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Abstract. A linear program has a unique least 2-norm solution provided that the linear program
has a solution. To locate this solution, most of the existing methods were devised to solve certain
equivalent perturbed quadratic programs or unconstrained minimization problems. Different from
these traditional methods, we provide in this paper a new theory and an effective numerical method
to seek the least 2-norm solution of a linear program. The essence of this method is a (interior-point-
like) path-following algorithm that traces a newly introduced regularized central path which is fairly
different from the central path used in interior-point methods. One distinguishing feature of the
method is that it imposes no assumption on the problem. The iterates generated by this algorithm
converge to the least 2-norm solution whenever the linear program is solvable; otherwise, the iterates
converge to a point which gives a minimal KKT residual when the linear program is unsolvable.
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1. Introduction. Consider the linear program:

min{cT x : Ax ≥ b, x ≥ 0},(1.1)

where A ∈ Rm×n, c ∈ Rn and b ∈ Rm. The dual problem for the above linear program
can be written as

max{bT y : AT y ≤ c, y ≥ 0}.(1.2)

Let S∗P and S∗D denote the optimal solution sets (possibly empty) of the problems
(1.1) and (1.2), respectively. If a linear program has an optimal solution, it is said to
be solvable; otherwise, it is unsolvable. According to linear programming theory (see
for instance, Theorem 1.13 in [34]), the primal (1.1) and the dual (1.2) have optimal
solutions if and only if both problems have feasible solutions. If one of the problem
(1.1) or (1.2) has no feasible solution, then the other one is either unbounded or has
no feasible solution, and if one of the problem (1.1) or (1.2) is unbounded, then the
other one has no feasible solution. Therefore, we may say that the primal problem is
solvable if and only if the dual is solvable. Equivalently, the primal is unsolvable if
and only if the dual is unsolvable.

Throughout this paper, we denote by ‖ · ‖∞ the ∞-norm of a vector, and ‖ · ‖2
the 2-norm, i.e., Euclidean norm. The purpose of this paper is to give a new method
to find the least 2-norm solutions of both primal and dual linear programs, i.e., to
find x∗ ∈ S∗P and y∗ ∈ S∗D such that

‖x∗‖2 ≤ ‖x‖2, ‖y∗‖2 ≤ ‖y‖2 for all x ∈ S∗P and y ∈ S∗D.
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Given certain norm, the problem of finding the least-norm solution to some optimiza-
tion problems or other applied mathematical problems have been studied by many
authors such as Tikhonov and Arsenin [30], Tucker [28, 29], Parsons and Tucker [21],
and Wolfe [32, 33]. In particular, many authors have studied the theoretical property
of the least 2-norm solution of a linear program, and have tried to design numerical
methods to compute this solution. See for instance, Tikhonov and Arsenin [30], Man-
gasarian [13, 14, 15, 16], Mangasarian and Meyer [19], Mangasarian and De Leone
[18], Lucidi [11, 12], Skarin [25], Kiwiel [6, 7], Smith and Wolkowicz [24], and Kanzow,
Qi and Qi [5]. Note that the least 2-norm solution of a linear program could be a
vertex of the feasible set, and could be also a relative interior point of the optimal
faces. Thus, in general case, both simplex methods and interior-point methods (see
[23, 34]) may not find the least 2-norm solution of a linear program.

The first method for the least-norm solution of a linear program was the canon-
ical Tikhonov regularization method [30]. The basic idea of this method is to solve
successively the following quadratic problem in x:

min{cT x + µ‖x‖22 : Ax ≥ b, x ≥ 0},(1.3)

where µ is a positive parameter. For each µ > 0, denote by x(µ) the solution to
the above quadratic program. Tikhonov (see [30]) showed that x(µ) converges, as
µ → 0, to the least 2-norm solution of (1.1). Later, Mangasarian and Meyer [19]
showed that there exists a µ̄ > 0 such that for any µ ∈ (0, µ̄], the perturbed quadratic
program (1.3) becomes an exact problem, i.e., for any µ ∈ (0, µ̄] the solution x(µ) = x̄,
where x̄ is the least 2-norm solution of (1.1). Based on this observation, Mangasarian
[14, 16] used successive overrelaxation (SOR) methods to solve the dual problem of
(1.3). As pointed out by Lucidi [11], the main advantage of SOR algorithms is that
they preserve the sparsity structure of the problem, and thus can tackle large scale
problems. However, the main difficulty encountered by this method appears to be
the difficulty of knowing such a threshold value of µ̄. Thus, in general, it is not sure
if a value of µ is small enough such that the solution x(µ) of (1.3) is the least 2-norm
solution of (1.1). Even the condition x(µk+1) = x(µk) with µk+1 < µk does not imply
that x(µk+1) is the least 2-norm solution of (1.1).

There are two classes of ways to circumvent this difficulty. The first class of
approaches, including Lucidi [11, 12] and Kiwiel [6], attempts to establish an effective
computational criterion to check whether the current perturbed quadratic program
is exact. However, Lucidi’s methods [11, 12] require that the linear program (1.1)
be nondegenerate (the gradients of active constrains at the least 2-norm solution x̄
are linearly independent), whereas Kiwiel’s method [6] solves the perturbed quadratic
program by finite active-set methods (see for example, Best [1] and Kiwiel [8]) which
may not be effective for large-scale problems. The second class of the methods was
developed by Mangasarian and De Leone [18]. In their method, a decreasing sequence
µk → 0 is stipulated, and for each µk an approximate solution x(µk) is computed
by applying SOR algorithms to the dual problem of (1.3). They showed that if
the residual inaccuracy of x(µk) falls below a certain threshold related to µk, the
approximate sequence {x(µk)} converges to the least 2-norm solution as k → ∞. It
is worth mentioning that Kiwiel [7] extended the method in [18] to piecewise linear
programs which include the linear program as a special case.

In summary, the aforementioned approaches focus on solving the problem (1.3)
or its dual problem. We may categorize them as (sequential) quadratic programming
methods for solving the least 2-norm solution of a linear program. Of course, in
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addition to SOR methods, the problem (1.3) or its dual problem may also be solved
by other algorithms, see Lin and Pang [10] and the references therein.

Besides the methods using an equivalent perturbed quadratic program, the least
2-norm solution of a linear program can also be obtained by solving an equivalent
unconstrained convex minimization problem. The first result in this aspect was due
to Mangasarian [15]. In [15], Mangasarian first proved that the least 2-norm solu-
tion problem of linear programs can be transformed into an equivalent unconstrained
minimization of a parameter-free convex continuously differentiable function. As a re-
sult, some unconstrained optimization methods can be used to solve the least 2-norm
solution of a linear program. Recently, Kanzow et al [5] studied another equivalent
unconstrained reformulation of the least 2-norm solution problem. Their method is
based on the result of Smith and Wolkowicz [24] which is essentially related to the
result of Mangasarian and Meyer (Corollary 2 in [19]). Based on their reformula-
tion, Kanzow, Qi and Qi [5] proposed a Newton-type method to solve their uncon-
strained minimization problem. However, unlike Mangasarian’s reformulation, the
unconstrained minimization problem in Kanzow, Qi and Qi [5] contains a parameter
which is required to be sufficiently large (but it is unknown in advance). Also, their
convergence analysis needs certain relatively restrictive assumptions such as the strict
feasibility of (1.1) and the nondegeneracy of the least 2-norm solution.

