
Locating Sparse Solutions of

Underdetermined Linear Systems via the
Reweighted ℓ1-Method

Yunbin ZHAO and Duan LI

School of Matheamtics, University of Birmingham, United Kingdom
http://web.mat.bham.ac.uk/Y.Zhao
(E-mail: y.zhao.2@bham.ac.uk)

March, 2012



Outline

◮ Introduction

◮ Reweighted algorithm framework

◮ Convergence

◮ Numerical performance

◮ Conclusions



Introduction: ℓ0-problem

◮ Many data types (e.g. signal and image processing) can be

sparsely represented.

◮ Processing tasks handling such data

◮ Compression
◮ Reconstruction
◮ Storing
◮ Separation
◮ Transmission
◮ ...

often amount to the problem:

(ℓ0) Minimize {‖x‖0 : Ax = b},

where A is an m × n matrix with m < n.



Introduction: ℓ1-problem

◮ ℓ0-problem is an NP-hard discrete optimization problem

[Natarajan, 1995].

◮ ℓ1-norm, i.e.,

‖x‖1 =
n

∑

i=1

|xi |,

is the convex envelope of ‖x‖0 over the region ‖x‖∞ ≤ 1.

◮ Replacing ‖x‖0 by ‖x‖1 yields the ℓ1-minimization:

(ℓ1) Minimize {‖x‖1 : Ax = b},

which is identical to a linear programming (LP) problem.



When does ℓ1- solves ℓ0-minimization?

Conditions for the matrix A under which ℓ0-problem is

computationally tractable:

◮ Spark and Mutual Cohence [Donoho and Elad (2003)]

◮ Restricted Isometry Property (RIP) [Candès and Tao (2005)]

◮ Null Space Property (NSP) [Cohen et al (2009), Zhang

(2008), etc.]

◮ Verifiable conditions (Juditski and Nemirovski (2011)]

◮ Range Space Property [Zhao (2012a, 2012b)]



Introduction: Reweighted ℓ1-minimization

Reweighted ℓ1-minimization)

S1. Choose x0 ∈ Rn be an initial point.

S2. Define the weight wk which is determined by xk . Then

xk+1 = argmin{‖W kx‖1 : Ax = b},

where W k = diag(wk).

S3. Use xk+1 to define W k+1 Repeat S2.

Numerical experiments indicate that the reweighted

ℓ1-minimization does outperform ℓ1-minimization in many

situations [Candès, et al (2008), ...]



Examples: Reweighted ℓ1-minimization

◮ (Candès, Wakin and Boyd (2008) ) The method (CWB) with

wk
i =

1

|xki |+ ε
, i = 1, ..., n,

◮ (Foucart and Lai (2009), etc) Weight

wk
i =

1

(|xki |+ ε)1−p
, i = 1, ..., n, (1)

where p ∈ (0, 1) is a given parameter,

The understanding of reweighted ℓ1-minimization remains very

incomplete so far. Even the convergence property of the CWB

algorithm remains unclear at present.



A unified framework of reweighted ℓ1-method

Definition. A function from Rn to R is said to be a merit function

for sparsity if it is an approximation to ‖x‖0 in some sense.

Examples:

◮ ‖x‖1. (convex approximation of ‖x‖0 over ‖x‖∞ ≤ 1)

◮ ‖x‖p , p ∈ (0, 1). (‖x‖pp → ‖x‖0 as p → 0)

◮ There exist a vast number of merit functions for sparsity.

Minimizing such a function may drive the variable x to

become sparse when a sparse solution exists.

◮ From a computational point of view, a merit function for

sparsity should admit certain desired properties such as

convexity or concavity.



A unified framework of reweighted ℓ1-method

Separable concave merit functions:

◮

F (x) =
n

∑

i=1

φi (|xi |),

where φi : R+ → R is called the kernel function.

◮ Replacing |xi | by |xi |+ ε where ε > 0 yields

min

{

Fε(x) =

n
∑

i=1

φi (|xi |+ ε) : Ax = b

}

.

Notation:
◮ For a subset S ⊆ {1, ..., n}, F (xS ) is the reduced function,

F (xS ) :=
∑

i∈S φi (|xi |).
◮ f : Rn → R+ is said to be coercive in the region D ⊆ Rn if

f (x) → ∞ as ‖x‖ → ∞ and x ∈ D.



A unified framework

For any given ε > 0, consider the merit function Fε : R
n → R

satisfies all the following properties:

Assumption:

(a) Fε(x) = Fε(|x |) for any x ∈ Rn, and Fε(x) is separable in x ,

and twice continuously differentiable with respect to x ∈ Rn
+.

