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1 Introduction

Throughout the paper, ‖ · ‖ denotes the 2-norm
(Euclidean norm) of the vector in Rn. Let f :
Rn → Rn be a continuous function and K be a
closed convex set in Rn. The finite-dimensional
variational inequality, denoted by VI(K, f), is to
find an element x∗ ∈ K such that

(x− x∗)T f(x∗) ≥ 0 for all x ∈ K.

The above problem can be reformulated as the
following fixed point equation and normal equa-
tion (see e.g. [2, 11]):

πα(x) = x−ΠK(x− αf(x)) = 0, (1)

Φα(x) = f(ΠK(x)) + α(x−ΠK(x)) = 0, (2)

where α is an arbitrary positive scalar and ΠK(·)
is the projection operator on the convex set K,

i.e., ΠK(x) = minz∈K ‖z − x‖. Equation (1) is
called the fixed point equation, and (2) is called
the normal equation. It is well-known that x∗ is a
solution to VI(K, f) if and only if it is a solution
to equation (1), i.e., πα(x∗) = 0, and that if x∗

is a solution to VI(K, f), then x∗ − 1
αf(x∗) is a

solution to equation (2); Conversely, if Φα(u∗) =
0, then ΠK(u∗) is a solution to VI(K, f).

The following definition has been extensively
used in the literature.

Definition 1.1 (i) A function f : Rn → Rn

is said to be monotone if (x−y)T (f(x)−f(y)) ≥
0 for all x, y ∈ Rn.

(ii) A mapping f is said to be strongly mono-
tone if there is a scalar c > 0 such that (x −
y)T (f(x)− f(y)) ≥ c‖x− y‖2 for all x, y ∈ Rn.

(iii) f is said to be co-coercive in Rn if there
exists a constant β > 0 such that

(x− y)T (f(x)− f(y)) ≥ β ‖ f(x)− f(y) ‖2 (3)

for all x, y ∈ Rn.

The co-coercivity condition was used in sev-
eral papers such as [3, 4, 5, 9, 11, 12]. It is evident

that any co-coercive map is monotone and Lip-
schitz continuous (with constant L = 1/β) but
it is not necessary to be strongly monotone (for
example, the constant mapping). Zhao and Li
[11] showed that the co-coercivity of f can be
related to the monotonicity of πα(x) and Φα(x)
and the strong monotonicity of their Tikhonov-
type perturbed forms. They proved under suit-
able choice of α that the fixed point map and
normal map are monotone if f satisfies the co-
coercivity condition (3). They also proved the
strong monotonicity of the perturbed forms of
πα(x) and Φα(x) under co-coercivity or mono-
tonicity assumption on f . For the later use, we
state their results as follows.

Theorem 1.1 [11] Let K be an arbitrary
closed convex set in Rn. Let f : Rn → Rn be a
continuous co-coercive map with modulus β > 0,
i.e., condition (3) is satisfied. Then the following
results hold:

(a) For any fixed α satisfying 0 < α ≤ 4β, the
fixed point map πα(x) defined by (1) is monotone
in x.

(b) If scalars α and ε are chosen such that
0 < α < 4β and 0 < ε < 2(1/α − 1/(4β)), then
the perturbed map πα,ε(x) = x−ΠK(x−α(f(x)+
εx)) is strongly monotone (in x).

Theorem 1.2 [11] Let K be an arbitrary
closed convex set in Rn. Let f : Rn → Rn be a
continuous co-coercive map with modulus β > 0.
Then the following results hold:

(a) For any constant α such that α > 1/(4β),
the normal map Φα(x) given by (2) is monotone
in x.

(b) If 0 < ε < α and α > 1/(4β), then
the perturbed normal map Φα,ε(x) = f(ΠK(x))+
εΠK(x) + α(x−ΠK(x)) is strongly monotone in
x.

Error bounds have played a very important
role not only in theoretical analysis but also in
convergence analysis of iterative algorithms for
VI(K, f). A comprehensive, state-of-art survey
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of the theory and rich applications of error bounds
can be found in [1] and [6] and the references
therein. In this paper, we use the perturbed
fixed point or normal map to establish the global
bounds of the solution of VI(K, f). Our methods
are different from those approaches used in [1].
Specifically, the following two basic results are
employed to show our global bounds for solutions
of variational inequalities. To our best knowl-
edge, such results are the first time being used
to establish the global bounds for variational in-
equalities. The first one is the Williamson’s ge-
ometric estimation of fixed points of Lipschitz
contraction maps.