It is well-known that a linear program can also be formulated as an equivalent
linear complementarity problem (LCP). In fact, writing out the Karush-Kuhn-Tucker
(KKT) optimality conditions of the linear program (1.1), we have





s + AT y − c = 0,
z −Ax + b = 0,
(x, y, s, z) ≥ 0, xT s = yT z = 0,

(1.4)

which can be written as the following monotone LCP:
[

s
z

]
=

[
O −AT

A O

] [
x
y

]
+

[
c
−b

]
≥ 0,

[
x
y

]
≥ 0,

[
s
z

]T [
x
y

]
= 0.(1.5)

Thus, locating the least 2-norm solutions of primal and dual linear programs is com-
pletely equivalent to finding a least 2-norm solution of the above monotone LCP. For
LCPs, the least 2-norm solution has also been extensively studied by several authors,
for example, Subramanian [26], Mangasarian [17], Sznajder and Gowda [27], and Zhao
and Li [35, 36, 37]. The least 2-norm solution of a complementarity problem is also
related to Tikhonov regularization methods for complementarity problems (see for
instance, Isac [4], Facchinei [2], Facchinei and Kanzow [3]). In fact, in [26, 27, 35],
it is shown that the Tikhonov regularization trajectory of a monotone complemen-
tarity problem converges to the least 2-norm solution of the problem. In [35], a
new homotopy continuation trajectory, later called regularized central path in [37],
is constructed for complementarity problems. It turns out that this new trajectory
converges to the least 2-norm solution of a monotone complementarity problem as the
parameter approaches to zero.

Motivated by recent results in [35, 36, 37], the purpose of this paper is to develop
a new theory and an alternative computational method for the least 2-norm solution
of linear programs. The proposed method is different from most of the existing meth-
ods which either require additional conditions besides the solvability of the problem,
or have to solve quadratic programs successively. The proposed algorithm in this
paper does not impose any assumption on the problem. It is convergent regardless of
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whether the linear program is solvable or not. If the problem (1.1) is solvable, then the
iterates generated by the proposed algorithm converge to the least 2-norm solution. If
the problem has no solution, the iterates still converge to a point which gives a mini-
mal KKT residual of the problem (1.1). This algorithm is a kind of interior-point-like
path-following algorithm (but not an interior-point algorithm), which is based on a
new concept of regularized central path {x(µ) : µ > 0} of a linear program. Remark-
able features of this path are that its existence and convergence for any (solvable or
unsolvable) linear program can be guaranteed. These features distinguish it from the
conventional central path whose existence and boundedness require that the primal
and the dual have interior-points, which in turn implies that both primal and dual
problems have bounded solution sets (see, Theorem 5.10.1 and Corollary of Theorem
3.4.1 in [23]). When a linear program has an unbounded solution set in which case
the problem is unstable (see, Robinson [22]), the interior-point does not exist, and
hence the central path does not exist. However, the regularized central path proposed
in this paper always exists for any linear program, and converges, as µ tends to zero,
to the least 2-norm solution of any solvable linear program despite of the unbounded-
ness of its solution set. This motivates us to design a new path-following method for
linear programs. To our knowledge, the proposed method can be viewed as the first
(interior-point-like) path-following algorithm for the least 2-norm solution of a linear
program.

In the next section, we introduce the concept of a regularized central path for
linear programs. In Section 3, we specify a path-following algorithm. In Section 4,
we prove the global convergence of the algorithm. The unsolvable case is studied in
Section 5. Numerical results are illustrated in Section 6. Conclusions are given in the
last section.

Throughout the paper, we use the standard notation found in the interior-point
algorithm literature. For example, all the vectors are column. For vectors u and
v ∈ Rn, we also use (u, v) to denote the column vector (uT , vT )T if there is no
confusion. The vector e denotes the vector of ones, and its dimension, unless otherwise
stated, depends on the context. For a vector x, x+ denotes the vector with components
(x+)i = max{xi, 0}, i = 1, ..., n, and X denotes the corresponding diagonal matrix,
i.e., X = diag(x). Rn

+ denotes the nonnegative orthant of n-dimensional Euclidean
space Rn. If x ∈ Rn

+, we also write it as x ≥ 0. In particular, x > 0 means that all
components of x are positive.

2. Regularized central path. We begin with recalling the concept of a central
path of a linear program. The linear program (1.1) can be rewritten as

min{cT x : Ax− z = b, (x, z) ≥ 0}.

The central path is defined by a parameter µ > 0, and for each µ > 0, it is the solution
to the following logarithmic barrier problem:

min cT x− µ (
∑n

i=1 log xi +
∑m

i=1 log zi)
s.t. Ax− z = b

(x > 0, z > 0).

The Lagrangian of the above problem is

Lµ(x, y, z) = cT x + yT (z −Ax + b)− µ

(
n∑

i=1

log xi +
m∑

i=1

log zi

)
,(2.1)
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where y ∈ Rm is the Lagrange multiplier vector corresponding to the constraint
Ax− z = b. Thus, the central path is actually defined by the stationary point of the
above Lagrange function, that is,

0 = ∇Lµ(x, y, z) =
(

∂Lµ

∂x
,
∂Lµ

∂y
,
∂Lµ

∂z

)
=




c−AT y − µX−1e
z −Ax + b
y − µZ−1e


 ,

which, by setting s = µX−1e > 0, can be written as

Xs = µe,
Y z = µe,

s + AT y − c = 0,
z −Ax + b = 0,
(x, y, s, z) > 0.

It is well known that for every µ > 0, the above system has a unique solution denoted
by (x(µ), y(µ), s(µ), z(µ)) if and only if the primal and the dual problems have interior
points. If the primal and the dual have interior points, x(µ) converges (as µ → 0) to
the analytic center of the primal optimal face, and y(µ) converges to the dual optimal
face (Theorems 5.10.1 and 5.10.3 in [23], or Theorems 2.16 and 2.17 in [34]). Clearly,
the analytic center is not necessarily the least 2-norm solution.

It is worth pointing out that the existence of the central path is not guaranteed for
the case when the problem has an unbounded optimal solution set, i.e., when the linear
program has no interior point (see for instance, Theorem 5.10.1 and the corollary of
Theorem 3.4.1 in [23]). We now construct a new smooth path that is expected to
converge to the least 2-norm solution even when the problem has an unbounded
solution set. We first define a perturbed Lagrange function of (2.1). Notice that in
(2.1), the Lagrange multiplier y is related to the decision variable of the dual problem.
In fact, let ∇Lµ(x(µ), y(µ), z(µ)) = 0. If (x(µ), y(µ), z(µ)) → (x∗, y∗, z∗) as µ → 0,
then (x∗, y∗, z∗) satisfies the KKT system (1.4). By the theory of linear programming,
y∗ is an optimal solution to the dual problem. Thus, in order to obtain the least 2-
norm solution of the primal and the dual linear programs, we consider the following
augmented Lagrange function:

L(µ,θ)(x, y, z) : = cT x + yT (z −Ax + b)− µ

(
n∑

i=1

log xi +
m∑

i=1

log zi

)

+
1
2
θ(‖x‖22 − ‖y‖22),(2.2)

where µ and θ are two positive parameters. The term θ(‖x‖22 − ‖y‖22) attached to
the Lagrangian (2.1) is used to force the stationary point of the augmented Lagrange
function to approach the least 2-norm solution. It will be seen from our later discussion
that the above augmented form is a judicious choice for locating the least 2-norm
solution, and for covering the aforementioned case of an unbounded solution set.
Although the parameters µ and θ can be independent, for simplicity, however, we
consider here only the case of θ = µp, where p ∈ (0, 1) is a fixed constant. Thus, the
above function (2.2) can be written as the following one-parameter form:

Φµ(x, y, z) : = cT x + yT (z −Ax + b)− µ

(
n∑

i=1

log xi +
m∑

i=1

log zi

)

+
1
2
µp(‖x‖22 − ‖y‖22).(2.3)
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We are now ready to define the concept of a regularized central path. Analogous to the
central path which is the stationary point of Lagrange function (2.1), the so-called reg-
ularized central path can be defined by the stationary point of the augmented Lagrange
function (2.3), that is, ∇Φµ(x, y, z) = 0. Thus, we have the following definition.

