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REWEIGHTED ℓ1-MINIMIZATION FOR SPARSE SOLUTIONS TO

UNDERDETERMINED LINEAR SYSTEMS ∗

YUN-BIN ZHAO† AND DUAN LI‡

Abstract. Numerical experiments have indicated that the reweighted ℓ1-minimization performs
exceptionally well in locating sparse solutions of underdetermined linear systems of equations. We
show that reweighted ℓ1-methods are intrinsically associated with the minimization of the so-called
merit functions for sparsity, which are essentially concave approximations to the cardinality function.
Based on this observation, we further show that a family of reweighted ℓ1-algorithms can be system-
atically derived from the perspective of concave optimization through the linearization technique.
In order to conduct a unified convergence analysis for this family of algorithms, we introduce the
concept of range space property (RSP) of a matrix, and prove that if its adjoint has this property, the
reweighted ℓ1-algorithm can find a sparse solution to the underdetermined linear system provided
that the merit function for sparsity is properly chosen. In particular, some convergence conditions
for the Candès-Wakin-Boyd method and the recent ℓp-quasi-norm-based reweighted ℓ1-method can
be obtained as special cases of the general framework.
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1. Introduction. Given an m × n matrix A with m ≤ n and a nonzero vector
b ∈ Rm, the linear system Ax = b has infinitely many solutions when the system is
underdetermined. Depending on the nature of source problems, we are often interested
in finding a particular solution, and thus optimization methods come into a play
through certain merit functions that measure the desired special structure of the
solution.

One of the recent interests is to find the sparsest solution of an underdetermined
linear system, which has found many applications in signal and image processing
[16, 3, 2]. To find a sparsest solution of Ax = b, perhaps the ideal merit function is
the cardinality of a vector, denoted by ‖x‖0, i.e., the number of nonzero components
of x. Clearly, the set of the sparsest solutions of Ax = b coincides with the set of
solutions to the cardinality minimization problem

(P0) minimize {‖x‖0 : Ax = b},

which is an NP-hard discrete optimization problem [35]. The recent study in the
field of compressed sensing nevertheless shows that not all cardinality minimization
problems are equally hard, and there does exist a class of matrices A such that the
problem (P0) is computationally tractable. These matrices can be characterized by
such concepts as the spark which was formally defined by Donoho and Elad [17], re-
stricted isometry property (RIP) introduced by Candès and Tao [8], mutual coherence
(MC) [34, 18, 17], and null space property (NSP) [17, 27, 13, 43].
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Problem (P0) is not easy to solve in general. From a convex analysis point of view,
a natural methodology is to minimize the convex envelope of ‖x‖0. It is well-known
that ℓ1-norm is the convex envelope of ‖x‖0 over the region {x : ‖x‖∞ ≤ 1}. One of
the main approaches to attack (P0) is through ℓ1-minimization

(P1) minimize {‖x‖1 : Ax = b},

which is identical to a linear program (LP) and hence can be solved very efficiently.
Using ℓ1-norm as a merit function for sparsity can be traced back several decades
in a wide range of areas from seismic traces [40], sparse-signal recovery [19, 11],
sparse-model selection (LASSO algorithm) in statistics [39] to image processing [1],
and continues its growth in other areas. A brief history of using ℓ1-minimization
can be found in [9]. The ℓ1-minimization approach has been generalized to low-rank
matrix recovery/matrix completion (see e.g., [4, 7]), and to the so-called matrix rank
minimization as well (see e.g., [20, 21, 22, 37, 38, 44]). Thanks to the intensive study
in the field of compressed sensing (see e.g., [16, 3]), both theoretical properties and
numerical performances of ℓ1-minimization have been well-established over the past
few years. Various conditions (including the above-mentioned MC, RIP, NSP, and
others) for the relationship

argmin {‖x‖0 : Ax = b} = {x∗} = argmin {‖x‖1 : Ax = b}

have been developed (see e.g., [18, 17, 27, 5, 6, 41, 2, 13, 43]). In terms of sparse signal
recovery, this relationship implies that ℓ1-minimization allows recovery of sparse sig-
nals from a small number of measurements [17, 16, 5, 6]. A comprehensive discussion
and survey of recent results in this field can be found in [16, 3, 2, 23].