Lemma 1.1 [10] Let T : D ⊂ Rn → Rn

be a Lipschitz mapping of D into Rn with con-
stant L ∈ (0, 1), i.e., ‖T (x)− T (y)‖ ≤ L‖x− y‖
for all x, y in D. Let x ∈ D and suppose x 6=
T (x). Then the fixed-point of T is contained in
the closed ball B(e, κ) centered at e ∈ Rn with
radius κ, where

e = (1− 1/(1− L2))x + T (x)/(1− L2)

and
κ = L‖x− T (x)‖/(1− L2).

The next result is the upper-semicontinuity
theorem concerning weakly univalent maps es-
tablished by Ravindran and Gowda [8].

Lemma 1.2 [8] Let g : Rn → Rn be weakly
univalent, that is, g is continuous and there ex-
ists one-to-one continuous function gk : Rn →
Rn such that gk → g uniformly on every bounded
subset of Rn. Suppose that g−1(0) = {x ∈ Rn :
g(x) = 0} is nonempty and compact. Then for
any given γ > 0, there exists a scalar δ > 0 such
that for any weakly univalent function h : Rn →
Rn with

sup
Ω̄

‖h(x)− g(x)‖ < δ,

we have

∅ 6= h−1(0) ⊆ g−1(0) + γB,

where B denotes the open unit ball in Rn and Ω̄
the closure of Ω = g−1(0) + γB.

2 Global bounds for solutions
of VI(K, f)

For any set D ⊆ Rn, we denote by dist(x,D) the
distance from the vector x to D, i.e.,

dist(x,D) = {min ‖x− y‖ : y ∈ D}.

We denote the solution set of a variational in-
equality by SOL(K, f).

We now prove the global estimation for the
solution of a co-coercive VI(K, f) by using the
perturbed fixed point map and the normal map.

Theorem 2.1 Let f be a co-coercive map
with modulus β > 0 on Rn. Suppose that the so-
lution set of VI(K, f) is nonempty and bounded.
Let α be a constant satisfying 0 < α < β. Then
there exists a constant δ > 0 such that for any ε

satisfying

0 < ε < min{ δ

αM∗ ,
1
2α

,
2
α
− 2

β
},

the following estimation holds

dist(x,SOL(K, f)) ≤ ‖πα,ε(x)‖
1− r

+ α

for all x ∈ Rn where M∗ = supx∈Ω̄ ‖x‖, Ω =
SOL(K, f) + αB and

r =
√

(1− αε)2 + 2α2ε/β < 1.

Proof : Given α > 0, it well-known that the
set

π−1
α (0) = {x ∈ Rn : πα(x) = 0}

coincides with the solution of VI(K, f), i.e.,

π−1
α (0) = SOL(K, f).

By the assumption, π−1
α (0) is bounded. Let α

be a fixed constant satisfying 0 < α < β. By
Theorem 1.1 (a), πα(x) is monotone, and hence
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weakly univalent. It follows from Lemma 1.2
that there exists a constant δ > 0 such that for
any weakly univalent function h : Rn → Rn sat-
isfying

sup
x∈Ω̄

‖h(x)− πα(x)‖ < δ, (4)

where Ω̄ is the closure of the set Ω := π−1
α (0) +

αB, we have

∅ 6= h−1(0) ⊆ π−1
α (0) + αB = SOL(K, f) + αB.

(5)
Denote M∗ = supx∈Ω̄ ‖x‖. Consider the per-
turbed map πα,ε(x), where

0 < ε < min{ δ

αM∗ ,
1
2α

,
2
α
− 2

β
},

which implies that ε < 2(1/α−1/(4β)). It follows
from the Theorem 1.1 (b) that πα,ε(x) is strongly
monotone. Thus the set π−1

α,ε(0) has a unique
element, denoted by xα(ε). Notice that

sup
x∈Ω̄

‖πα,ε(x)− πα(x)‖

= sup
x∈Ω̄

‖ΠK(x− α(f(x) + εx)−ΠK(x− α(f(x))‖

≤ sup
x∈Ω̄

‖x− α(f(x) + εx)− (x− αf(x))‖

= sup
x∈Ω̄

αε‖x‖

= αεM∗

< δ.