Definition 2.1. The curve {(x(µ), y(µ), s(µ), z(µ)) : µ > 0} is said to be a
regularized central path if for each µ > 0, (x(µ), y(µ), s(µ), z(µ)) is the solution to the
following system:





Xs = µe,
Y z = µe,
s + AT y − c = µpx,
z −Ax + b = µpy,
(x, y, s, z) > 0.

(2.4)

The set {(x(µ), z(µ)) : µ > 0} can be called the primal regularized central path,
and {(y(µ), s(µ)) : µ > 0} the dual regularized central path. The following result
states that the existence of the regularized central path can be ensured in all situations.
This path converges to the unique least 2-norm solution as long as the linear program
in question is solvable. Thus, the regularized central path provides us a novel and
powerful solution scheme for linear programming problems.

Theorem 2.1. For any linear program (1.1), the following holds:
(i) For each µ > 0, the system (2.4) has a unique solution (x(µ), z(µ), y(µ),

s(µ)) > 0.
(ii) For any finite number 0 < µ̂ < ∞, the set {(x(µ), z(µ), y(µ), s(µ)) : µ ∈ (0, µ̂]}

is bounded if and only if the linear problem (1.1) is solvable.
(iii) The linear problem (1.1) is solvable if and only if (x(µ), z(µ), y(µ), s(µ))

converges, as µ → 0, to (x∗, z∗, y∗, s∗) where x∗ and y∗ are least 2-norm solutions of
the primal and the dual problems, respectively.

Proof. It is evident that the system (2.4) can be written as
[

s
z

]
=

[
µpI −AT

A µpI

] [
x
y

]
+

[
c
−b

]
> 0,

[
x
y

]
> 0, U

[
s
z

]
= µe,(2.5)

where e ∈ Rm+n, and U =
[

X O
O Y

]
. Denote

M =
[

O −AT

A O

]
, u =

[
x
y

]
, v =

[
s
z

]
, q =

[
c
−b

]
.

Then the system (2.5) can be further written as

v = Mu + q + µpu > 0, u > 0, Uv = µe.

Under the one-to-one transformation of µ = ε/(1 − ε) where ε ∈ (0, 1), the above
system is equivalent to

(1− ε)v = (1− ε)(Mu + q + φ(ε)u) > 0, u > 0, (1− ε)Uv = εe,

where φ(ε) =
(

ε
1−ε

)p

. Denote by w = (1 − ε)v, The above system can be finally
written as

H̄(u,w, ε) :=
(

Uw − εe
w − (1− ε)(Mu + q + φ(ε)u)

)
= 0, (u,w) > 0,(2.6)
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Noting that p ∈ (0, 1), we have ε/φ(ε) → 0 as ε → 0. Since the matrix M is a
monotone matrix, it must be a P0 matrix or a P∗ matrix. By Theorem 4.2(a) or
Theorem 5.2(a) in [35] (but applied to monotone LCP), we conclude that the above
system (2.6) has a unique solution (u(ε), w(ε)) for each given ε > 0. The result (i) is
proved.

To see that (ii) holds, we first note that if the path {(x(µ), y(µ), s(µ), z(µ)) : µ ∈
(0, µ̂]} is bounded, taking µ → 0 in system (2.4) we see that any accumulation point
of the path is a solution to KKT system (1.4), and thus it is a solution to the linear
program. Conversely, assume that the linear program is solvable. This is equivalent
to saying that the LCP (1.5) is solvable. Notice that (2.4) can be written as (2.5). It
follows from Theorem 5.1(b) in [35] that the path {(x(µ), y(µ), s(µ), z(µ)) : µ ∈ (0, µ̂]}
is bounded. Result (ii) holds. Since the solutions of LCP (1.5) are the same as
the solutions of the primal and the dual programs (1.1) and (1.2), result (iii) is an
immediate consequence of Theorem 5.2 in [35].

From the above result, we obtain the following characterization of the least 2-norm
solution of a linear program.

Corollary 2.1. (x∗, y∗) is the least 2-norm solution pair to the primal and the
dual problems if and only if it is the unique limiting point of the regularized central
path as µ → 0. Equivalently, if the problem (1.1) has no optimal solution, i.e., the
problem (1.1) is unsolvable, if and only if the regularized central path is divergent to
infinity as µ → 0.

3. Algorithm. Our algorithm can tackle both solvable and unsolvable linear
programming problems. For simplicity, however, we consider first the solvable prob-
lems. The general case, including unsolvable problems, is treated in Section 5.

For a fixed scalar p ∈ (0, 1), we denote Fµ : R2(n+m) → R2(n+m) by

Fµ(x, y, s, z) =




Xs− µe
Y z − µe

s + AT y − c− µpx
z −Ax + b− µpy


 .(3.1)

Note that the regularized central path is given by the following system:

Fµ(x, y, s, z) = 0, (x, y, s, z) > 0.

We also note that the vector (x∗, y∗, s∗, z∗) is a solution to the KKT system (1.4) if
and only if it satisfies

F0(x∗, y∗, s∗, z∗) = 0, (x∗, y∗, s∗, z∗) ≥ 0.

To give a path-following algorithm, we employ the following set as a neighborhood
of the regularized central path:

Nβ(µ) := {(x, y, s, z) > 0 : ‖Fµ(x, y, s, z)‖∞ ≤ βµ},
where β ∈ (0, 1) is a fixed scalar. From a starting point (x0, y0, s0, z0) > 0, the pur-
pose of our path-following algorithm is to generate a positive sequence (xk, yk, sk, zk)
confined in the above neighborhood. This sequence converges to a solution of the
problem. In each step of the algorithm, only one linear algebraic equation is solved
and the Armijo-type line search is used to determine the stepsize. While the iteration
of this algorithm proceeds in the positive orthant, i.e., all the iterates maintain pos-
itivity, the iterates are not necessarily to be interior points of the problem. In fact,
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this algorithm does not require that the problem possess an interior point, and thus
it does not belong to the class of central path-based interior-point algorithms.

Algorithm 3.1:
Step 1. (Initial step) Let β ∈ (0, 1) be a positive scalar. Assign scalars α1, α2,

and σ in (0,1). Select (x0, y0, s0, z0) > 0 and µ0 ∈ (0,∞) such that (x0, y0, s0, z0) ∈
Nβ(µ0).

