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Abstract

In this paper, an alternative theorem, and hence a su�cient solution condition, is

established for generalized variational inequality problems. The concept of exceptional

family for generalized variational inequality is introduced. This concept is general

enough to include as special cases the notions of exceptional family of elements and the

D-orientation sequence for continuous functions. Particularly, we apply the alternative

theorem for investigating the solvability of the nonlinear complementarity problems

with so-called quasi-P M
� -maps, which are broad enough to encompass the quasi-

monotone maps and P�-maps as the special cases. An existence theorem for this class of

complementarity problems is established, which signi®cantly generalizes several pre-

vious existence results in the literature. Ó 2000 Elsevier Science Inc. All rights re-

served.
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1. Introduction

Let f and g be two continuous functions from Rn into itself. The generalized
variational inequality problem, denoted by GVI�K; f ; g�, is to ®nd a vector x 2
Rn such that

g�x� 2 K; �y ÿ g�x��Tf �x�P 0 for all y 2 K; �1�
where K is a closed convex set in Rn. This problem is important for it provides a
uni®ed formulation of several well-known problems such as the following
variational inequality problem, denoted by VI�K; f �

x� 2 K; �y ÿ x��Tf �x��P 0 for all y 2 K; �2�
and complementarity problem which is to determine a vector x 2 Rn satisfying
the following relation

x P 0; f �x�P 0; xTf �x� � 0: �3�
See, Pang and Yao [16].

These problems arise in regional sciences, socio-economics analysis, energy
modeling, transportation planning, game theory, control theory and mathe-
matical programming (see for example, Refs. [1,5,6,8,13]). The variational
inequality problem has become an important domain of applied mathematics.
It has been extensively studied for several decades. A large number of exis-
tence conditions have been presented for (generalized) variational inequality
problems including the complementarity problems [1,3±5,7,9,11,12,16,20±23].
Most of these existence results have been shown by using ®xed-point theory,
degree theory, min±max methods, etc. For nonlinear complementarity
problems, quite di�erent from these methods, Smith [18] and Isac et al. [7]
proposed the argument methods of exceptional sequence and exceptional
family of elements of a continuous function, respectively. Their main results
claim that the condition ``there exists no exceptional family of elements or
exceptional sequence for the continuous functions'' is su�cient for the exis-
tence of a solution to the complementarity problem. Isac and Obuchowska [9]
showed that a variety of previous solution conditions, such as Karamardian
conditions [11,12] and Schaible and Yao condition [17], imply this su�cient
condition. Recently, Zhao [23] introduced the concept of D-orientation se-
quences for the continuous functions, and used this concept to investigate the
solvability of nonlinear complementarity problems. Both concepts of excep-
tional family of elements and D-orientation sequence can be used to establish
the alternative theorems for complementarity problems, and therefore a new
solution condition on which many new existence results can be elicited. Be-
cause of the robustness of these concepts in studying the solvability of
nonlinear complementarity problems, it has a su�cient reason to extend them
to variational inequality problems. Zhao et al. [20±22] ®rst introduced the
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concept of exceptional family for nonlinear variational inequality, and ap-
plied this concept to the study of the existence theorems for variational in-
equality problems. The exceptional family for variational inequality provides
a powerful tool for investigating the solvability of this problem. However, it
should be pointed out that, when specialized to nonlinear complementarity
problems, this concept includes as a special case the Isac et al. concept, but it
does not encompass the concept of D-orientation sequence for continuous
functions.

One purpose of this paper is to establish a uni®ed de®nition of exceptional
family for GVI�K; f ; g� such that this concept is general enough to include the
exceptional sequence, exceptional family of elements and the D-orientation
sequence when applied to nonlinear complementarity problems, and we use
this concept to establish an alternative theorem for GVI�K; f ; g�. Another
purpose of this paper is to use this alternative theorem to establish a new ex-
istence result for a class of nonlinear complementarity problems with the so-
called quasi-P M

� -maps. This result remarkably relaxes the solution condition of
Karamardian [11], Hadjisavvas and Schaible [4] (but restricted to nonlinear
complementarity problem), and Zhao and Han [22], etc. It is of interest that the
class of nonlinear quasi-P M

� -maps is signi®cantly larger than the class of quasi-
monotone maps [10] (in particular, the monotone and pseudo-monotone maps)
and the nonlinear P�-maps [22].

