Locating Sparse Solutions of Underdetermined Linear Systems via the Reweighted ℓ_1 -Method

Yunbin ZHAO and Duan LI

School of Matheamtics, University of Birmingham, United Kingdom http://web.mat.bham.ac.uk/Y.Zhao (E-mail: y.zhao.20bham.ac.uk)

March, 2012

Outline

- Introduction
- Reweighted algorithm framework

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Convergence
- Numerical performance
- Conclusions

Introduction: ℓ_0 -problem

- Many data types (e.g. signal and image processing) can be sparsely represented.
- Processing tasks handling such data
 - Compression
 - Reconstruction
 - Storing
 - Separation
 - Transmission
 - ► ...

often amount to the problem:

```
(\ell_0) Minimize {||x||_0 : Ax = b},
```

(日)

where A is an $m \times n$ matrix with m < n.

Introduction: ℓ_1 -problem

- *l*₀-problem is an NP-hard discrete optimization problem [Natarajan, 1995].
- ▶ ℓ₁-norm, i.e.,

$$||x||_1 = \sum_{i=1}^n |x_i|,$$

is the convex envelope of $\|x\|_0$ over the region $\|x\|_\infty \leq 1$.

• Replacing $||x||_0$ by $||x||_1$ yields the ℓ_1 -minimization:

$$(\ell_1)$$
 Minimize $\{ \|x\|_1 : Ax = b \},\$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

which is identical to a linear programming (LP) problem.

When does ℓ_1 - solves ℓ_0 -minimization?

Conditions for the matrix A under which ℓ_0 -problem is computationally tractable:

- Spark and Mutual Cohence [Donoho and Elad (2003)]
- Restricted Isometry Property (RIP) [Candès and Tao (2005)]

- Null Space Property (NSP) [Cohen et al (2009), Zhang (2008), etc.]
- Verifiable conditions (Juditski and Nemirovski (2011)]
- Range Space Property [Zhao (2012a, 2012b)]

Introduction: Reweighted ℓ_1 -minimization

Reweighted ℓ_1 -minimization)

S1. Choose $x^0 \in \mathbb{R}^n$ be an initial point.

S2. Define the weight w^k which is determined by x^k . Then

$$x^{k+1} = \arg\min\{\|W^k x\|_1 : Ax = b\},\$$

where $W^k = \operatorname{diag}(w^k)$.

S3. Use x^{k+1} to define W^{k+1} Repeat S2.

Numerical experiments indicate that the reweighted ℓ_1 -minimization does outperform ℓ_1 -minimization in many situations [Candès, et al (2008), ...]

・ロト ・団ト ・ヨト ・ヨー うへぐ

Examples: Reweighted ℓ_1 -minimization

▶ (Candès, Wakin and Boyd (2008)) The method (CWB) with

$$w_i^k = rac{1}{|x_i^k| + \varepsilon}, \ i = 1, ..., n,$$

(Foucart and Lai (2009), etc) Weight

$$w_i^k = \frac{1}{(|x_i^k| + \varepsilon)^{1-p}}, \ i = 1, ..., n,$$
 (1)

where $p \in (0,1)$ is a given parameter,

The understanding of reweighted ℓ_1 -minimization remains very incomplete so far. Even the convergence property of the CWB algorithm remains unclear at present.

A unified framework of reweighted ℓ_1 -method

Definition. A function from R^n to R is said to be a *merit function for sparsity* if it is an approximation to $||x||_0$ in some sense. **Examples:**

- $||x||_1$. (convex approximation of $||x||_0$ over $||x||_\infty \le 1$)
- $\blacktriangleright \ \|x\|_p, \ p \in (0,1). \ (\|x\|_p^p \to \|x\|_0 \text{ as } p \to 0)$
- There exist a vast number of merit functions for sparsity. Minimizing such a function may drive the variable x to become sparse when a sparse solution exists.
- From a computational point of view, a merit function for sparsity should admit certain desired properties such as convexity or concavity.

A unified framework of reweighted ℓ_1 -method

Separable concave merit functions:

$$F(x) = \sum_{i=1}^{n} \phi_i(|x_i|),$$

where $\phi_i : R_+ \to R$ is called the kernel function.