(b) In Rn
+, Fε(x) is strictly increasing with respect to every

component xi and ε, and for any given γ > 0 there exists a

finite number Q(γ) such that for any S ⊆ {1, ..., n},

g(xS ) := infε↓0 Fε(xS ) ≥ Q(γ) provided xS ≥ γeS , and g(xS )

is coercive in the set {xS : xS ≥ γeS}.



Assumption (continued)

(c) In Rn
+, the gradient satisfies that ∇Fε(x) ∈ Rn

++ for any

(x , ε) ∈ Rn
+ × R++, [∇Fε(x)]i → ∞ as (xi , ε) → 0, and for

any given xi > 0 the component [∇Fε(x)]i is continuous in ε

and tends to a finite positive number as ε → 0.

(d) In Rn
+, the Hessian satisfies that yT∇2Fε(x)y ≤ −C (ε, r)‖y‖2

for any y ∈ Rn and x ∈ Rn
+ with ‖x‖ ≤ r , where r > 0 and

C (ε, r) > 0 are constants, and C (ε, r) is continuous in ε and

bounded away from zero as ε → 0.



A unified framework

The class M of merit functions:

M = {Fε : Fε satisfies the assumption above for ε > 0}.

Problem:

min

{

Fε(x) =

n
∑

i=1

φi (|xi |+ ε) : Ax = b

}

. (2)

◮ For any Fε ∈ M, (2) can be rewritten as

min{Fε(v) : Ax = b, |x | ≤ v} = min
(x ,v)∈F

Fε(v), (3)

where

F = {(x , v) : Ax = b, |x | ≤ v}.



How to handle (2)?

Linearization:

◮ Given the current point vk ,

Fε(v) = Fε(v
k) +∇Fε(v

k)T (v − vk) + o(‖v − vk‖).

◮ Thus it makes sense to solve the following problem to

generate the next point (xk+1, vk+1) :

(xk+1, vk+1) = arg min
(x ,v)∈F

{

Fε(v
k) +∇Fε(v

k)T (v − vk)
}

= arg min
(x ,v)∈F

∇Fε(v
k)T v (4)

which is a linear programming (LP) problem.



A unified framework

◮ The optimal solution (xk+1, vk+1) of (4) satisfies

vk+1 = |xk+1| for all k ≥ 0.

◮ Hence

∇Fε(v
k )T vk+1 = ∇Fε(|x

k |)T |xk+1| =
∥

∥diag
(

∇Fε(|x
k |)

)

xk+1
∥

∥

1
.

◮ Therefore, the iterative scheme (4) is nothing but

xk+1 = argmin
{∥

∥

∥
diag

(

∇Fε(|x
k |)

)

x
∥

∥

∥

1
: Ax = b

}

which is the reweighted ℓ1-minimization with weight

wk = ∇Fε(|x
k |) ∈ Rn

++.



Reweighted ℓ1-Algorithm (see Zhao and Li (2012)):

S1. Choose α, ε0 ∈ (0, 1), and let (x0, v0) ∈ Rn × Rn
+ be an

initial point.

S2. At the current iterate (xk , vk) with εk > 0, compute

(xk+1, vk+1) = arg min
(x ,v)∈F

(

∇Fεk (v
k)
)T

v

i.e.,

xk+1 = argmin{‖diag(∇Fεk (|x
k |))x‖1 : Ax = b}.

S3. Set εk+1 = αεk . Replace (xk , vk , εk) by (xk+1, vk+1, εk+1)

and repeat S2.



Specific Examples

Example 1 Notice that

(

n+

∑n
i=1 log(|xi |+ ε)

− log ε

)

→ ‖x‖0

as ε → 0. This motivates the merit function in M:

Fε(x) =

n
∑

i=1

log(|xi |+ ε).

At x ∈ Rn
+, the gradient is given by

∇Fε(x) =
(

1
x1+ε , ...,

1
xn+ε

)T

∈ Rn
++, yielding the well-known

Candés, Walkin and Boyd (CWB) reweighted ℓ1-method (2008)

with wi =
1

|xi |+ε , i = 1, ..., n



Examples

Example 2 Note that ‖x‖pp → ‖x‖0 as p → 0. For a given

p ∈ (0, 1), we define

Fε(x) =
1

p

n
∑

i=1

(|xi |+ ε)p .

At x ∈ Rn
+, the gradient is given by

∇Fε(x) =

(

1

(x1 + ε)1−p
, ...,

1

(xn + ε)1−p

)T

∈ Rn
++.

By this merit function, (4) is exactly the reweighted ℓ1-method

with weight

wi =
1

(|xi |+ ε)1−p

which was recently studied by many researchers (e.g. Foucart and

Lai (2009), ...).