In the remainder of this paper, Section 2 introduces a uni®ed concept of
exceptional family for generalized variational inequality and shows a general
alternative theorem. Several special cases of the uni®ed concept are also dis-
cussed. In Section 3, we de®ne the class of nonlinear quasi-P M

� -maps and es-
tablish a new existence result for nonlinear complementarity problems with
such a class of maps. Conclusions are given in Section 4.

2. Alternative theorem

In the remainder of this section, we assume that the feasible set K is given as
follows

K � fx 2 Rn: Ei�x�6 0; i � 1; . . . ;m; Hj�x� � 0; j � 1; . . . ; lg;
where Ei�i � 1; . . . ;m� and Hj�j � 1; . . . ; l� are assumed to be convex and a�ne
real-valued di�erentiable functions, respectively. In addition, we assume that K
is an unbounded set and satis®es some standard constrained quali®cations. For
instance, K satis®es the Slater's condition, i.e., there exists at least one x� 2 K
such that Ei�x�� < 0 for all i � 1; . . . ;m. (when K � Rn

�, the Slater's condition
holds trivially).

Let E�x� � �E1�x�; . . . ;Em�x��T and H�x� � �H1�x�; . . . ;Hm�x��T be two
mappings from Rn into Rm and Rl, respectively. Then
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K � fx 2 Rn: E�x�6 0; H�x� � 0g:
Throughout the paper, k � k denotes the Euclidean norm. LetrE�x� andrH�x�
denote the Jacobian matrices of the mappings E and H, respectively.

Given b 2 �0; 1� and d 2 Rn with the following restriction: b can be prescribed
to be zero only when K � Rn

� and d belongs to the positive orthant (i.e., d > 0).
For ®xed b and d, the function

c�x� � bxTx� �1ÿ b�xTd �4�
is convex, and for each real r > 0 the level set Br � fx 2 Rn: c�x�6 rg is non-
empty. When d � 0 and b � 1, Br is reduced to the Euclidean ball. Denote by
Kr the intersection between the sets K and Br, i.e.,

Kr � K \ Br � fx 2 Rn: E�x�6 0; H�x� � 0; c�x�6 rg: �5�
It is not di�cult to see that there exists a real r0 > 0 such that for each r P r0,
Kr is a nonempty compact convex set. By the assumption on K; Kr also satis®es
some constrained quali®cations.

The following two lemmas characterize the properties of the solution to a
generalized variational inequality.

Lemma 2.1. xr solves GVI�Kr; f ; g�, which is equivalent to

g�xr� � PKr�g�xr� ÿ f �xr��;
where PKr is the projection operator on Kr with respect to the Euclidean norm, if
and only if there exist two vectors kr 2 Rm

� (m-dimensional nonnegative orthant)
and ur 2 Rl and some nonnegative scalar lr such that

f �xr� � ÿlr�bg�xr� � 1
2
�1ÿ b�d� ÿ 1

2
�rE�g�xr��Tkr �rH�g�xr��Tur�; �6�

kr
i Ei�g�xr�� � 0 for all i � 1; . . . ;m; �7�

lr�c�g�xr�� ÿ r� � 0: �8�

Proof. Let y be an arbitrary vector in Rn. By the property of projection
operator, the projection PKr�y� is the unique solution to the following problem

minfkxÿ yk2
: x 2 Krg:

Therefore, g�xr� � PKr�g�xr� ÿ f �xr�� if and only if g�xr� is the unique solution
to the following problem

min
x2Rn
fkxÿ �g�xr� ÿ f �xr��k2

: E�x�6 0; H�x� � 0; c�x�6 rg:
Since the above problem is a convex program, the Karush±Kukn±Tucker
optimality conditions completely characterize the solution of the above prob-
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lem. Therefore, there exist some vectors kr 2 Rm
� and ur 2 Rl and some scalar

lr P 0 such that the following system holds

2f �xr� � rE�g�xr��Tkr �rH�g�xr��Tur � lr�2bg�xr� � �1ÿ b�d� � 0;

�9�
E�g�xr��6 0; H�g�xr�� � 0; c�g�xr��6 r; �10�
kr

i Ei�g�xr�� � 0 for all i � 1; . . . ;m; �11�
lr�c�g�xr�� ÿ r� � 0: �12�

Since g�xr� 2 Kr, the condition (10) holds. Hence the system (9)±(12) is
equivalent to the system (6)±(8). �

Similarly, by the same proof as the above, we have the following lemma.

Lemma 2.2. x� is a solution to GVI�K; f ; g� if and only if there exist two vectors
k� 2 Rm

� and u� 2 Rl such that the following system holds

f �x�� � ÿ1
2
�rE�g�x���Tk� � rH�g�x���Tu��;

k�i Ei�g�x��� � 0 for all i � 1; . . . ;m:

We now introduce the notion of exceptional family for generalized variational
inequality.

De®nition 2.1. Let g and f be two mappings from Rn into itself. We say that a
set of points fxrgr>0 � Rn is an exceptional family for GVI�K; f ; g�, if the
sequence satis®es the following two conditions:

(p1) the sequence fg�xr�gr>0 � K and kg�xr�k ! 1 as r !1;
(p2) for every r > 0 there exist some positive scalar lr > 0 and two vectors

kr 2 Rm
� and ur 2 Rl such that

f �xr� � ÿlr�bg�xr� � 1
2
�1ÿ b�d� ÿ 1

2
�rE�g�xr��Tkr �rH�g�xr��Tur�;

�13�
kr

i Ei�g�xr�� � 0 for all i � 1; . . . ;m: �14�
The above general concept for generalized variational inequality includes
several important special cases. Let g be the identity mapping, then we have the
following concept for the nonlinear variational inequality problem (2).

De®nition 2.2. Let f be a mapping from Rn into itself, the sequence fxrgr>0 � K
is said to be an exceptional family for VI�K; f � if kxrk ! 1 as r !1 and for
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each r > 0 there exist some positive scalar lr > 0 and two vectors kr 2 Rm
� and

ur 2 Rl such that

f �xr� � ÿlr�bxr � 1
2
�1ÿ b�d� ÿ 1

2
�rE�xr�Tkr �rH�xr�Tur�;

kr
i Ei�xr� � 0 for all i � 1; . . . ;m:

If E�x� � ÿx and there exists no equation system H�x� � 0, then K � Rn
�. The

GVI�K; f ; g� reduces to the generalized complementarity problem

g�x�P 0; f �x�P 0; g�x�Tf �x� � 0:

In this case, Eqs. (13) and (14) can be written as

f �xr� � ÿlr�bg�xr� � 1
2
�1ÿ b�d� � 1

2
kr;

kr
i gi�xr� � 0 for all i � 1; . . . ;m:

Therefore, we have the following notion.

De®nition 2.3. Let f and g be two mappings from Rn into Rn. We say that a set
of points fxrgr>0 � Rn is an exceptional family for the generalized comple-
mentarity problem

g�x�P 0; f �x�P 0; g�x�Tf �x� � 0

if the sequence satis®es
(c1) kg�xr�k ! 1 as r!1 and g�xr�P 0 for all r,
(c2) for each r > 0 there exists a positive scalar lr > 0 such that

fi�xr� � ÿlr�bgi�xr� � 1
2
�1ÿ b�di� if gi�xr� > 0; �15�

fi�xr�P ÿ lr�bgi�xr� � 1
2
�1ÿ b�di� if gi�xr� � 0: �16�

Furthermore, let b � 1 and g�x� � x, we can reduce the above notion to the
following concept introduced in Ref. [7].