• Replacing $|x_i|$ by $|x_i| + \varepsilon$ where $\varepsilon > 0$ yields

$$\min\left\{F_{\varepsilon}(x)=\sum_{i=1}^{n}\phi_{i}(|x_{i}|+\varepsilon):Ax=b\right\}.$$

Notation:

- ▶ For a subset $S \subseteq \{1, ..., n\}$, $F(x_S)$ is the reduced function, $F(x_S) := \sum_{i \in S} \phi_i(|x_i|)$.
- ▶ $f: R^n \to R_+$ is said to be coercive in the region $D \subseteq R^n$ if $f(x) \to \infty$ as $||x|| \to \infty$ and $x \in D$.

A unified framework

For any given $\varepsilon > 0$, consider the merit function $F_{\varepsilon} : \mathbb{R}^n \to \mathbb{R}$ satisfies all the following properties:

Assumption:

(a)
$$F_{\varepsilon}(x) = F_{\varepsilon}(|x|)$$
 for any $x \in \mathbb{R}^n$, and $F_{\varepsilon}(x)$ is separable in x ,
and twice continuously differentiable with respect to $x \in \mathbb{R}^n_+$.

(b) In Rⁿ₊, F_ε(x) is strictly increasing with respect to every component x_i and ε, and for any given γ > 0 there exists a finite number Q(γ) such that for any S ⊆ {1,..., n}, g(x_S) := inf_{ε↓0} F_ε(x_S) ≥ Q(γ) provided x_S ≥ γe_S, and g(x_S) is coercive in the set {x_S : x_S ≥ γe_S}.

Assumption (continued)

- (c) In Rⁿ₊, the gradient satisfies that ∇F_ε(x) ∈ Rⁿ₊₊ for any (x,ε) ∈ Rⁿ₊ × R₊₊, [∇F_ε(x)]_i → ∞ as (x_i,ε) → 0, and for any given x_i > 0 the component [∇F_ε(x)]_i is continuous in ε and tends to a finite positive number as ε → 0.
- (d) In R_{+}^{n} , the Hessian satisfies that $y^{T}\nabla^{2}F_{\varepsilon}(x)y \leq -C(\varepsilon, r)||y||^{2}$ for any $y \in R^{n}$ and $x \in R_{+}^{n}$ with $||x|| \leq r$, where r > 0 and $C(\varepsilon, r) > 0$ are constants, and $C(\varepsilon, r)$ is continuous in ε and bounded away from zero as $\varepsilon \to 0$.

(日) (同) (三) (三) (三) (○) (○)

A unified framework

The class \mathcal{M} of merit functions:

 $\mathcal{M} = \{ F_{\varepsilon} : F_{\varepsilon} \text{ satisfies the assumption above for } \varepsilon > 0 \}.$

Problem:

$$\min\left\{F_{\varepsilon}(x) = \sum_{i=1}^{n} \phi_i(|x_i| + \varepsilon) : Ax = b\right\}.$$
 (2)

▶ For any $F_{\varepsilon} \in \mathcal{M}$, (2) can be rewritten as

$$\min\{F_{\varepsilon}(v): Ax = b, |x| \le v\} = \min_{(x,v) \in \mathcal{F}} F_{\varepsilon}(v), \qquad (3)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where

$$\mathcal{F} = \{(x, v) : Ax = b, |x| \leq v\}.$$

How to handle (2)?

Linearization:

- Given the current point v^k , $F_{\varepsilon}(v) = F_{\varepsilon}(v^k) + \nabla F_{\varepsilon}(v^k)^T (v - v^k) + o(||v - v^k||).$
- Thus it makes sense to solve the following problem to generate the next point (x^{k+1}, v^{k+1}):

$$\begin{aligned} (x^{k+1}, v^{k+1}) &= \arg \min_{(x, v) \in \mathcal{F}} \left\{ F_{\varepsilon}(v^k) + \nabla F_{\varepsilon}(v^k)^T (v - v^k) \right\} \\ &= \arg \min_{(x, v) \in \mathcal{F}} \nabla F_{\varepsilon}(v^k)^T v$$
(4)

which is a linear programming (LP) problem.

A unified framework

• The optimal solution (x^{k+1}, v^{k+1}) of (4) satisfies

$$v^{k+1} = |x^{k+1}|$$
 for all $k \ge 0$.