Inspired by the efficiency of ℓ1-minimization, it is natural to ask whether there
are other alternatives which can either be comparable to or even outperform ℓ1-
minimization in finding sparse solutions of linear systems. Numerical experiments in-
dicate that the reweighted ℓ1-minimization does outperform unweighted ℓ1-minimization
in many situations [9, 24, 31, 12, 14]. The key feature of reweighted ℓ1-minimization
is the solution of a series of weighted ℓ1-problems

(PWk) min{‖W kx‖1 : Ax = b},

where W k = diag(wk) and wk = (wk
1 , ..., w

k
n)

T ∈ Rn
+ is the vector of weights deter-

mined by the current iterate xk = (xk
1 , ..., x

k
n)

T ∈ Rn. The solution to (PWk ) is set
to be xk+1, based on which the new weight W k+1 is computed. Some theoretical
analysis has been made for reweighted ℓ1-algorithms since 2008, when Candès, Wakin
and Boyd [9] proposed the reweighted method with

wk
i =

1

|xk
i |+ ε

, i = 1, ..., n, for ε > 0. (1.1)

We refer to this as the CWB method in this paper. Needell [36] showed that the error
bounds for noisy signal recovery via the CWB method can be tighter than those of
standard ℓ1-minimization. Foucart and Lai [24] proved that under the assumption of
RIP, the reweighted ℓ1-method with weights

wk
i =

1

(|xk
i |+ ε)1−p

, i = 1, ..., n, (1.2)
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where p ∈ (0, 1) is a given parameter, can exactly recover the sparse signal. Lai
and Wang [31], and Chen and Zhou [12] further prove that under RIP/NSP-type
conditions, the accumulation points of the sequence generated by the reweighted ℓ1-
algorithm with weights (1.2) can converge to a stationary point of certain ‘ℓ2 − ℓp’
minimization problem that is an approximation to (P0). Note that the objective of
(PWk) is separable in x. It is worth mentioning that some nonseparable iterative
reweighted methods were also proposed recently by Wipf and Nagarajan [42]. How-
ever, as pointed out in [9], the understanding of reweighted ℓ1-minimization remains
very incomplete so far. Even the convergence property of the CWB algorithm remains
unclear at present.

We note that while the major study of reweighted ℓ1-minimization is carried out
recently, the reweighted least square (RLS) method has a relatively long history. RLS
was proposed by Lawson [32] in 1960s, and was extended to ℓp-minimization later. The
idea of RLS methods was also used in the algorithm for robust statistical estimation
[29], and in FOCUSS methods [25] for the sparse solution of linear systems. The
interplay of null space property (NSP), ℓ1-minimization, and RLS method has been
clarified recently in [14].

The main contributions of this paper are as follows. First, we provide a unified
derivation of the reweighted ℓ1-minimization, which can be viewed as the first-order
method for concave programming with an objective called the merit function for spar-
sity that is certain approximation of ‖x‖0. Second, we provide a unified theoretical
analysis for a large family of reweighted ℓ1-algorithms for the sparse solution of un-
derdetermined linear systems. Interestingly, various new reweighted ℓ1-methods can
be systematically constructed/extracted from this family. To show the generic con-
vergence of this family of algorithms, we introduce the new concept of range space
property (RSP) of a matrix, which is different from (but has some link to) RIP and
NSP. One of the results in this paper claims that if AT has the RSP of order K with
constant ρ > 0 satisfying (1 + ρ)K < n, then there exist a large number of merit
functions for sparsity, associated with which reweighted ℓ1-algorithms can generate
a ⌊(1 + ρ)K⌋-sparse solution to the linear system. Based on optimization theory
merely, the analysis in this paper is remarkably different from the existing RIP/NSP-
based analysis. It should be stressed that the CWB method, and the algorithm with
weights (1.2) are special cases of our general framework of reweighted ℓ1-algorithms,
and hence a new convergence result for these existing algorithms under RSP assump-
tion has been established for the first time in this paper. Finally, we carry out some
numerical experiments to demonstrate the performance of several new and existing
reweighted ℓ1-algorithms in locating the sparsest solution of linear systems. Our nu-
merical results show that in many situations the NW1-NW4 algorithms proposed in
this paper, the CWB method, and the algorithm with weights (1.2) do remarkably
outperform the standard ℓ1-minimization (See section 4 for details).