Since any monotone map is weakly univalent,
substituting πα,ε(x) for h(x) in (4) and (5), we
have

{xα(ε)} = π−1
α,ε(0) ⊆ π−1

α (0) + αB

= SOL(K, f) + αB,

which implies that

dist(xα(ε),SOL(K, f)) ≤ α. (6)

We now give an estimation for the term ‖x −
xα(ε)‖. Since f is co-coercive, for any x ∈ Rn

we have

‖ΠK(x− α(f(x) + εx))−ΠK(y − α(f(y) + εy))‖2
≤ ‖x− α(f(x) + εx)− (y − α(f(y) + εy))‖2
= (1− αε)2‖x− y‖2 − 2α(1− αε)(x− y)T (f(x)− f(y))

+α2‖f(x)− f(y)‖2
≤ (1− αε)2‖x− y‖2 − 2α(1− αε)β‖f(x)− f(y)‖2

+α2‖f(x)− f(y)‖2 ( since ε < 1/(2α) < 1/α)

= (1− αε)2‖x− y‖2 + 2α2εβ‖f(x)− f(y)‖2
+(α2 − 2αβ)‖f(x)− f(y)‖2

≤ (1− αε)2‖x− y‖2 + 2α2εβ‖f(x)− f(y)‖2
(since 0 < α < β)

≤ ((1− αε)2 + 2α2ε/β)‖x− y‖2.

The last inequality follows from ‖f(x)−f(y)‖ ≤
(1/β)‖x − y‖ since f is a co-coercive map with
modulus β > 0. Under our choice of ε, we can
easily verify that

r =
√

(1− αε)2 + 2α2ε/β ∈ (0, 1). (7)

Therefore, the mapping pε(x) =: ΠK(x−α(f(x)+
εx)) is a contraction map. It is evident that
xα(ε) is the unique fixed point of pε(x). By
Lemma 1.1, we have

{xα(ε)} ⊂ B

(
x− x− pε(x)

1− r2
,
r‖x− pε(x)‖

1− r2

)

for all x ∈ Rn. Therefore,
∥∥∥∥xα(ε)−

[
x− x− pε(x)

1− r2

]∥∥∥∥ ≤
r‖x− pε(x)‖

1− r2

for all x ∈ Rn. Hence,

‖x− pε(x)‖
1 + r

≤ ‖x− xα(ε)‖ ≤ ‖x− pε(x)‖
1− r

.

Since πα,ε(x) = x − pε(x), particularly, we have
‖x − xα(ε)‖ ≤ ‖πα,ε(x)‖/(1 − r). Therefore, by
(6) and the above, we have

dist(x,SOL(K, f))

≤ ‖x− xα(ε)‖+ dist(xα(ε),SOL(K, f))

≤ ‖πα,ε(x)‖/(1− r) + α

for any x ∈ Rn, where r is given by (7). 2

The next global estimation is by means of a
perturbed normal map. Its proof is similar to
that of Theorem 2.1.

Theorem 2.2 Let f be co-coercive on Rn

with modulus β > 0. Suppose that the solution
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set of VI(K, f) is nonempty and bounded. Let α

be a constant satisfying

0 < ε < min{ δ

C∗ , 2α− 2
β

,
α

2
}.

Then following estimation holds for all x ∈ Rn,

dist(x,SOL(K, f)) ≤ ‖Φα,ε(x)‖/(1− r) + α

where C∗ = supx∈Ω̄ ‖ΠK(x)‖, Ω := SOL(K, f)+
αB and r =

√
(1− ε/α)2 + 2ε/α2β ∈ (0, 1).

Proof : Notice that zeros of Φα(x) are in one-
to-one correspondence with the solutions of VI(K, f).
Namely, if x∗ solves VI(K, f), then x∗− 1

αf(x∗) ∈
Φ−1

α (0); Conversely, if u∗ ∈ Φ−1
α (0), then x∗ =

ΠK(u∗) is a solution to VI(K, f). Since f and
ΠK(·) are continuous, the set of zeros of Φα(x)
is bounded if and only if SOL(K, f) is bounded.
Thus by our assumption, Φ−1

α (0) is nonempty
and bounded.