Hence

$$\nabla F_{\varepsilon}(\mathbf{v}^{k})^{T}\mathbf{v}^{k+1} = \nabla F_{\varepsilon}(|\mathbf{x}^{k}|)^{T}|\mathbf{x}^{k+1}| = \left\| \operatorname{diag}\left(\nabla F_{\varepsilon}(|\mathbf{x}^{k}|) \right) \mathbf{x}^{k+1} \right\|_{1}.$$

Therefore, the iterative scheme (4) is nothing but

$$x^{k+1} = \arg\min\left\{\left\|\operatorname{diag}\left(\nabla F_{\varepsilon}(|x^{k}|)\right)x\right\|_{1}: Ax = b\right\}$$

which is the **reweighted** ℓ_1 -minimization with weight $w^k = \nabla F_{\varepsilon}(|x^k|) \in R_{++}^n$.

Reweighted ℓ_1 -Algorithm (see Zhao and Li (2012)):

- S1. Choose α , $\varepsilon_0 \in (0, 1)$, and let $(x^0, v^0) \in \mathbb{R}^n \times \mathbb{R}^n_+$ be an initial point.
- S2. At the current iterate (x^k, v^k) with $\varepsilon_k > 0$, compute

$$(x^{k+1}, v^{k+1}) = \arg\min_{(x,v)\in\mathcal{F}} \left(\nabla \mathcal{F}_{\varepsilon_k}(v^k)\right)^T v$$

i.e.,

S3

$$\begin{aligned} x^{k+1} &= \arg\min\{\|\operatorname{diag}(\nabla F_{\varepsilon_k}(|x^k|))x\|_1 : Ax = b\}. \end{aligned}$$

Set $\varepsilon_{k+1} &= \alpha \varepsilon_k$. Replace $(x^k, v^k, \varepsilon_k)$ by $(x^{k+1}, v^{k+1}, \varepsilon_{k+1})$
and repeat S2.

(日)

Specific Examples

Example 1 Notice that

$$\left(n + \frac{\sum_{i=1}^{n} \log(|x_i| + \varepsilon)}{-\log \varepsilon}\right) \to \|x\|_0$$

as $\varepsilon \to 0$. This motivates the merit function in \mathcal{M} :

$$F_{\varepsilon}(x) = \sum_{i=1}^{n} \log(|x_i| + \varepsilon).$$

At $x \in R_{+}^{n}$, the gradient is given by $\nabla F_{\varepsilon}(x) = \left(\frac{1}{x_{1}+\varepsilon}, ..., \frac{1}{x_{n}+\varepsilon}\right)^{T} \in R_{++}^{n}$, yielding the well-known Candés, Walkin and Boyd (CWB) reweighted ℓ_{1} -method (2008) with $w_{i} = \frac{1}{|x_{i}|+\varepsilon}, i = 1, ..., n$

Example 2 Note that $||x||_p^p \to ||x||_0$ as $p \to 0$. For a given $p \in (0, 1)$, we define

$$F_{\varepsilon}(x) = \frac{1}{p} \sum_{i=1}^{n} (|x_i| + \varepsilon)^p.$$

At $x \in R_+^n$, the gradient is given by

$$abla F_{\varepsilon}(x) = \left(\frac{1}{(x_1 + \varepsilon)^{1-p}}, ..., \frac{1}{(x_n + \varepsilon)^{1-p}}\right)^T \in R_{++}^n.$$

By this merit function, (4) is exactly the reweighted ℓ_1 -method with weight

$$w_i = \frac{1}{(|x_i| + \varepsilon)^{1-p}}$$

which was recently studied by many researchers (e.g. Foucart and Lai (2009), ...).

Example 3 Let $p \in (0, 1)$. It is easy to verify that the following function is in \mathcal{M} :

$$F_{\varepsilon}(x) = \sum_{i=1}^{n} \log \left(|x_i| + \varepsilon + (|x_i| + \varepsilon)^p \right).$$

This merit function yields a reweighted ℓ_1 -algorithm with the following weight:

$$w_i = [\nabla F_{\varepsilon}(|x|)]_i = \frac{p + (|x_i| + \varepsilon)^{1-p}}{(|x_i| + \varepsilon)^{1-p} [|x_i| + \varepsilon + (|x_i| + \varepsilon)^p]}, i = 1, ..., n,$$

(日)

which has not been studied in the literature.

