j log fj(v∗) ≤

∑

i∈I

aq
i log x̂i +

∑

j∈J

aq
j log fj(x̂),
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where v∗ is an arbitrary strict complementarity solution. Furthermore, if f is linear,
i.e., f = Mx + u where M is an n by n positive semi-definite matrix and u ∈ Rn is
a vector, then the entire trajectory converges, as θ → 0, to a unique maximal strict
complementarity solution.

Proof. Since each accumulation point of the trajectory, as θ → 0, is a solution to
the CP, under the assumption of the theorem the solution set of the CP is nonempty.
Let v∗ be an arbitrary solution to the CP. Thus, the inequality (4.8) remains valid.
By assumption, we have τ = 0 and b = c = 0. Therefore, (4.8) reduces to

(v∗)T ȳ(θ) + f(v∗)T x̄(θ) ≤ θqeT aq − θp [diag(ap)x(θ)]T (x(θ)− v∗)

≤ θqeT aq + θp [diag(ap)x(θ)]T v∗.

Notice that the solution set of a monotone CP is convex. Let I, J,O be the unique
partition of the indexes {1, 2, ..., n} as defined at the beginning of this section. Then
the above inequality further reduces to

(v∗)T
I ȳI(θ) + fJ(v∗)T x̄J(θ) ≤ θqeT aq + θp [diag(ap

I)xI(θ)]
T

v∗I .

Since (x̄(θ), ȳ(θ)) ∈ R2n
++, we have

(v∗)T
I X̄−1

I (θ)X̄I(θ)ȳI(θ) + fJ(v∗)T Ȳ −1
J (θ)ȲJ(θ)x̄J(θ)

≤ θqeT aq + θp [diag(ap
I)xI(θ)]

T
v∗I ,

where X̄I(θ) = diag(x̄I(θ)) and ȲJ(θ) = diag(ȳJ(θ)). Since

X̄I(θ)ȳI(θ) = θqaq
I , X̄J(θ)ȳJ(θ) = θqaq

J ,

from the above inequality we have

(v∗)T
I X̄−1

I (θ)aq
I + fJ(v∗)T Ȳ −1

J (θ)aq
J ≤ eT aq + θp−q [diag(ap

I)xI(θ)]
T

v∗I .(5.4)

The above inequality holds for all solution v∗. Particularly, let v∗ be a solution
satisfying v∗I > 0 and fJ(v∗) > 0, i.e., let v∗ be a maximal complementarity solution.
Assume that (x̂, ŷ) is an accumulation point of (x(θ), y(θ)) as θ → 0. Taking θ → 0
in the above inequality we deduce that x̂I > 0 and ŷJ > 0 since p ≥ q. Notice that
(x̂, ŷ) is a solution of the CP. (x̂, ŷ) is a maximal complementarity solution. Result
(i) follows.

We now prove the result (ii). Let v∗ in (5.4) be an arbitrary strict complementarity
solution. Assume that (x̂, ŷ) is an arbitrary accumulation point of {x(θ), y(θ)) as
θ → 0. We now prove that (x̂, ŷ) is a strict complementarity solution. Taking the
limit in (5.4) and noting that p > q, we deduce that x̂I > 0, ŷJ > 0 and that

(v∗)T
I X̂−1

I (θ)aq
I + fJ(v∗)T atY −1

I (θ)aq
J ≤ eT aq.

Notice that ŷ = f(x̂). The above inequality can be further written as
∑

i∈I

aq
i (v

∗
i /x̂i) +

∑

j∈J

aq
j(fj(v∗)/fj(ŷ)) ≤ eT aq.

Since 1 + log t ≤ t for all t > 0, from the above we have
∑

i∈I

aq
i [1 + log(v∗i /x̂i)] +

∑

j∈J

aq
j [1 + log(fj(v∗)/fj(ŷ))] ≤ eT aq.
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Since a strict complementarity solution exists, we have I ∪ J = {1, ..., n}, and thus
∑

i∈I

aq
i log(v∗i /x̂i) +

∑

j∈J

aq
j log(fj(v∗)/fj(ŷ)) ≤ 0.

Therefore,
∑

i∈I

aq
i log v∗i +

∑

j∈J

aq
j log fj(v∗) ≤

∑

i∈I

aq
i log x̂i +

∑

j∈J

aq
j log fj(ŷ).(5.5)

Since v∗ is an arbitrary strict complementarity solution, the first part of result (ii) is
proved.

We now consider the linear case, i.e., f = Mx+u. Denote by SSOL(f) the set of
strict complementarity solutions of the CP, which is also a convex set by the convexity
of SOLcp(f). Since f is linear, this fact in turn implies that the following set is also
convex:

S = {(x, y) : y = Mx + u, x ∈ SSOL(f)}.

To show the second part of result (ii), it is sufficient to prove that the accumulation
point (x̂, ŷ) satisfying (5.5) is unique. In fact, it is easy to see that (x̂, ŷ) is the solution
to the following strict concave program:

Maximize
∑

i∈I

aq
i log xi +

∑

i∈J

aq
j log yi

subject to (x, y) ∈ S.

Since a strict concave program has at most one solution, (x̂, ŷ) is the unique solution
to the above program, which is a maximal strict complementarity solution of the CP.
Thus the entire trajectory is convergent.

We close this section by proving a general result concerning the characterization of
the limiting point of the trajectory proposed in this paper in the case of semimonotone
functions.