Step 2. (Centering step) If Fµk(xk, yk, sk, zk) = 0, set

(xk+1, yk+1, sk+1, zk+1) = (xk, yk, sk, zk),

and go to Step 3. Otherwise, let (∆xk,∆yk) be the solution to the following equation
[

Sk + (µk)pXk −XkAT

Y kA Zk + (µk)pY k

] [
∆x
∆y

]

=
[

µke−Xksk

µke− Y kzk

]
−

[
Xk(−sk + (µk)pxk −AT yk + c)
Y k(−zk + Axk + (µk)pyk − b)

]
.(3.2)

Then, set
[

∆sk

∆zk

]
=

[
(µk)pI −AT

A (µk)pI

][
∆xk

∆yk

]
+

[
−sk + (µk)pxk −AT yk + c

−zk + Axk + (µk)pyk − b

]
.(3.3)

Let

ᾱ = arg max{α > 0 : xk + λ∆xk > 0, yk + λ∆yk > 0, sk + λ∆zk > 0,
zk + λ∆zk > 0 for all λ ∈ (0, α]}.

Let λk be the maximum among the values of ᾱ, α1ᾱ, α2
1ᾱ, ... such that

‖Fµk(xk + λk∆xk, yk + λk∆yk, sk + λk∆sk, zk + λk∆zk)‖∞
≤ (1− σλk)‖Fµk(xk, yk, sk, zk)‖∞.(3.4)

Set

(xk+1, yk+1, sk+1, zk+1) = (xk, yk, sk, zk) + λk(∆xk,∆yk,∆sk,∆zk),

and go to Step 3.
Step 3. (Reduction step for µ) Let γk be the maximum among the values of

α2, α
2
2, ... such that

(xk+1, yk+1, sk+1, zk+1) ∈ Nβ((1− γk)µk),

i.e.,

‖F(1−γk)µk(xk+1, yk+1, sk+1, zk+1)‖∞ ≤ β(1− γk)µk.

Set µk+1 := (1− γk)µk, and go to Step 2.
Remark 3.1. In numerical implementation, the initial points and some stopping

criterion are needed. For the above algorithm, we may use ‖F0(xk, yk, sk, zk)‖∞ < ε
or µk < ε as the stopping criterion, where ε is a termination tolerance. The initial
point for the above algorithm can be constructed without any additional cost. For
instance, a practical initial step proceeds as follows:
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Initial Step: Let (x0, y0) = e (∈ Rn+m). Choose µ0 such that

µ0 > max
{

1,

∥∥∥∥
(

AT y0 − c
−Ax0 + b

)∥∥∥∥
∞

}
.

Let (s0, z0) = (µ0)pe (∈ Rn+m), and let

η :=
‖Fµ0(x0, y0, s0, z0)‖∞

µ0
.

Then, assign β ∈ [η, 1).
From the above choice, by (3.1) we see that

‖Fµ0(x0, y0, s0, z0)‖∞ = max
{∣∣µ0 − (µ0)p

∣∣ ,

∥∥∥∥
(

AT y0 − c
−Ax0 + b

)∥∥∥∥
∞

}
.

By the choice of µ0, it follows that 0 < η < 1. Thus, η ≤ β < 1 and (x0, y0, s0, z0) ∈
Nβ(µ0).

Remark 3.2. We now point out that at the current point (xk, yk, sk, zk) > 0 the
vector (∆xk,∆yk,∆sk,∆zk) determined by systems (3.2) and (3.3) is unique. In fact,
it is easy to see that (∆xk,∆yk,∆sk,∆zk) is a solution to the systems (3.2) and (3.3)
if and only if it is the solution to the following system:





Sk∆x + Xk∆s = µke−Xksk,
Zk∆y + Y k∆z = µke− Y kzk,

∆s− (µk)p∆x + AT ∆y = −sk −AT yk + (µk)pxk + c,
∆z −A∆x + (µk)p∆y = −zk + Axk + (µk)pyk − b.

(3.5)

which is a 2(m + n)-dimensional linear system. Notice that the Jacobian Matrix of
Fµk(x, y, s, z) at (xk, yk, sk, zk) > 0 is given by

∇Fµk(xk, yk, sk, zk) =




Sk O Xk O
O Zk O Y k

−(µk)pI AT I O
−A −(µk)pI O I


 .(3.6)

The system (3.5) coincides with the following:

Fµk(xk, yk, sk, zk) +∇Fµk(xk, yk, sk, zk)(∆x,∆y, ∆s,∆z) = 0.(3.7)

Hence, the direction (∆x,∆y, ∆s,∆z) is actually the Newton direction determined
by (3.7). Since the matrix

[
(µk)pI −AT

A (µk)pI

]

is positive semidefinite for any µk > 0, at the positive point (xk, yk, sk, zk) the Jaco-
bian matrix ∇Fµk(xk, yk, sk, zk) given by (3.6) is nonsingular. This fact follows from
Lemma 5.4 in Kojima et al [9]. Thus the system (3.7) has a unique solution, and
hence the systems (3.2) and (3.3) have a unique solution. This can also be explained
another way. In fact, at (xk, yk, sk, zk) > 0, it is easy to verify that the nonsingularity
of the matrix ∇Fµk(xk, yk, sk, zk) implies the nonsingularity of the matrix

[
Sk + (µk)pXk −XkAT

Y kA Zk + (µk)pY k

]
.

While the system (3.2) together with (3.3) is equivalent to the system (3.5) or (3.7),
we choose to solve the system (3.2) since it has lower dimension than (3.5).



10 Y. B. ZHAO AND D. LI

4. Global convergence. In this section, we show that whenever the solution
set is nonempty, the iterates {(xk, yk)} generated by Algorithm 3.1 converge to the
least 2-norm solutions of the primal and the dual linear programs. We first show that
the algorithm is well-defined.

Lemma 4.1. Algorithm 3.1 is well-defined. The sequence {µk} is monotonically
decreasing, and (xk, yk, sk, zk) ∈ Nβ(µk) for all k ≥ 0.

Proof. We verify that each step of the algorithm is well-defined. By Remark 3.1,
the first step is well-defined. The starting point satisfies

(x0, y0, s0, z0) > 0, (x0, y0, s0, z0) ∈ Nβ(µ0).

By induction, we now assume that

(xk, yk, sk, zk) > 0, (xk, yk, sk, zk) ∈ Nβ(µk).

We show that the next iterate (xk+1, yk+1, sk+1, zk+1) generated by the algorithm still
maintains positivity, and satisfies the condition (xk+1, yk+1, sk+1, zk+1) ∈ Nβ(µk+1).
By the positivity of (xk, yk, sk, zk), from Remark 3.2, the system defined by (3.2) and
(3.3) has a unique solution, and the Newton direction (∆xk,∆yk,∆sk,∆zk) is a de-
scent direction of the function ‖Fµk(x, y, s, z)‖∞ at the current point (xk, yk, sk, zk) >
0. Thus, the line search rule (3.4) is well-defined, and hence Step 2 is well-defined.
Since

‖Fµk(xk, yk, sk, zk)‖∞ ≤ βµk and 1− σλk < 1,

from (3.4) we have

‖Fµk(xk + λk∆xk, yk + λk∆yk, sk + λk∆sk, zk + λk∆zk)‖∞ ≤ βµk,

that is,

‖Fµk(xk+1, yk+1, sk+1, zk+1)‖∞ ≤ βµk,

which implies that

‖Xk+1sk+1 − µke‖∞ ≤ βµk, ‖Y k+1zk+1 − µke‖∞ ≤ βµk.

By the choice of ᾱ and λk, we see that (xk+1, yk+1, sk+1, zk+1) is nonnegative. Com-
bining this fact and the above inequalities, where 0 < β < 1, concludes that the next
iterate (xk+1, yk+1, sk+1, zk+1) must be positive.