De®nition 2.4 (Ref. [7]). A sequence fxrgr>0 � Rn
� is an exceptional family of

elements for the problem (3) if kxrk ! 1 as r!1 and for every r > 0 there
exists lr > 0 such that

fi�xr� � ÿlrx
r
i if xr

i > 0;

fi�xr�P 0 if xr
i � 0:

De®nition 2.3 includes two special cases, i.e., b � 0 and b � 1. When b � 1,
then Eqs. (15) and (16) are reduced to
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fi�xr� � ÿlrgi�xr� if gi�xr� > 0;

fi�xr�P ÿlrgi�xr� if gi�xr� � 0:

This notion of exceptional family is di�erent from the one presented by Isac
et al. [7]. One di�erence is that their concept requires the sequence kxrk ! 1 as
r!1 instead of kg�xr�k ! 1 as r!1 (see, De®nition 5 in Ref. [7]). The
other di�erence is that their concept requires ``fi�xr�P 0 when gi�xr� � 0''.
Their concept is derived from the topological degree theory.

When b � 0 (in the case, d > 0 and K � Rn
�), conditions (15) and (16) reduce

to the following form.

fi�xr� � ÿlrdi if gi�xr� > 0;

fi�xr�P ÿlrdi if gi�xr� � 0:

The above version of exceptional family for generalized complementarity
problem can be viewed as the generalization of D-orientation sequence for a
continuous function introduced in Ref. [23]. Actually, when g�x� � x, the above
concept reduces to the D-orientation sequence for f .

We are now ready to establish an alternative theorem for GVI�K; f ; g�. This
theorem claims that the condition ``there exists no exceptional family for
GVI�K; f ; g�'' is su�cient for the existence of a solution of GVI�K; f ; g�. To
accomplish this, we will make use of the following lemma which establishes the
relations between GVI�K; f ; g� and GVI�Kr; f ; g�, where Kr is given by Eq. (5).

Lemma 2.3. Let f and g be two functions from Rn into itself. c�x� is given by
Eq. (4), then the generalized variational inequality GVI�K; f ; g� has at least one
solution if and only if there exists some r > 0 such that GVI�Kr; f ; g� has a
solution xr with property c�g�xr�� < r.

Proof. If x� solves GVI�K; f ; g�, we have g�x�� 2 K and

�y ÿ g�x���Tf �x��P 0 for all y 2 K:

Let r > 0 be a scalar such that c�g�x��� < r. From Eq. (5) and the above we
have

g�x�� 2 Kr; �y ÿ g�x���Tf �x��P 0 for all y 2 Kr;

which implies that x� solves GVI�Kr; f ; g�.
Conversely, suppose that there exists some scalar r > 0 such that

GVI�Kr; f ; g� has a solution xr with property c�g�xr�� < r. Then

g�xr� 2 Kr; �y ÿ g�xr��Tf �xr�P 0 for all y 2 Kr: �17�
It su�ces to show that
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�y ÿ g�xr��Tf �xr�P 0 for all y 2 K n Kr: �18�
In fact, let y be an arbitrary vector in K n Kr. Since K is convex and
g�xr� 2 Kr � K, we have

p�k� � ky � �1ÿ k�g�xr� 2 K for all k 2 �0; 1�:
Since c�g�xr�� < r and c�x� is continuous, there exists a su�ciently small scalar
k� > 0 such that c�p�k��� < r, hence p�k�� 2 Kr. By Eq. (17) we have

06 �p�k�� ÿ g�xr��Tf �xr� � �k�y � �1ÿ k��g�xr� ÿ g�xr��Tf �xr�
� k��y ÿ g�xr��Tf �xr�;

which implies that Eq. (18) holds. �

The following mild assumption is also needed.

Assumption 2.1. There exists at least one positive sequence frjg with rj !1 as
j!1 such that the generalized variational inequality GVI�Krj ; f ; g� is
solvable (has a solution) for each j.