Theorem 5.3. Let f be a continuous semimonotone function from Rn into Rn.
Let p, q and (a, b, c) satisfy one of the following conditions:

(C1) 0 < p < 1, q ∈ [1,∞) and (a, b, c) ∈ Rn
++ ×R2n.

(C2) 0 < p < q, q ∈ [1,∞) and (a, b, c) ∈ Rn
++ × {0} × {0}.

Let (u(θ), x(θ), y(θ)) be a solution to the system (2.3) for each θ ∈ (0, 1]. Assume that
there exists an accumulation point to the trajectory (u(θ), x(θ), y(θ)) as θ → 0. Then
for any accumulation point (0, x∗, y∗) of this trajectory as θ → 0, x∗ is a weak Pareto
minimal solution to the CP.

Proof. let (0, x∗, y∗) be an arbitrary accumulation point of (u(θ), x(θ), y(θ)) as
θ → 0. Then there exists a subsequence {θk} → 0 such that

{(u(θk), x(θk), y(θk))} → (0, x∗, y∗).

Assume the contrary that x∗ is not a weak Pareto minimal solution. Then there
exists a solution u∗ satisfying u∗ < x∗. Since x(θk) → x∗, we have x(θk) > u∗ for all
sufficiently large k. By the semimonotone property of f , for each sufficiently large k
there is an index ik such that

xik
(θk) > u∗ik

and fik
(x(θk)) ≥ fik

(u∗).
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Passing through a subsequence, we may assume that there exists an index l such that

xl(θk) > u∗l and fl(x(θk)) ≥ fl(u∗)

for all sufficiently large k. Notice that for each θ, the solution (u(θ), x(θ), y(θ)) of
the system (9) satisfies the system (2.8)-(2.11). We still use the symbols of ȳi(θ) =
yi(θ)− θbi/2 > 0 and x̄i(θ) = xi(θ)− θbi/2 > 0. By (4.6) we have

(ȳl(θk)− fl(u∗))(x̄l(θk)− u∗l ) ≤ θq
kaq

l .(5.6)

On the other hand, we have

(ȳl(θk)− fl(u∗))(x̄l(θk)− u∗l )
= (ȳl(θk)− fl(u∗))(−θkbl/2) + (ȳl(θk)− fl(u∗))(xl(θk)− u∗l )
= (ȳl(θk)− fl(u∗))(−θkbl/2)

+(fl(x(θk)) + θp
kap

l xl(θk) + θkcl − θkbl/2− fl(u∗))(xl(θk)− u∗l )
= (yl(θk)− θkbl/2− fl(u∗))(−θkbl/2)

+(fl(x(θk))− fl(u∗))(xl(θk)− u∗l )
+ (θp

kap
l xl(θk) + θkcl − θkbl/2) (xl(θk)− u∗l )

≥ (yl(θk)− θkbl/2− fl(u∗))(−θkbl/2)
+ (θp

kap
l xl(θk) + θkcl − θkbl/2) (xl(θk)− u∗l ).

Combining the above two inequalities and dividing both sides by θp
k, we have

θq−p
k a2

l ≥ (yl(θk)− θkbl/2− fl(u∗))(−θ1−p
k bl/2)

+(ap
l xl(θk) + θ1−p

k cl − θ1−p
k bl/2)(xl(θk)− u∗l ).

Let θk → 0. It is easy to see that under either condition (C1) or (C2) we have

ap
l x
∗
l (x

∗
l − u∗l ) ≤ 0

which contradicts the assumption 0 ≤ u∗ < x∗.

6. Final remarks. We have proved the existence and the boundedness of a
new homotopy continuation trajectory for nonlinear P0-complementarity problems.
The assumption imposed in the paper is weaker than most existing conditions widely
used in interior-point and non-interior-point methods. Particularly, this assumption
is satisfied if the P0-CP has a nonempty and bounded solution set. Therefore, the
method proposed in this paper can tackle all P0-CPs with bounded solution sets.
Since this assumption can be satisfied even when the strict feasibility condition fails
to hold, the proposed method can also be used to tackle some P0-CPs with unbounded
solution sets. For P∗-CPs, the existence and the boundedness of the new continuation
trajectory can be guaranteed provided that the solution set of the CP is nonempty (no
matter whether the solution set is bounded or not). Moreover, under some choices
of p, q and (a, b, c), the entire trajectory for any continuous monotone CP always
converges to a solution of the CP provided that a solution exists. Based on the
results of this paper, we may design a non-interior-point path-following algorithm for
CPs, which can solve all solvable P∗-CPs, all P0-CPs with bounded solution sets, and
some P0-CPs with unbounded solution sets.



26 Y. B. ZHAO AND D. LI

Since the proposed method can deal with all solvable P∗-CPs, a natural question
is whether this method can attack all solvable P0-CPs. That is, can the Condition 3.1
in Theorem 4.2 be replaced by the nonemptyness assumption of the solution set? The
answer is no. For some P0-CPs with unbounded solution sets, the proposed contin-
uation trajectory might be divergent to infinity. This phenomena has also been seen
in the canonical Tikhonov regularization trajectory for a P0-CP with an unbounded
solution set (Sznajder and Gowda [29]). In fact, in section 3.4 of [20], Kojima et al.
pointed out that certain knapsack problem can be transformed into a linear P0-CP
with an unbounded solution set. For this P0-CP, it is easy to very that both the canon-
ical Tikhonov regularization trajectory and the continuation trajectory proposed in
this paper is divergent to infinity. This implies that the example in section 3.4 of [20]
does not satisfy Condition 3.1.
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