Example 4 Let p and $q \in (0, 1)$ be given. Define

$$F_{\varepsilon}(x) = \frac{1}{p} \sum_{i=1}^{n} (|x_i| + \varepsilon + (|x_i| + \varepsilon)^q)^p,$$

which is in \mathcal{M} . The gradient of this function at $x \in \mathbb{R}^n_+$ is given by

$$[\nabla F_{\varepsilon}(x)]_{i} = \frac{q + (x_{i} + \varepsilon)^{1-q}}{(x_{i} + \varepsilon)^{1-q} [x_{i} + \varepsilon + (x_{i} + \varepsilon)^{q}]^{1-p}}, \ i = 1, ..., n.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example 5

Then the following function remains in \mathcal{M} :

$$F_{\varepsilon}(x) = \frac{1}{p} \sum_{i=1}^{n} \left(|x_i| + \varepsilon + (|x_i| + \varepsilon)^2 \right)^p.$$

The associated reweighted $\ell_1\text{-minimization}$ with

$$w_i = [\nabla F_{\varepsilon}(|x|)]_i = \frac{1 + 2(|x_i| + \varepsilon)}{(|x_i| + \varepsilon + (|x_i| + \varepsilon)^2)^{1-p}}, i = 1, ..., n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

is also a new algorithm.

Example 6

$$F_{\varepsilon}(x) = \sum_{i=1}^{n} \left[\log(|x_i| + \varepsilon) - \frac{1}{(|x_i| + \varepsilon)^p} \right]$$
(5)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The associated reweighted $\ell_1\text{-minimization}$ uses the weight:

$$w_i = \frac{1 + (|x_i| + \varepsilon)^p}{(|x_i| + \varepsilon)^{p+1}}, \ i = 1, ..., n.$$

Convergence of Algorithm (see Zhao and Li (2012))

Definition (Rang Space Property (RSP)). Let A be an $m \times n$ matrix with $m \le m$. A^T is said to satisfy the range space property of order K with a constant $\rho > 0$ if

 $\|\xi s_c\|_1 \le \rho \|\xi s\|_1$

for all sets $S \subseteq \{1, ..., n\}$ with $|S| \ge K$, and for all $\xi \in \mathcal{R}(A^T)$, the range space of A^T .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Related to existing conditions:

► <u>Restricted Isometry Property</u> (RIP) [Candés and Tao(2005]: A has the RIP of order k if there exists a constant δ ∈ (0, 1) such that

$$(1-\delta)\|z\|_2 \le \|Az\|_2 \le (1+\delta)\|z\|_2$$

for any k-sparse vector $z \in R^n$.

► Null Space Property (NSP) [Cohen et al (2009), Zhang (2008),..]: A has the NSP of order k if there exists a constant τ ∈ (0,1) such that

$$\|\eta_{\mathcal{S}}\|_1 \leq \tau \|\eta_{\mathcal{S}_c}\|_1$$

for all the sets $S \subseteq \{1, ..., n\}$ with $|S| \le k$, and any $\eta \in \mathcal{N}(A)$, the null space of A.

Relationship of RSP, RIP and NSP

Proposition Let m < n, and let $A \in \mathbb{R}^{m \times n}$ and $M \in \mathbb{R}^{(n-m) \times n}$ be full-rank matrices satisfying $AM^T = 0$. Then the following holds:

- M has the NSP of order k with constant τ ∈ (0, 1) if and only if A^T has the RSP of order (n − k) with the same constant ρ = τ.
- ▶ If *M* has the RIP of order *k* with constant $\delta \in (0, 1)$, then A^T has the RSP of order $\left(n \lfloor \frac{\varrho k}{1+\varrho} \rfloor\right)$ with the constant $\rho = \left(\frac{\lfloor \frac{\varrho k}{1+\varrho} \rfloor}{k \lfloor \frac{\varrho k}{1+\varrho} \rfloor}\right)^{1/2} \left(\frac{1}{\varrho}\right) < 1 \text{ where } \varrho = (1 \delta)/(1 + \delta).$