Let α > 1/β. By Theorem 1.2 (a), we see
that Φα(x) is monotone, and hence weakly uni-
valent. From Lemma 1.2, for such a given scalar
α, there exists a corresponding constant δ > 0
such that for any weakly univalent function h(x)
with

sup
x∈Ω̄

‖h(x)− Φα(x)‖ < δ (8)

where Ω̄ is the closure of the set Ω = Φ−1
α (0) +

αB, we have

∅ 6= h−1(0) ⊆ Φ−1
α (0) + αB. (9)

Let ε > 0 be given such that

0 < ε < min{ δ

C∗ , 2α− 2
β

,
α

2
},

where C∗ = supx∈Ω̄ ‖ΠK(x)‖. Then we have

sup
x∈Ω̄

‖Φα,ε(x)− Φα(x)‖

≤ sup
x∈Ω̄

‖f(ΠK(x)) + εΠK(x) + α(x−ΠK(x))

−(f(ΠK(x)) + α(x−ΠK(x)))‖
= ε sup

x∈Ω̄

‖ΠK(x)‖

= εC∗ < δ.

which implies that h(x) := Φα,ε(x) satisfies (8).
Therefore, it follows from (9) that Φ−1

α,ε(0) ⊆
Φ−1

α (0) + αB. By Theorem 1.2 (b), Φα,ε(x) is
strongly monotone, and hence Φ−1

α,ε(0) contains
a unique element denoted by xα(ε). Thus,

dist(xα(ε),Φ−1
α (0)) ≤ α. (10)

On the other hand, by co-coercive property of f ,
we have∥∥∥x− 1

α
Φα,ε(x)− (y − 1

α
Φα,ε(y))

∥∥∥
2

= ‖ − 1

α
f(ΠK(x)) + (1− ε

α
)ΠK(x)

−
[
− 1

α
f(ΠK(y)) + (1− ε

α
)ΠK(y)

]
‖2

=
1

α2
‖f(ΠK(x))− f(ΠK(y))‖2

+(
α− ε

α
)2‖ΠK(x)−ΠK(y)‖2 − 2

α
(1− ε

α
)

•(f(ΠK(x))− f(ΠK(y)))T (ΠK(x)−ΠK(y))

≤
[

1

α2
− 2β

α
(1− ε

α
)
]
‖f(ΠK(x))− f(ΠK(y))‖2

+(1− ε

α
)2‖ΠK(x)−ΠK(y)‖2

≤ 2εβ

α2
‖f(ΠK(x))− f(ΠK(y))‖2

+(1− ε

α
)2‖ΠK(x)−ΠK(y)‖2

≤
[
(1− ε

α
)2 +

2ε

α2β

]
‖ΠK(x)−ΠK(y)‖2

≤
[
(1− ε

α
)2 +

2ε

α2β

]
‖x− y‖2.

The second inequality follows from the fact

1/α2 − 2β/α ≤ 0.

The third inequality follows from that

‖f(ΠK(x))− f(ΠK(y))‖ ≤ 1
β
‖ΠK(x)−ΠK(y)‖.

Under our choice of α and ε, it is easy to see that
r =:

√
(1− ε/α)2 + 2ε/α2β ∈ (0, 1). Thus, the

mapping x− 1
αΦα,ε(x) is a Lipschitz continuous

map with the constant less than 1, i.e., a con-
traction map. Notice that the (unique) solution
xα(ε) of Φα,ε(x) = 0 is just the fixed point of
the map x− 1

αΦα,ε(x). By Lemma 1.1, we have
for any x ∈ Rn that {xα(ε)} is contained in the
following ball

B

(
−r2x

1− r2
+

x− 1
αΦα,ε(x)

1− r2
,

r‖ 1
αΦα,ε(x)‖
1− r2

)
.
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Thus for any x ∈ Rn, we have
‖Φα,ε(x)‖
α(1 + r)

≤ ‖x− xα(ε)‖ ≤ ‖Φα,ε(x)‖
α(1− r)

.

Therefor, by (10) and the above inequality, we
have

dist(x,Φ−1
α (0))

≤ ‖x− xα(ε)‖+ dist(xα(ε),Φ−1
α (0))

≤ ‖Φα,ε(x)‖
α(1− r)