Examples

Example 3 Let p ∈ (0, 1). It is easy to verify that the following

function is in M :

Fε(x) =
n

∑

i=1

log (|xi |+ ε+ (|xi |+ ε)p) .

This merit function yields a reweighted ℓ1-algorithm with the

following weight:

wi = [∇Fε(|x |)]i =
p + (|xi |+ ε)1−p

(|xi |+ ε)1−p [|xi |+ ε+ (|xi |+ ε)p]
, i = 1, ..., n,

which has not been studied in the literature.



Examples

Example 4

Let p and q ∈ (0, 1) be given. Define

Fε(x) =
1

p

n
∑

i=1

(|xi |+ ε+ (|xi |+ ε)q)p ,

which is in M. The gradient of this function at x ∈ Rn
+ is given by

[∇Fε(x)]i =
q + (xi + ε)1−q

(xi + ε)1−q [xi + ε+ (xi + ε)q]1−p
, i = 1, ..., n.



Examples

Example 5

Then the following function remains in M :

Fε(x) =
1

p

n
∑

i=1

(

|xi |+ ε+ (|xi |+ ε)2
)p

.

The associated reweighted ℓ1-minimization with

wi = [∇Fε(|x |)]i =
1 + 2(|xi |+ ε)

(|xi |+ ε+ (|xi |+ ε)2)1−p
, i = 1, ..., n

is also a new algorithm.



Examples

Example 6

Fε(x) =
n

∑

i=1

[

log(|xi |+ ε)−
1

(|xi |+ ε)p

]

(5)

The associated reweighted ℓ1-minimization uses the weight:

wi =
1 + (|xi |+ ε)p

(|xi |+ ε)p+1
, i = 1, ..., n.



Convergence of Algorithm (see Zhao and Li (2012))

Definition (Rang Space Property (RSP)).

Let A be an m × n matrix with m ≤ m. AT is said to satisfy the

range space property of order K with a constant ρ > 0 if

‖ξSc‖1 ≤ ρ‖ξS‖1

for all sets S ⊆ {1, ..., n} with |S | ≥ K , and for all ξ ∈ R(AT ), the

range space of AT .



Related to existing conditions:

◮ Restricted Isometry Property (RIP) [Candés and Tao(2005]: A

has the RIP of order k if there exists a constant δ ∈ (0, 1)

such that

(1− δ)‖z‖2 ≤ ‖Az‖2 ≤ (1 + δ)‖z‖2

for any k-sparse vector z ∈ Rn.

◮ Null Space Property (NSP) [Cohen et al (2009), Zhang

(2008),..]: A has the NSP of order k if there exists a constant

τ ∈ (0, 1) such that

‖ηS‖1 ≤ τ‖ηSc‖1

for all the sets S ⊆ {1, ..., n} with |S | ≤ k , and any

η ∈ N (A), the null space of A.



Relationship of RSP, RIP and NSP

Proposition Let m < n, and let A ∈ Rm×n and M ∈ R (n−m)×n be

full-rank matrices satisfying AMT = 0. Then the following holds:

◮ M has the NSP of order k with constant τ ∈ (0, 1) if and only

if AT has the RSP of order (n − k) with the same constant

ρ = τ.

◮ If M has the RIP of order k with constant δ ∈ (0, 1), then AT

has the RSP of order
(

n− ⌊ ̺k
1+̺⌋

)

with the constant

ρ =

(

⌊ ̺k
1+̺

⌋

k−⌊ ̺k
1+̺

⌋

)1/2
(

1
̺

)

< 1 where ̺ = (1− δ)/(1 + δ).



Theorem 4.8. Let A ∈ Rm×n with m ≤ n, and assume that AT

has the RSP of order K with constant ρ > 0 satisfying 1 + ρ < n
K
.

Let Fε ∈ M and {(xk , vk)} be generated by Algorithm 3.2. Then

[σ(xk )]n = min
1≤i≤n

|xki | → 0 as k → ∞. (6)

Theorem 4.10. Let A ∈ Rm×n with m ≤ n. Assume that AT has

the RSP of order K with constant ρ > 0 satisfying 1 + ρ < n
K
. Let

Fε ∈ M and the sequence {(xk , vk)} be generated by Algorithm

3.2. If ‖vk+1 − vk‖ → 0 as k → ∞, then there is a subsequence

{xkj } that converges to a ⌊(1 + ρ)K⌋-sparse solution of Ax = b in

the sense that [σ(xkj )]⌊(1+ρ)K+1⌋ → 0 as j → ∞.



Theorem 4.12. Assume that AT has the RSP of order K with

constant ρ > 0 satisfying that 1 + ρ < n
K
. Let Fε ∈ M and Fε(v)

be bounded below in (x , v) ∈ Rn
+ × R+ and g(x) = infε↓0 Fε(x) be

coercive in Rn
+. Let {(x

k , vk)} be generated by Algorithm 3.2.