Theorem 4.8. Let $A \in \mathbb{R}^{m \times n}$ with $m \leq n$, and assume that A^T has the RSP of order K with constant $\rho > 0$ satisfying $1 + \rho < \frac{n}{K}$. Let $F_{\varepsilon} \in \mathcal{M}$ and $\{(x^k, v^k)\}$ be generated by Algorithm 3.2. Then

$$[\sigma(x^k)]_n = \min_{1 \le i \le n} |x_i^k| \to 0 \text{ as } k \to \infty.$$
(6)

Theorem 4.10. Let $A \in \mathbb{R}^{m \times n}$ with $m \leq n$. Assume that A^T has the RSP of order K with constant $\rho > 0$ satisfying $1 + \rho < \frac{n}{K}$. Let $F_{\varepsilon} \in \mathcal{M}$ and the sequence $\{(x^k, v^k)\}$ be generated by Algorithm 3.2. If $||v^{k+1} - v^k|| \to 0$ as $k \to \infty$, then there is a subsequence $\{x^{k_j}\}$ that converges to a $\lfloor (1 + \rho)K \rfloor$ -sparse solution of Ax = b in the sense that $[\sigma(x^{k_j})]_{\lfloor (1+\rho)K+1 \rfloor} \to 0$ as $j \to \infty$. **Theorem 4.12.** Assume that A^T has the RSP of order K with constant $\rho > 0$ satisfying that $1 + \rho < \frac{n}{K}$. Let $F_{\varepsilon} \in \mathcal{M}$ and $F_{\varepsilon}(v)$ be bounded below in $(x, v) \in R^n_+ \times R_+$ and $g(x) = \inf_{\varepsilon \downarrow 0} F_{\varepsilon}(x)$ be coercive in R^n_+ . Let $\{(x^k, v^k)\}$ be generated by Algorithm 3.2. Then there is a subsequence $\{x^{k_j}\}$ that converges to a $\lfloor (1 + \rho)K \rfloor$ -sparse solution of Ax = b in the sense that $\lfloor \sigma(x^{k_j}) \rfloor_{\lfloor (1+\rho)K+1 \rfloor} \to 0$ as $j \to \infty$.

The following reweighted algorithms were compared:

(a) Candès-Wakin-Boyd (CWB) method:

$$x^{k+1} = \arg \min \left\{ \sum_{i=1}^n \left(\frac{1}{|x_i^k| + \varepsilon_k} \right) |x_i| : Ax = b
ight\}.$$

(b) 'WI_p' method :

$$x^{k+1} = \arg\min\left\{\sum_{i=1}^n \left(\frac{1}{(|x_i^k| + \varepsilon_k)^{1-p}}\right)|x_i| : Ax = b\right\}, \quad p \in (0,1).$$

(c) 'NW1' algorithm derived from Example 3.3(ii):

$$x^{k+1} = \arg\min\left\{\sum_{i=1}^{n} \left(\frac{p + (|x_i^k| + \varepsilon_k)^{1-p}}{(|x_i^k| + \varepsilon_k)^{1-p} \left[|x_i^k| + \varepsilon_k + (|x_i^k| + \varepsilon_k)^p\right]}\right) |x_i| : Ax = b\right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $p \in (0, 1)$.

(d) 'NW2' algorithm derived from Example 3.5:

$$x^{k+1} = \arg\min\left\{\sum_{i=1}^{n} \left(\frac{q + (|x_i^k| + \varepsilon_k)^{1-q}}{(|x_i^k| + \varepsilon_k)^{1-q} \left[|x_i^k| + \varepsilon_k + (|x_i^k| + \varepsilon_k)^q\right]^{1-p}}\right)|x_i| : Ax = b$$

where $p, q \in (0, 1)$.

(e) 'NW3' algorithm derived from Example 3.5 ($p \in (0, 1/2]$):

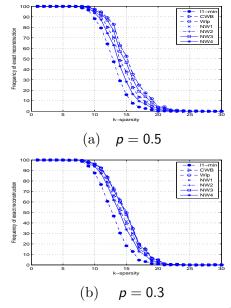
$$x^{k+1} = \arg\min\left\{\sum_{i=1}^n \left(\frac{1+2(|x_i^k|+\varepsilon_k)}{(|x_i^k|+\varepsilon_k+(|x_i^k|+\varepsilon_k)^2)^{1-\rho}}\right)|x_i|: Ax = b\right\}.$$