Actually, if Assumption 2.1 does not hold, then there exists some r� > 0
such that for all r P r� > 0, GVI�Kr; f ; g� is not solvable, therefore
GVI�K; f ; g� has no solution by Lemma 2.3. Since Kr is bounded for all r > 0,
each VI�Kr; f � is solvable (Theorem 3.4, [5]), Assumption 2.1 holds trivially for
variational inequality VI�K; f � and complementarity problem (3).

Theorem 2.1. Suppose that f and g are two continuous functions from Rn into
itself, then the generalized variational inequality problem GVI�K; f ; g� either has
a solution or has an exceptional family.

Proof. We assume that GVI�K; f ; g� has no solution. In what follows, we prove
that GVI�K; f ; g� has an exceptional family. By Assumption 2.1, there exists an
in®nite positive sequence rj !1 as j!1 such that GVI�Krj ; f ; g� is solvable
for each j. Without loss of generality, we assume that xrj is a solution to
GVI�Krj ; f ; g�. Then by Lemma 2.3, the sequence fxrjg satis®es c�g�xrj�� � rj

which implies kg�xrj�k ! 1 as j!1 by the de®nition of the function c�x�.
Since xrj solves GVI�Krj ; f ; g�, by Lemma 2.1, there exist two vectors krj 2 Rm

�
and urj 2 Rl and some nonnegative scalar lrj

such that

f �xrj� � ÿlrj
�bg�xrj� � 1

2
�1ÿ b�d� ÿ 1

2
�rE�g�xrj��Tkrj �rH�g�xrj��Turj�;

�19�
krj

i Ei�g�xrj�� � 0 for all 1 � 1; . . . ;m: �20�
If there exists some j such that lrj

� 0, then Eq. (19) reduces to
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f �xrj� � ÿ 1
2
�rE�g�xrj��Tkrj �rH�g�xrj��Turj�: �21�

By Lemma 2.2, Eqs. (20) and (21) implies that xrj is a solution to GVI�K; f ; g�.
A contradiction. Therefore lrj

> 0 holds for all j and from Eqs. (19) and (20)
we deduce that the sequence fxrjgj!1 is an exceptional family for
GVI�K; f ; g�. �

Corollary 2.1. Let f and g be two continuous mappings from Rn into itself, if
GVI�K; f ; g� has no exceptional family, then it has a solution.

The above results establish a new su�cient condition for the solvability of
generalized variational inequality. Corollary 2.1 makes it possible for us to
investigate the solvability of generalized variational inequality via studying the
nonexistence conditions for the exceptional family. It should be pointed out
that the Theorem 2.1 needs the Assumption 2.1, however, for variational in-
equality problem (2) and complementarity problem (3), this assumption is not
needed.

3. Solvability of the complementarity problem

In this section, we de®ne a new class of nonlinear mappings called quasi-P M
� -

maps, which is signi®cantly larger than the class of nonlinear quasi-monotone
maps and nonlinear P�-maps. Under the strictly feasible condition, that is,
there exists a point u 2 Rn

� such that f �u� > 0, we will show that the nonlinear
quasi-P M

� -complementarity problem has a solution. The argument method is by
using the uni®ed concept of exceptional family for the nonlinear comple-
mentarity problem introduced in Section 2.

Recall that a map f : Rn ! Rn is said to be a quasi-monotone map if for any
distinct pair �x; y� 2 R2n, f �y�T�xÿ y� > 0 implies f �x�T�xÿ y�P 0. (see
Ref. [10]). A map f : Rn ! Rn is said to be a nonlinear P�-mapping [22]. If
there exists a constant j P 0 such that

�1� j�
X

i2I��x;y�
�xi ÿ yi��fi�x� ÿ fi�y�� �

X
i2Iÿ�x;y�

�xi ÿ yi��fi�x� ÿ fi�y��P 0;

�22�
where

I��x; y� � fi: �xi ÿ yi��fi�x� ÿ fi�y�� > 0g;
Iÿ�x; y� � fi: �xi ÿ yi��fi�x� ÿ fi�y��6 0g:

The following concept is broader than the above two classes of maps.
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De®nition 3.1. We say the function f : Rn ! Rn is a quasi-P M
� -map if there exists

some constant sP 0 such that

f �y�T�xÿ y� ÿ s max
16 i6 n

�xi ÿ yi��fi�x� ÿ fi�y�� > 0 implies f �x�T�xÿ y�P 0

�23�
for any distinct pair x; y 2 Rn.