We now show that Step 3 is well-defined, and hence the next iterate is contained
in the set Nβ(µk+1). There are two possible cases.

Case 1: Fµk(xk, yk, sk, zk) = 0. According to the construction of the algorithm,
(xk+1, yk+1, sk+1, zk+1) = (xk, yk, sk, zk). By continuity, there is a γk determined by
Step 3 such that

‖F(1−γk)µk(xk+1, yk+1, sk+1, zk+1)‖∞ ≤ β(1− γk)µk.

Thus, by setting µk+1 = (1− γk)µk, we have (xk+1, yk+1, sk+1, zk+1) ∈ Nβ(µk+1).
Case 2: Fµk(xk, yk, sk, zk) 6= 0. In the case, the next point (xk+1, yk+1, sk+1, zk+1)

is determined by (3.4). We now show that (xk+1, yk+1, sk+1, zk+1) ∈ Nβ(µk+1) still
holds. For any (x, y, s, z) > 0 and t2 ≥ t1 ≥ 0, it is easy to verify that

‖Ft1(x, y, s, z)−Ft2(x, y, s, z)‖∞ ≤ t2 − t1 + (tp2 − tp1)‖(x, y)‖∞.
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Thus, by (3.4) and the above inequality, we have

‖F(1−γ)µk(xk+1, yk+1, sk+1, zk+1)‖∞
≤ ‖F(1−γ)µk(xk+1, yk+1, sk+1, zk+1)−Fµk(xk+1, yk+1, sk+1, zk+1)‖∞

+‖Fµk(xk+1, yk+1, sk+1, zk+1)‖∞
≤ γµk + (µk)p[1− (1− γ)p]‖(xk+1, yk+1)‖∞ + (1− σλk)‖Fµk(xk, yk, sk, zk)‖∞
≤ γµk + (µk)p[1− (1− γ)p]‖(xk+1, yk+1)‖∞ + (1− σλk)βµk

=
[
γ + (µk)p−1[1− (1− γ)p]‖(xk+1, yk+1)‖∞

(1− γ)β
+

(1− σλk)
1− γ

]
β(1− γ)µk.

Since 1−σλk < 1, there is a positive scalar γ̂ > 0 such that for all γ ∈ (0, γ̂], the term
in the above bracket is less than one. Thus, for all sufficiently small γ > 0 we have

‖F(1−γ)µk(xk+1, yk+1, sk+1, zk+1)‖∞ ≤ β(1− γ)µk.

Step 3 is well-defined. Of course, the sequence {µk} is monotonically decreasing since
µk+1 = (1− γk)µk.

By Lemma 4.1, the sequence (xk, yk, sk, zk) ∈ Nβ(µk) for all k, i.e.,

‖Fµk(xk, yk, sk, zk)‖∞ ≤ βµk and (xk, yk, sk, zk) > 0.(4.1)

We employ auxiliary sequences (uk, vk, wk, qk) ∈ R2(n+m) defined by

(uk, vk, wk, qk) =
1
µk
Fµk(xk, yk, sk, zk).(4.2)

Clearly, the above sequence {(uk, vk, wk, qk)} is uniformly bounded. Indeed, combin-
ing (4.1) and (4.2) yields ‖(uk, vk, wk, qk)‖∞ ≤ β. The equation (4.2) can be written
as

Xksk = µk(e + uk),(4.3)
Y kzk = µk(e + vk),(4.4)

sk = −AT yk + c + (µk)pxk + µkwk,(4.5)
zk = Axk − b + (µk)pyk + µkqk.(4.6)

These relations play a key role in the remainder analysis. We now prove the main
result of this section.

Theorem 4.1. Assume that the solution set of linear program (1.1) is nonempty.
The sequence (xk, yk, sk, zk) generated by Algorithm 3.1 converges to (x̂, ŷ, ŝ, ẑ) where
x̂ is the least 2-norm solution of the primal linear program (1.1), and ŷ is the least
2-norm solution of the dual problem (1.2).

Proof. We prove this result in three steps:
(i) If the solution set is nonempty, then the iterative sequence (xk, yk, sk, zk)

generated by the algorithm is bounded.
(ii) µk → 0 and ‖Fµk(xk, yk, sk, zk)‖∞ → 0. Thus, every accumulation point of

the iterative sequence is a solution to the linear program.
(iii) The accumulation point is unique and must be the least 2-norm solution of

the linear program.
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We now prove (i). Let x∗ be an arbitrary optimal solution of (1.1), and y∗ be an
arbitrary optimal solution of its dual problem (1.2). Let (s∗, z∗) be given by

[
s∗

z∗

]
=

[
O −AT

A O

] [
x∗

y∗

]
+

[
c
−b

]
.(4.7)

Then, it is easy to see that (x∗, y∗, s∗, z∗) ≥ 0 and (x∗)T s∗ = 0 and (y∗)T z∗ = 0. That
is, (x∗, y∗, s∗, z∗) satisfies the KKT system (1.4). It follows from (4.3) and (4.4) that

(xk)T sk = µk(n + eT uk), (yk)T zk = µk(m + eT vk).(4.8)

Notice that for any (x, y) ∈ Rn+m, we have

[
x
y

]T [
(µk)pI −AT

A (µk)pI

] [
x
y

]
= (µk)p

∥∥∥∥
[

x
y

]∥∥∥∥
2

2

.(4.9)

By the positivity of (xk, yk, sk, zk), (4.5), (4.6), (4.9), (4.8), and (4.7), we have

0 ≤
[

x∗

y∗

]T [
sk

zk

]
+

[
s∗

z∗

]T [
xk

yk

]

=
[

x∗ − xk

y∗ − yk

]T [
sk

zk

]
+

[
s∗

z∗

]T [
xk

yk

]
+

[
xk

yk

]T [
sk

zk

]

=
[

x∗ − xk

y∗ − yk

]T ([
(µk)pI −AT

A (µk)pI

] [
xk

yk

]
+

[
c
−b

]
+ µk

[
wk

qk

])

+
[

s∗

z∗

]T [
xk

yk

]
+

[
xk

yk

]T [
sk

zk

]

= −
[

xk − x∗

yk − x∗

]T [
(µk)pI −AT

A (µk)pI

] [
xk − x∗

yk − x∗

]

−
[

xk − x∗

yk − y∗

]T ([
(µk)pI −AT

A (µk)pI

] [
x∗

y∗

]
+

[
c
−b

]
+ µk

[
wk

qk

])

+
[

s∗

z∗

]T [
xk

yk

]
+

[
xk

yk

]T [
sk

zk

]

= −(µk)p

∥∥∥∥
[

xk − x∗

yk − y∗

]∥∥∥∥
2

2

+
[

s∗

z∗

]T [
xk

yk

]
+

[
xk

yk

]T [
sk

zk

]

−
[

xk − x∗

yk − y∗

]T (
(µk)p

[
x∗

y∗

]
+

[
s∗

z∗

]
+ µk

[
wk

qk

])

= −(µk)p

∥∥∥∥
[

xk − x∗

yk − y∗

]∥∥∥∥
2

2

− (µk)p

[
xk − x∗

yk − y∗

]T [
x∗ + (µk)1−pwk

y∗ + (µk)1−pqk

]

+
[

xk

yk

]T [
sk

zk

]

= −(µk)p

∥∥∥∥
[

xk − x∗

yk − y∗

]∥∥∥∥
2

2

− (µk)p

[
xk − x∗

yk − y∗

]T [
x∗ + (µk)1−pwk

y∗ + (µk)1−pqk

]

+µk(m + n + eT uk + eT vk).(4.10)
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Dividing both sides of the above by (µk)p, we have

∥∥∥∥
[

xk − x∗

yk − y∗

]∥∥∥∥
2

2

≤
∥∥∥∥
[

xk − x∗

yk − y∗

]∥∥∥∥
2

∥∥∥∥
[

x∗ + (µk)1−pwk

y∗ + (µk)1−pqk

]∥∥∥∥
2

+
(
µk)1−p(m + n + eT uk + eT vk

)
.(4.11)

Since µk ≤ µ0 and (uk, vk, wk, qk) is uniformly bounded, the boundedness of the
iterative sequence (xk, yk, sk, zk) follows from the above inequality. The part (i) is
proven.