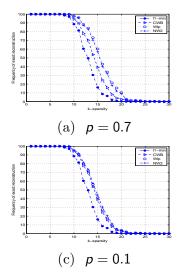
(f) 'NW4' algorithm based on Example 3.6($p \in (0,\infty)$:

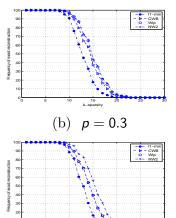
$$x^{k+1} = \arg\min\left\{\sum_{i=1}^n \left(\frac{1+(|x_i^k|+\varepsilon_k)^p}{(|x_i^k|+\varepsilon_k)^{1+p}}\right)|x_i| : Ax = b\right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► Randomly generate (A, x) where A ∈ R^{50×250}, and x is a k-sparse vector in R²⁵⁰, and k = 1, 2, ..., 30.
- Based on the following assumption: The entries of A and x on its support are i.i.d Gaussian random variables with zero mean and unit variances.
- For every given sparsity k, 500 pairs of (A, x) were generated.
- ► Every reweighted algorithm was executed only 4 iterations, and α = 0.5, ε₀ = 0.01 and x⁰ = e ∈ R²⁵⁰ were used in Algorithm 3.2.
- Given a k-sparse solution x, the algorithm claims to be successful in finding the k-sparse solution x if the found solution x^k satisfies that ||x^k||₀ ≤ k and ||x^k x|| ≤ 10⁻⁵.
 ||x^k||₀ is the number of components of x satisfying |x^k_i| ≥ 10⁻⁵.







15 k-sparsity (d) *p* = 0.01

10

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

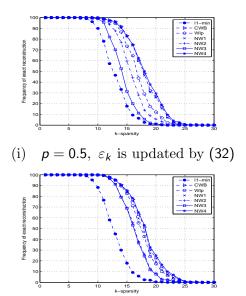
It is interesting to test algorithms using a different parameter updating rule.

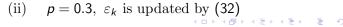
Candès, Wakin and Boyd (2008) proposed the following rule:

$$\varepsilon_k = \max\left\{ [\sigma(x^k)]_{i_0}, 10^{-3} \right\},\,$$

(日)

where i_0 denotes the nearest integer to $m/[4 \log(n/m)]$.





Conclusions

- Through the linearization technique, minimizing the concave merit functions for sparsity yields a unified approach for the reweighted l₁-minimization algorithms.
- ► By this unified approach, we can construct various new specific reweighted l₁-algorithms for the sparse solution of linear systems, and develop a new and unified convergence theory for a large family of these algorithms.
- Our convergence analysis is based on the Range Space
 Property (RSP), which is different from the existing
 RIP/NSP-based analysis.
- ► As special cases of our general framework, a convergence result for the well-known ℓ_p-quasi-norm-based algorithm and Candès-Wakin-Boyd method can be obtained.

Conclusions (continued)

- ▶ We have proved that, under suitable conditions, a large family of reweighted ℓ₁-algorithms can generate a solution with certain level of sparsity to the linear system.
- ► Although the simulation shows that reweighted l₁-algorithms outperform the standard l₁-method in many situations, a rigorous mathematical proof for this phenomena has not been carried out so far. This remains an open question in this field.

(日)

Key References

- E.J. Candès, M.B. Wakin and S.P. Boyd, Enhancing sparsity by reweighted ℓ₁ minimization, *J. Fourier Anal. Appl.*, 14 (2008), pp. 877-905.
- S. Foucart and M.J. Lai, Sparsest solutions of underdetermined linear systems via ℓ_p-minimization for 0 < q ≤ 1, Applied and compational Harmonic Analysis, 26 (2009), pp. 395-407.
- Y.B. Zhao and D. Li, Reweighted ℓ₁-minimization for sparse solutions of underdetermined linear systems, SIAM J. Optim, 22 (2012), no.3, pp. 1065-1088.
- Y.B. Zhao, RSP-Based Analysis for Sparsest and Least ℓ_1 -Norm Solutions to Underdetermined Linear Systems, Technical report, University of Birmingham, 2012.
- Y.B. Zhao, Equivalence and Strong Equivalence between the Sparsest and Least I1-Norm Nonnegative Solutions of Linear Systems and Their Applications, Technical report, University of Birmingham, 2012.