Remark 3.1. Clearly, quasi-monotone functions are included in the class of
quasi-P M

� -maps. Indeed, the quasi-P M
� -map with the constant s � 0 is just the

quasi-monotone map. The P�-maps are also encompassed in quasi-P M
� -maps.

Actually, it is evident that Eq. (22) can be written as

�f �x� ÿ f �y��T�xÿ y� � j
X

i2I��x;y�
�xi ÿ yi��fi�x� ÿ fi�y��P 0: �24�

We consider two possible cases. The ®rst case is that I��x; y� 6� ;, thenX
i2I��x;y�

�xi ÿ yi��fi�x� ÿ fi�y��6 n max
16 i6 n

�xi ÿ yi��fi�x� ÿ fi�y��:

Thus Eq. (24) implies that

�f �x� ÿ f �y��T�xÿ y� � �jn�max
16 i6 n

�xi ÿ yi��fi�x� ÿ fi�y��P 0:

Let s � jn, the above inequality implies that the implication (23) holds.
The second case is that I��x; y� � ;. In this case, it is easy to see from

Eq. (24) that

max
16 i6 n

�xi ÿ yi��fi�x� ÿ fi�y�� � 0 for all i � 1; . . . ; n:

Thus the implication (23) holds trivially. Therefore, a P�-map must be a quasi-
P M
� -map.

Remark 3.2. In the linear case, f � Mx� q, where M 2 Rn�n and q 2 Rn, is a P�-
map if and only if M is a P�-matrix. The concept of P�-matrix was ®rst de®ned
by Kojima et al. [14], later, V�aliaho [19] showed that it is equivalent to the
concept of su�cient matrix introduced by Cottle et al. [2].

Since for the nonlinear complementarity problem the Assumption 2.1 in
Theorem 2.1 and Corollary 2.1 is not necessary, the condition that f is without
exceptional family is su�cient for the existence of a solution to the problem.
The main result of the section is proved by using such a fact.

Theorem 3.1. Let f be a continuous function from Rn into Rn. Assume f being a
quasi-P M

� -map, i.e., there exists sP 0 such that the implication (23) holds. If there
exists a point u P 0 such that f �u� > 0, then there exists no exceptional family
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for the nonlinear complementarity problem (3), thus there exists a solution for the
problem.

Proof. Assume the contrary, that is, there exists an exceptional family for the
nonlinear complementarity problem, denoted by fxrgr>0, which satis®es the
following two properties (according to De®nition 2.3).

(a) fxrg � Rn
�; kxrk ! 1;

(b) For each r, there exists a scalar lr > 0 such that

fi�xr� � ÿlr�bxr
i � 1

2
�1ÿ b�di� if xr

i > 0; �25�
fi�xr�P ÿ 1

2
lr�1ÿ b�di if xr

i � 0: �26�
Thus, we have

�xr
i ÿ ui��fi�xr� ÿ fi�u��
� ÿ�xr

i ÿ ui��lr�bxr
i � 1

2
�1ÿ b�di� � fi�u�� if xr

i > 0; �27�

�xr
i ÿ ui��fi�xr� ÿ fi�u��6 ui�12 �1ÿ b�di � fi�u�� if xr

i � 0: �28�
Therefore, for each i 2 f1; 2; . . . ; ng, we have

�xr
i ÿ ui��fi�xr� ÿ fi�u��6 ui�li�bxr

i � 1
2
�1ÿ b�di� � fi�u��: �29�

Since fxrg � Rn
� and kxrk ! 1, there must be an index q such that xr

q !1 as
r!1, and notice that

lr�bxr
q � 1

2
�1ÿ b�dq� � fq�u� > 0;

it follows from Eq. (27) that

�xr
q ÿ uq��fq�xr� ÿ fq�u�� ! ÿ1 as r!1: �30�

If there exists r0 such that

max
16 i6 n

�xr
i ÿ ui��fi�xr� ÿ fi�u�� < 0

for all r P r0, we will elicit a contradiction. Indeed, we have

f �u�T�xr ÿ u� �
X

i2fi:xr
i>0g

fi�u��xr
i ÿ ui� �

X
i2fi:xr

i�0g
ÿ uifi�u�:

The right-hand side of the above tends to 1 since xr
q !1, so that we have

f �u�T�xr ÿ u� ÿ s max
16 i6 n

�xi ÿ yi��fi�x� ÿ fi�y��P f �u�T�xr ÿ u� > 0

for su�ciently large r. Since f is a quasi-P M
� -map, the above inequality implies

that
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f �xr�T�xr ÿ u�P 0: �31�
However, by Eqs. (25) and (26)

f �xr�T�xr ÿ u�

�
X

i2fi:xr
i>0g
ÿ �xr

i ÿ ui�lr bxr
i

�
� 1

2
�1ÿ b�di

�
�

X
i2fi:xr

i�0g
ÿ uifi�xr�

6 ÿ lr

X
i2fi:xr

i>0g
�xr

i

24 ÿ ui� bxr
i

�
� 1

2
�1ÿ b�di

�
ÿ

X
i2fi:xr

i�0g

1

2
ui�1ÿ b�di

35 < 0:

�32�
The last inequality follows from that lr > 0 and xr

q !1. The above inequality
is in contradiction with Eq. (31).

In what follows, we consider the case: there exists a subsequence frjg ! 1
as j!1 such that

max
16 i6 n

xrj
i� ÿ ui� fi�xrj�� ÿ fi�u��P 0

for all rj �j � 1; 2; . . .�. We also elicit a contradiction. To accomplish this, we
consider two possible subcases.

Case 1: The sequence flrgr>0 is bounded. Clearly, there must be a subse-
quence of frjg, denoted also by frjg, such that for some ®xed index m we have

�xrj
m ÿ um��fm�xrj� ÿ fm�u�� � max

16 i6 n
xrj

i� ÿ ui� fi�xrj�� ÿ fi�u��P 0: �33�
Notice that if xrj

i > ui, Eq. (27) implies that

xrj
i� ÿ ui��fi�xrj� ÿ fi�u�� < 0:

Thus, from Eq. (33) we have that 06 xrj
m 6 um, which combines with Eq. (29) to

yield

�xrj
m ÿ um��fm�xrj� ÿ fm�u��6 um lrj

bum

��
� 1

2
�1ÿ b�dm

�
� fm�u�

�
: �34�

Combining Eqs. (33) and (34) leads to

f �u�T�xrj ÿ u� ÿ s max
16 i6 n

xrj� ÿ ui� fi�xrj�� ÿ fi�u��

P f �u�T�xrj ÿ u� ÿ sum lrj
bum

��
� 1

2
�1ÿ b�dm

�
� fm�u�

�
�

X
i2fi:xr

i>0g
fi�u�T�xrj

i ÿ ui� ÿ
X

i2fi:xr
i�0g

uifi�u�

ÿ sum lrj
bum

��
� 1

2
�1ÿ b�dm

�
� fm�u�

�
> 0: �35�
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The above last inequality follows from that xrj
q !1 and the boundedness of

flrj
g.