We now prove part (ii). Since all iterates are confined in Nβ(µk), it implies that
(4.1) holds for all k. Thus, to show ‖Fµk(xk, yk, sk, zk)‖∞ → 0, it suffices to show
that µk → 0. In fact, µk is monotonically decreasing since µk+1 = (1− γk)µk. Thus,
there exists a scalar µ̂ ≥ 0 such that µk → µ̂. By (i), the sequence (xk, yk, sk, zk) is
bounded. Without loss of generality, we may assume that (xk, yk, sk, zk) → (x̂, ŷ, ŝ, ẑ).
Taking the limit in (4.1), we have that

‖Fµ̂(x̂, ŷ, ŝ, ẑ)‖∞ ≤ βµ̂, (x̂, ŷ, ŝ, ẑ) ≥ 0.(4.12)

We assume to the contrary that µ̂ 6= 0, i.e., µ̂ > 0. We now derive a contradiction.
Combining the fact µk+1 = (1 − γk)µk and µk → µ̂ > 0 implies that γk → 0 as
k →∞.

We deduce from (4.12) that

‖X̂ŝ− µ̂e‖∞ ≤ βµ̂, ‖Ŷ ẑ − µ̂e‖∞ ≤ βµ̂.

Since 0 < β < 1 and (x̂, ŷ, ŝ, ẑ) ≥ 0, the above inequality implies that (x̂, ŷ, ŝ, ẑ) > 0.
Thus, by Remark 3.2, the Jacobian ∇Fµ̂(x̂, ŷ, ŝ, ẑ) is nonsingular, and hence the
matrix

[
Ŝ + µ̂pX̂ −X̂AT

Ŷ A Ẑ + µ̂pŶ

]

is nonsingular. Therefore, the following system has a unique solution, denoted by
(∆x̂, ∆ŷ, ∆ŝ, ∆ẑ),

[
Ŝ + µ̂pX̂ −X̂AT

Ŷ A Ẑ + µ̂pŶ

] [
∆x
∆y

]
=

[
µ̂e− X̂ŝ

µ̂e− Ŷ ẑ

]
−

[
X̂(−ŝ + µ̂px̂−AT ŷ + c)
Ŷ (−ẑ + Ax̂ + µ̂pŷ − b)

]
,

[
∆s
∆z

]
=

[
µ̂pI −AT

A µ̂pI

] [
∆x
∆y

]
+

[ −ŝ + µ̂px̂−AT ŷ + c
−ẑ + Ax̂ + µ̂pŷ − b

]
.

By Remark 3.2, this is equivalent to

Fµ̂(x̂, ŷ, ŝ, ẑ) +∇Fµ̂(x̂, ŷ, ŝ, ẑ)(∆x̂,∆ŷ, ∆ŝ,∆ẑ) = 0,

which implies that (∆x̂,∆ŷ, ∆ŝ,∆ẑ) is a Newton descent direction of ‖Fµ̂(x, y, s, z)‖∞
at (x̂, ŷ, ŝ, ẑ). Thus the linear search stepsize λ̂ in (3.4) and γ̂ in Step 3 of Algorithm
3.1 are both bounded below by a positive constant. By continuity, it follows that

(∆xk,∆yk,∆sk,∆zk, µk, λk, γk) → (∆x̂,∆ŷ, ∆ŝ,∆ẑ, µ̂, λ̂, γ̂).
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In particular, γk → γ̂ > 0, which contradicts γk → 0. This contradiction shows that
µk must converge to zero and thus ‖Fµk(xk, yk, sk, zk)‖ → 0 as k →∞. Therefore, for
any accumulation point (x̂, ŷ, ŝ, ẑ), by continuity we have ‖F0(x̂, ŷ, ŝ, ẑ)‖ = 0 which
implies that (x̂, ŷ) is a solution pair to the primal and the dual linear programs.

Finally, we show that the accumulation point of the iterates is the unique least
2-norm solution. From (4.10), we have

∥∥∥∥
[

xk − x∗

yk − y∗

]∥∥∥∥
2

2

≤ −
[

xk − x∗

yk − y∗

]T [
x∗ + (µk)1−pwk

y∗ + (µk)1−pqk

]

+(µk)1−p(m + n + eT uk + eT vk).

Let (x̂, ŷ, ŝ, ẑ) be an arbitrary accumulation point of the iterates. Notice that p ∈
(0, 1), µk → 0 , and (uk, vk, wk, qk) is bounded. Taking the limit in the above in-
equality, we have

∥∥∥∥
[

x̂− x∗

ŷ − y∗

]∥∥∥∥
2

2

≤ −
[

x̂− x∗

ŷ − y∗

]T [
x∗

y∗

]
,

which can be written as
∥∥∥∥
[

x̂
ŷ

]∥∥∥∥
2

2

≤
[

x̂
ŷ

]T [
x∗

y∗

]
≤

∥∥∥∥
[

x̂
ŷ

]∥∥∥∥
2

∥∥∥∥
[

x∗

y∗

]∥∥∥∥
2

.

Since (x∗, y∗) is an arbitrary solution pair of the primal and the dual, from the above
inequality we deduce that x̂ and ŷ are the least 2-norm solutions of the primal and the
dual, respectively. (In fact, substituting (x∗, y∗) by (x∗, ŷ) and (x̂, y∗), respectively,
we see that the above inequality implies that ‖(x̂, ŷ)‖2 ≤ ‖(x∗, ŷ)‖2 and ‖(x̂, ŷ)‖2 ≤
‖(x̂, y∗)‖2 for all primal and dual solutions x∗ and y∗. The desired result follows.)

5. Possibly unsolvable linear programs. We now consider a general linear
program (1.1) which is possibly unsolvable. Let R : Rn+m

+ → R+ be a measure
function for solvability of the problem (1.1), that is,

R(x, y) = ‖(AT y − c)+‖1 + ‖[−(Ax− b)]+‖1 + (cT x− bT y)+.