Then there is a subsequence {xkj } that converges to a

⌊(1 + ρ)K⌋-sparse solution of Ax = b in the sense that

[σ(xkj )]⌊(1+ρ)K+1⌋ → 0 as j → ∞.



Numerical Experiments

The following reweighted algorithms were compared:

(a) Candès-Wakin-Boyd (CWB) method:

x
k+1 = arg min

{

n
∑

i=1

(

1

|xk
i |+ εk

)

|xi | : Ax = b

}

.

(b) ‘Wlp ’ method :

x
k+1 = argmin

{

n
∑

i=1

(

1

(|xk
i |+ εk)1−p

)

|xi | : Ax = b

}

, p ∈ (0, 1).

(c) ‘NW1’ algorithm derived from Example 3.3(ii):

x
k+1 = argmin

{

n
∑

i=1

(

p + (|xk
i |+ εk)

1−p

(|xk
i |+ εk)1−p

[

|xk
i |+ εk + (|xk

i |+ εk)p
]

)

|xi | : Ax = b

}

where p ∈ (0, 1).



(d) ‘NW2’ algorithm derived from Example 3.5:

x
k+1 = argmin

{

n
∑

i=1

(

q + (|xk
i |+ εk)

1−q

(|xk
i |+ εk)1−q

[

|xk
i |+ εk + (|xk

i |+ εk)q
]1−p

)

|xi | : Ax = b

where p, q ∈ (0, 1).

(e) ‘NW3’ algorithm derived from Example 3.5 (p ∈ (0, 1/2]):

x
k+1 = argmin

{

n
∑

i=1

(

1 + 2(|xk
i |+ εk)

(|xk
i |+ εk + (|xk

i |+ εk)2)1−p

)

|xi | : Ax = b

}

.

(f) ‘NW4’ algorithm based on Example 3.6(p ∈ (0,∞):

x
k+1 = argmin

{

n
∑

i=1

(

1 + (|xk
i |+ εk)

p

(|xk
i |+ εk)1+p

)

|xi | : Ax = b

}

.



Numerical Experiments

◮ Randomly generate (A, x) where A ∈ R50×250, and x is a

k-sparse vector in R250, and k = 1, 2, ..., 30.

◮ Based on the following assumption: The entries of A and x on

its support are i.i.d Gaussian random variables with zero mean

and unit variances.

◮ For every given sparsity k , 500 pairs of (A, x) were generated.

◮ Every reweighted algorithm was executed only 4 iterations,

and α = 0.5, ε0 = 0.01 and x0 = e ∈ R250 were used in

Algorithm 3.2.

◮ Given a k-sparse solution x , the algorithm claims to be

successful in finding the k-sparse solution x if the found

solution xk satisfies that ‖xk‖0̃ ≤ k and ‖xk − x‖ ≤ 10−5.

‖xk‖0̃ is the number of components of x satisfying

|xki | ≥ 10−5.



Numerical Experiments
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(a) p = 0.5
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(b) p = 0.3



Numerical Experiments
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(a) p = 0.7
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(b) p = 0.3
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(c) p = 0.1
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(d) p = 0.01



Numerical Experiments

It is interesting to test algorithms using a different parameter

updating rule.

Candès, Wakin and Boyd (2008) proposed the following rule:

εk = max
{

[σ(xk)]i0 , 10
−3

}

,

where i0 denotes the nearest integer to m/[4 log(n/m)].



Numerical Experiments
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(i) p = 0.5, εk is updated by (32)
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(ii) p = 0.3, εk is updated by (32)



Conclusions

◮ Through the linearization technique, minimizing the concave

merit functions for sparsity yields a unified approach for the

reweighted ℓ1-minimization algorithms.

◮ By this unified approach, we can construct various new

specific reweighted ℓ1-algorithms for the sparse solution of

linear systems, and develop a new and unified convergence

theory for a large family of these algorithms.

◮ Our convergence analysis is based on the Range Space

Property (RSP), which is different from the existing

RIP/NSP-based analysis.

◮ As special cases of our general framework, a convergence

result for the well-known ℓp-quasi-norm-based algorithm and

Candès-Wakin-Boyd method can be obtained.



Conclusions (continued)

◮ We have proved that, under suitable conditions, a large family

of reweighted ℓ1-algorithms can generate a solution with

certain level of sparsity to the linear system.

◮ Although the simulation shows that reweighted ℓ1-algorithms

outperform the standard ℓ1-method in many situations, a

rigorous mathematical proof for this phenomena has not been

carried out so far. This remains an open question in this field.
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