Since f is a quasi-P M
� -map, it follows from Eq. (35) that

f �xrj�T�xrj ÿ u�P 0: �36�
By the same argument as Eq. (32), we can show that

f �xrj�T�xrj ÿ u� < 0

holds for su�ciently large rj, which is in contradiction with Eq. (36).
Case 2: The sequence flrgr>0 is unbounded. Without loss of generality, we

assume that lr !1 as r!1. Let frjg and m be the same as Case 1. It is easy
to see that Eqs. (33) and (34) remain valid. Thus, by Eqs. (33), (34) and (25),
we have

f �xrj�T�uÿ xrj� ÿ s max
16 i6 n

xrj
i� ÿ ui� fi�xrj�� ÿ fi�u��

P f �xrj�T�uÿ xrj� ÿ sum lrj
bum

��
� 1

2
�1ÿ b�dm

�
� fm�u�

�

P
X

i2fi:xrj
i >0g

lrj
bxrj

i �
1

2
�1ÿ b�di

� �
�xrj

i ÿ ui� �
X

i2fi:xrj
i �0g

0@ ÿ 1

2
lrj

uidi�1ÿ b�
1A

ÿ slrj
bu2

m

�
� 1

2
�1ÿ b�dmum

�
ÿ sumfm�u�

� lrj

24ÿ s bu2
m

�
� 1

2
�1ÿ b�dmum

�
ÿ

X
i2fi:xrj

i �0g

1

2
uidi�1ÿ b�

�
X

i2fi:xrj
i >0g

bxrj
i

�
� 1

2
�1ÿ b�di

�
�xrj ÿ ui�

35ÿ sumfm�u�:

Since lrj
!1 and xrj

q !1, the ®rst term of the above last equality tends to1
as rj !1, thus for su�ciently large rj

f �xrj�T�uÿ xrj� ÿ s max
16 i6 n

�xrj
i ÿ ui��fi�xrj� ÿ fi�u�� > 0: �37�

By the quasi-P M
� -property of f , Eq. (37) implies that

f �u�T�uÿ xrj�P 0 �38�
holds for su�ciently large rj.

On the other hand, since fxrjg � Rn
� and there exists at least one component

xrj
q ! �1, the following inequality

f �u�T�uÿ xrj� < 0

Y.-B. Zhao, J.-Y. Yuan / Appl. Math. Comput. 109 (2000) 167±182 179



holds for su�ciently large rj, which is in contradiction with Eq. (38). The proof
is complete. �

Let b � 1 and b � 0, respectively, we have the following immediate conse-
quence of Theorem 3.1.

Corollary 3.1. Under strictly feasible condition, if f is a continuous quasi-P M
� -

mapping, then there exist no exceptional family of elements and D-orientation
sequence for the function f, and hence the corresponding nonlinear complement-
arity problem has a solution.

In the setting of nonlinear complementarity problems, Theorem 3.1 gener-
alized the results of Karamardian [11] and Cottle and Yao [3] concerning
pseudo-monotone maps. It also generalized the results of Hajisavvas and
Schaible involving quasi-monotone maps, which can be stated as follows.

Corollary 3.2 (Ref. [4]). Under strictly feasible condition, if f is a quasi-monotone
function, then the corresponding nonlinear complementarity problem has a
solution.

The following result is also straightforward from Theorem 3.1.

Corollary 3.3 (Ref. [22]). Under strictly feasible condition, if f is a nonlinear
P�-map, then the nonlinear complementarity problem has no exceptional family of
elements for f, and hence the nonlinear complementarity problem has a solution.

It should be pointed out that the strictly feasibility condition ``u P 0,
f �u� > 0'' cannot be relaxed to the feasible condition, that is, ``u P 0,
f �u�P 0''. Because quasi-P M

� -maps includes as a special case the nonlinear
monotone maps. Megiddo [15] gave an example to show that a nonlinear
monotone complementarity problem satisfying feasible condition may have no
solution.

4. Conclusions

· We introduce the concept of exceptional family for generalized variational
inequality. This concept encompasses several previous concepts such as ex-
ceptional family of elements, exceptional sequence and D-orientation se-
quence for a continuous function.

· An alternative theorem is established for generalized variational inequality.
· We de®ne the class of nonlinear quasi-P M

� -maps, which is broader than qua-
si-monotone and P�-maps.
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· We show that there exists a solution for the quasi-P M
� - complementarity

problem if the strictly feasible condition holds. This result relaxed several ex-
istence conditions in the literature.
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