+ α

for any x ∈ Rn. The proof is completed. 2

We have shown two global bounds for the so-
lution of VI(K, f) by using the perturbed fixed
point map and normal map. In particular, if
f is strongly monotone and Lipschitz continu-
ous, i.e., there exist constants c > 0 and L > 0
such that (f(x) − f(y))T (x − y) ≥ c‖x − y‖2

and L‖x − y‖ ≥ ‖f(x) − f(y)‖ for any distinct
x, y, then we see that (f(x) − f(y))T (x − y) ≥
(c/L2)‖f(x) − f(y)‖2. Thus, strongly monotone
and Lipschitz maps are co-coercive. Since in this
case the corresponding VI(K, f) has a unique
solution (see [2]), we see that results of Theo-
rems 2.1 and 2.2 hold trivially when the func-
tions are strongly monotone and Lipschitz con-
tinuous. However, in this special case, we can
further improve this result such that ‖πα(x)‖ and
‖Φα(x)‖ become the global error bounds for the
solution of VI(K, f) under suitable choice of α.
The global error bound using the residual func-
tion ‖πα(x)‖ was proved by Pang [7]. See also
Proposition 6.3.1 in [1]. So, we do not discuss the
error bounds by using ‖πα(x)‖. Here, we prove a
global error bound by using the residual function
‖Φα(x)‖.

Theorem 2.3 Let f be strongly monotone
on Rn with modulus c > 0 and let f be Lipschitz
continuous on Rn with constant L > 0. Let α be
a fixed scalar such that α > max{2c, L2/2c}. De-
note by x∗ the (unique) solution of normal equa-
tion Φα(x) = 0. Then

‖Φα(x)‖
α(1 + r)

≤ ‖x− x∗‖ ≤ ‖Φα(x)‖
α(1− r)

for all x ∈ Rn, where

r =

√
1− 2c

α

(
1− L2

2cα

)
.

Proof : We show that under the assumption
the mapping x− 1

αΦα(x) is Lipschitz continuous
on Rn and the Lipschitz constant is less than 1.
Indeed,

∥∥∥x− 1

α
Φα(x)−

(
y − 1

α
Φα(y)

)∥∥∥
2

=

∥∥∥∥−
f(ΠK(x))

α
+ ΠK(x) +

f(ΠK(y))

α
−ΠK(y)

∥∥∥∥
2

=
1

α2
‖f(ΠK(x))− f(ΠK(y))‖2 + ‖ΠK(x)−ΠK(y)‖2

− 2

α
(f(ΠK(x))− f(ΠK(y)))T (ΠK(x)−ΠK(y))

≤ L2

α2
‖ΠK(x)−ΠK(y)‖2 + ‖ΠK(x)−ΠK(y)‖2

−2c

α
‖ΠK(x)−ΠK(y)‖2

=

(
1− 2c

α
+

L2

α2

)
‖ΠK(x)−ΠK(y)‖2

≤
(

1− 2c

α
(1− L2

2cα
)

)
‖x− y‖2.

The first inequality follows from the Lipschitz
continuity and strong monotonicity of f . The
last inequality follows from the non-expansiveness
of the projection operator. Since

α > max{2c, L2/2c},

we have

r =

√
1− 2c

α
(1− L2

2cα
) ∈ (0, 1). (11)

Therefore, x− 1
αΦα(x) is a contraction map with

the constant r given as the above. It is evident
that the fixed point of x− 1

αΦα(x) coincides with
the solution of Φα(x) = 0. Denote it by x∗. By
Lemma 1.1, for any x ∈ Rn we see that {x∗} is
contained in the following ball

B

(
−r2x

1− r2
+

x− 1
αΦα(x)

1− r2
,

r‖ 1
αΦα(x)‖
1− r2

)

Therefore, we have

‖Φα(x)‖
α(1 + r)

≤ ‖x− x∗‖ ≤ ‖Φα(x)‖
α(1− r)

6



for all x ∈ Rn, where r is given by (11). 2

Remark: We have shown in the proof of
Theorem 2.3 that the map x− 1

αΦα(x) is a con-
traction map if α > max{2c, L2/2c}. By Ba-
nach’s fixed point theorem, the Picard-type iter-
ative scheme

xk+1 = xk − 1
α

Φα(xk) = ΠK(xk)− 1
α

f(ΠK(xk))

converges to the unique solution x∗, i.e., Φα(x∗) =
0, and hence y∗ = ΠK(x∗) is the unique solution
to VI(K, f). Moreover,

‖xk+1 − x∗‖ ≤ rk‖x1 − x0‖/(1− r),

where r is given by (11). Hence, the iterative
scheme

yk+1 = ΠK(ΠK(yk)− 1
α

f(ΠK(yk))),

α > max{2c, L2/2c}
converges R-linearly to the unique solution of
strongly monotone and Lipschitz continuous vari-
ational inequality problems.
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