Clearly, the value of the above function can also be viewed as a KKT residual cor-
responding to an approximate solution (x, y) of the linear program. Notice that
(x∗, y∗) ≥ 0 is a solution to the primal and the dual (1.1) and (1.2) if and only if
R(x∗, y∗) = 0. Thus a linear program is equivalent to the following global minimiza-
tion problem:

min{R(x, y) : (x, y) ≥ 0}.(5.1)

We may refer (5.1) to the problem of minimizing the 1-norm solvability of linear
program (1.1). By a basic idea of Mangasarian [16], the above problem can be re-
formulated as a linear programming problem. Indeed, by introducing nonnegative
variables (s, z, t) ∈ Rn+m+1

+ , the problem (5.1) can be equivalently transformed into
the following linear program:

min eT (s, z, t)
s. t. AT y − c ≤ s, − (Ax− b) ≤ z, cT x− bT y ≤ t,

(x, y, s, z, t) ≥ 0,
(5.2)
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where e ∈ Rn+m+1. This problem is always feasible. In fact, for any fixed (x0, y0) ≥ 0,
the vector (x0, y0, s0, z0, t0) ≥ 0 is feasible provided that (s0, z0, t0) > 0 is sufficiently
large. Since the objective function is nonnegative, the above linear program is always
solvable, and hence the problem (5.1) has a global optimal solution. Let

c′ := (0, 0, e) ∈ Rn ×Rm ×Rn+m+1, b′ := (−c, b, 0) ∈ Rn ×Rm ×R,

A′ :=




O −AT O I O
A O I O O
−cT bT O O 1




(n+m+1)×2(m+n)+1

,

and u = (x, y, z, s, t). Then, (5.2) can be written as

min{(c′)T u : A′u ≥ b′, u ≥ 0}.

Replacing (c, A, b) by (c′, A′, b′) and applying Algorithm 3.1 to the above problem, we
can obtain the unique least 2-norm solution (x∗, y∗, s∗, z∗, t∗) of the problem (5.2).
We note that for any solution (x̂, ŷ, ŝ, ẑ, t̂) of (5.2), the following holds

ẑ = [−(Ax̂− b)]+, ŝ = (AT ŷ − c)+, t̂ = (cT x̂− bT ŷ)+.

Thus, for any solution (x̂, ŷ, ŝ, ẑ, t̂) of (5.2) we have

‖(x∗, y∗, [−(Ax∗ − b)]+, (AT y∗ − c)+, (cT x∗ − bT y∗)+)‖2
≤ ‖(x̂, ŷ, [−(Ax̂− b)]+, (AT ŷ − c)+, (cT x̂− bT ŷ)+)‖2.(5.3)

When the linear program (1.1) or (1.2) is solvable, it is easy to see that any solution
(x̂, ŷ, ŝ, ẑ, t̂) of (5.2) must satisfy that ŝ = 0, ẑ = 0 and t̂ = 0, and that (x̂, ŷ) is a
solution pair of the primal (1.1) and the dual (1.2). Conversely, if (x, y) is a solution
pair to the primal and the dual, then (x, y, 0, 0, 0) must be an optimal solution of the
problem (5.2). Thus, for solvable linear program (1.1), the inequality (5.3) reduces to

‖(x∗, y∗, 0, 0, 0)‖2 ≤ ‖(x̂, ŷ, 0, 0, 0)‖2
for all solution (x̂, ŷ, 0, 0, 0) of (5.2), which implies that x∗ and y∗ are the least 2-norm
solutions of the primal (1.1) and the dual (1.2), respectively.

In summary, when applied to the linear program (5.2), Algorithm 3.1 is convergent
no matter whether (1.1) is solvable or not. For solvable problems, the algorithm will
converges to (x∗, y∗, 0, 0, 0) where x∗ and y∗ are the least 2-norm solutions of the
primal and the dual problems (1.1) and (1.2); otherwise, Algorithm 3.1 converges to
a point which gives a minimal KKT residual.

6. Numerical results. While the linear system (3.2) is (m + n)-dimensional,
we now point out that this system can be further reduced so that at each step, only
an m- or n-dimensional linear system needs to be solved. In fact, (3.2) can be written
as

(Sk + (µk)pXk)∆x−XkAT ∆y = µke−Xk
(
(µk)pxk −AT yk + c

)
,(6.1)

(Zk + (µk)pY k)∆y + Y kA∆x = µke− Y k
(
Axk + (µk)pyk − b

)
.(6.2)
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When m ≥ n, eliminating ∆y leads to

Mk∆x = µke−Xk
(
(µk)pxk −AT yk + c

)

+XkAT (Zk + (µk)pY k)−1[µke− Y k
(
Axk + (µk)pyk − b

)
],

where Mk is an n× n matrix given by

Mk = Sk + (µk)pXk + XkAT (Zk + (µk)pY k)−1Y kA.

Thus, we can obtain ∆x by solving the above system, and then set

∆y = (Zk + (µk)pY k)−1[µke− Y k
(
Axk + (µk)pyk − b

)− Y kA∆x].

If m ≤ n, by the same way, eliminating ∆x from (6.1) and (6.2) yields

Hk∆y = µke− Y k
(
(µk)pyk + Axk − b

)

−Y kA(Sk + (µk)pXk)−1[µke−Xk
(
(µk)pxk −AT yk + c

)
],

where Hk is an m×m matrix given by

Hk = Zk + (µk)pY k + Y kA(Sk + (µk)pXk)−1XkAT .

Since the system (3.2) has a unique solution, it follows that both Mk and Hk are
nonsingular. Thus, at each step of Algorithm 3.1, we only need to factorize a matrix
of size min(m,n)× min(m,n).

In numerical experiments, we took common parameters and starting points for
all the test problems. Parameters were set as p = 0.99, σ = 1e − 5, α1 = 0.9 and
α2 = 0.85. The starting point (x0, y0, s0, z0) was set as in Remark 3.1, where µ0 and
β were given by

µ0 = max
{

1,

∥∥∥∥
(

AT y0 − c
−Ax0 + b

)∥∥∥∥
∞

}
+ 1, β = (η + 1)/2.

Before stating our numerical results on some test problems, let us first see a very
simple example with multiple solutions. Consider the following problem:

min{−x1 − 2x2 : x1 + 2x2 ≤ 8, x2 ≤ 2, x1, x2 ≥ 0}.

It is easy to check that the solution set is {(x∗1, x∗2) = (4 + 4t, 2 − 2t) : 0 ≤ t ≤ 1}.
Under a stopping rule of µk < 10−12, the following primal and dual solutions were
obtained by the proposed algorithm,

x∗ = (4.0000047139881082, 1.9999976430060873),

y∗ = (0.9999999999886861, 1.6971276334429352e− 11)

with∞-norm residual ‖F0(xk, yk, sk, zk)‖∞ = 1.1314044977885658e−11. Correspond-
ing objective value of the original problem is −8.0000000000002828. We note that (4,
2) and (1, 0) are exact least 2-norm solutions of the primal and the dual problems,
respectively, and the exact optimal objective value is −8. This example shows that
the proposed algorithm does locate the least 2-norm solution of the problem.



THE LEAST 2-NORM SOLUTION OF LINEAR PROGRAMS 17

Table 6.1

Name Rows Cols Nonz µk ‖F0‖∞ Objective
values

CPU
(secs)

beale 3 4 9 7.5e-11 2.0e-10 -1.25 .001
padberg 4 6 22 7.3e-09 1.8e-08 3.544147e-08 .001
refinery 22 14 63 9.6e-11 1.9e-09 -5.166833e+01 .08
william1 5 12 25 9.2e-11 1.6e-10 1.158471e-09 .002
william2 9 7 18 9.9e-11 3.3e-09 2.599999e+01 .05
william3 11 12 36 9.9e-10 1.3e-07 2.591899e+04 .4
afiro 35 32 117 9.9e-09 6.0e-06 -4.647531e+02 5.916
sc50a 70 48 182 8.9e-09 3.6e-06 -6.457507e+01 8.983
sc50b 70 48 170 9.9e-09 3.9e-06 -6.999999e+01 9.863
blend 117 83 789 9.9e-09 1.0e-06 -3.081215e+01 30.516
share2b 109 79 778 9.9e-09 3.7e-06 -4.157338e+02 37.600
sc105 150 103 402 9.8e-09 8.5e-06 -5.220206e+01 84.432
sc205 296 203 800 9.9e-09 2.8e-06 -5.220206e+01 325.632
scorpion 668 358 2526 9.8e-07 5.4e-05 1.878440e+03 > 500

We now give out a set of test examples and corresponding numerical results. We
used µk ≤ 10−10 or 10−8 as the stopping criterion for most of these test problems. All
tests were carried out on a DEC Alpha V 4.0 machine. Results for 14 test problems
were summarized in Table 6.1 and Table 6.2. The first problem was the well-known
Beale’s example and the second was Padberg’s example ([20], pp.60). Both problems
are cycling for simplex methods. The problem “refinery” can be found in [20]. The
problems “william1”, “william2”, and “william3” were taken from [31] (M = 50000
was used in the problem “william3”). All other test problems here were taken from
the collection of LP Data in NETLIB. In our code, all problems were transformed into
the form of (1.1). To this end, all original inequalities “≤” became “≥” by multiplying
both sides of inequalities by −1, and all equations were written equivalently as two
inequalities. This preprocessing makes no change on the number of columns and keeps
the sparsity of coefficient matrix A. However, the number of rows will be increased
when the problem has equation constraints. The numbers of rows and nonzero entries
of A in Table 6.1 are the resultant ones after this preprocessing. Under our stopping
criterion, the computational optimal objective values, the values of µk, ∞-norm resid-
ual ‖F0(xk, yk, sk, zk)‖∞, and CPU time were listed in Table 6.1. The computational
primal and dual least 2-norm solutions for these test problems were given in Table
6.2, where only the first six components were listed due to the space limitation.

From our results, we note that Algorithm 3.1, using the initial strategy in Remark
3.1, is efficient for small-scale linear programs. However, the convergence rate of the
algorithm becomes slow as the dimension of problems increases. The main reason
might be that the stepsize of Armijo-type linear search may become smaller and
smaller when iterates approach the least 2-norm solution. We also note that the
matrices Mk and Hk are dense in general cases. Thus, when m and n are large, at
each iteration a large and dense matrix needs to be factorized, which takes certain
amount of CPU time. Thus, the current version of the algorithm is not so efficient
for solving large-scale problems. Some modified versions of the algorithm are worth
studying in the future in order to improve its convergence rate. A possible method is
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to use certain approximate Newton step to accelerate the iteration as we have done
for nonlinear complementarity problems in [37].

Table 6.2

Name Primal and dual least 2-norm solution (x∗, y∗)

beale
x∗ = (1.00000, 0.00000, 1.00000, 0.00000)
y∗ = (0.00000, 1.50000, 1.25000)

padberg
x∗ = (1.29177, 0.00000, 0.64588, 0.00000, 0.64588, 0.00000)
y∗ = (0.91360, 0.91342, 0.91360, 0.91342)

refinery
x∗ = (15.00000, 10.00000, 3.50000, 6.25000, 8.00000, 1.55000, ...)
y∗ = (0.06333, 1.62166, 0.81166, 4.99246, 4.99246, 2.51578, ...)

william1
x∗ = (0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, ...)
y∗ = (0.00000, 0.00000, 0.00000, 0.00000, 0.00000)

william2
x∗ = (0.00000, 4.16154, 17.00000, 7.00000, 17.00000, 22.00000, ...)
y∗ = (0.00000, 0.00000, 1.00000, 0.00000, 1.00000, 1.00000, ...)

william3
x∗ = (0.00000, 0.00000, 39.00000, 87.00000, 56.00000, 0.00000, ...)
y∗ = (0.00000, 26.00000, 5.00000, 111.00732, 94.00864, 97.00838, ...)

afiro
x∗ = (80.00000, 25.50000, 54.50000, 84.79999, 36.85030, 0.00000, ...)
y∗ = (0.65036, 0.91201, 0.34477, 0.22857, 0.91201, 0.91201, ...)

sc50a
x∗ = (0.00000, 16.56869, 64.57507, 64.57507, 64.57507, 0.00000, ...)
y∗ = (0.00000, 0.13869, 0.91201, 0.81390, 0.85202, 0.78381, ...)

sc50b
x∗ = (29.99999, 28.00000, 42.0000, 69.99999, 69.99999, 29.99999, ...)
y∗ = (0.05836, 0.91201, 0.91201, 0.82870, 0.82871, 0.82871, ...)

blend
x∗ = (20.94480, 10.17092, 11.24735, 2.98109, 0.65970, 0.47592, ...)
y∗ = (0.21613, 0.22386, 0.26003, 0.26003, 0.25294, 0.25983, ...)

share2b
x∗ = (1.95814, 2.02325, 0.00000, 0.00000, 0.00000, 0.00000, ...)
y∗ = (0.12564, 0.00000, 0.00000, 0.00000, 0.00000, 0.33250, ...)

sc105
x∗ = (0.00000, 10.84845, 52.20206, 52.20206, 52.20206, 0.00000, ...)
y∗ = (0.00000, 0.16419, 0.91201, 0.79709, 0.84241, 0.76248, ...)

sc205
x∗ = (0.00000, 10.84845, 52.20206, 52.20206, 52.20206, 0.00000, ...)
y∗ = (0.00000, 0.16136, 0.91201, 0.79872, 0.84356, 0.76481, ...)

scorpion
x∗ = (0.00871, 0.00211, 0.00023, 0.00452, 1.42494, 0.00250, ...)
y∗ = (0.9293, 113.1449, 115.4149, 115.4149, 0.0000, 421.2979, ...)

7. Conclusions. In this paper, we have introduced a new concept of regularized
central path for linear programs, which is different from the conventional central path.
The regularized central path always exists for all linear programs, even if the linear
program is unsolvable. If a linear program is solvable, the regularized central path
converges, as the parameter µ tends to zero, to the unique least 2-norm solution
of the linear program. As a result, we propose in this paper a regularized central
path-based path-following algorithm to solve linear programming problems. This is a
new alternative algorithm for locating the least 2-norm solution of a linear program.
When applied to the equivalent problem (5.2), the iterative sequence generated by
this algorithm is always convergent no matter whether the problem is solvable or not.
If the primal problem is solvable, the limiting point of the sequence is the least 2-norm
solution; otherwise, the limiting point gives a minimal KKT residual.

It should be pointed out that most of the existing algorithms for the least-norm so-
lution of the linear program are akin to the canonical Tikhonov regularization method.
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One significance of the proposed algorithm is that it introduces the framework of
interior-point methods into the canonical Tikhonov regularization method. As a re-
sult, the proposed algorithm can be viewed as a new effective implementation version
of the classical Tikhonov regularization method. In addition, the convergence of the
algorithm needs no assumption when applied to the reformulated problem (5.2).

From our results, some interesting problems arise: What is the rate of convergence
of Algorithm 3.1? Can certain modified version of the algorithm be superlinearly (or
quadratically) convergent in the neighborhood of the least 2-norm solution of a linear
program? Can the least 2-norm solution of a linear program be solved in polynomial
time? We believe that these problems are worth studying in the future.
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