This paper is organized as follows. In section 2, a unified approach for deriving a
large family of reweighted ℓ1-algorithms based on concave merit functions for sparsity
is proposed. In section 3, some convergence properties of this family of algorithms
are proved via the range space property. Numerical results are given in section 4, and
conclusions are given in the last section.

Notation: Let Rn be the n-dimensional Euclidean space, and Rn
+ and Rn

++ the sets

of nonnegative and positive vectors, respectively. For x ∈ Rn, ‖x‖p = (
∑n

i=1 |xj |p)1/p

denotes the ℓp- (quasi-)norm where p ∈ (0,∞). Given a set S ⊆ {1, 2, ..., n}, the
symbol |S| denotes the cardinality of S, and Sc = {1, 2, ..., n}\S is the complement
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of S. For a matrix A and a vector x ∈ Rn, we use the notation AS to denote the
submatrix extracted from A with column indices in S, and xS the subvector extracted
from x with component indices in S. Let T (x) = {i : xi 6= 0} denote the support of
x. Let σ(x) be the vector which is the non-increasing rearrangement of the absolute
values of the entries of x ∈ Rn, and let |x| = (|x1|, ..., |xn|)

T ∈ Rn. Clearly, we have
σ(x) = σ(|x|), and σ(x)i is the ith largest component of |x|. In this paper, x ∈ Rn is
said to be K-sparse if x contains at most K nonzero components. Thus x is K-sparse
if and only if σ(x)K+1 = 0. For any x and y in Rn, the inequality x ≤ y means xi ≤ yi
for all i = 1, ..., n.

2. A unified framework of reweighted ℓ1-minimization. The central idea
of reweighted ℓ1-algorithms is to define a weight based on the current iterate xk, solve
the weighted ℓ1-minimization for this weight, and then use its solution to define a new
weight. The weight is used to penalize the components which are small, in order to
drive them to be as small as possible via minimizing the weighted ℓ1-norm. In this
section, we introduce a unified framework for reweighted ℓ1-minimization. To this
end, we need to specify a family of merit functions for sparsity. A function from Rn

to R is said to be a merit function for sparsity if it is an approximation to ‖x‖0 in
some sense. For instance, ℓ1-norm is a convex relaxation of ‖x‖0 over ‖x‖∞ ≤ 1, and
‖x‖p, p ∈ (0, 1), is also a merit function for sparsity since ‖x‖pp → ‖x‖0 as p → 0.
Clearly, there exist a vast number of merit functions for sparsity. Minimizing such a
function may drive the variable x to become sparse when a sparse solution exists.

From a computational point of view, a merit function for sparsity should admit
certain desired properties such as convexity or concavity. Due to the NP-hardness of
(P0), it seems that there is no hope to approximate ‖x‖0 in Rn to any level of accuracy
by a convex function. On the contrary, there exist various concave functions that can
approximate ‖x‖0 to any level of accuracy. Concave merit functions appear more
natural than convex ones when finding the sparsest solution of linear systems, since
the ‘bulged’ feature of convex merit functions might prohibit locating the sparsest
solution in some situations. This phenomenon was observed by Harikumar and Bresler
[28]. So, throughout the remainder of this paper, we focus on concave merit functions
for sparsity. For simplicity, we consider separable concave merit functions of the form

F (x) =

n∑

i=1

φi(|xi|),

where φi : R+ → R is called the kernel function. Given a separable function F (x)
as above and a set S ⊆ {1, ..., n}, we use F (xS) to denote the reduced separable
function, i.e., F (xS) :=

∑
i∈S φi(|xi|). To avoid the division by zero when computing

the gradient of a merit function, we perturb the function by replacing |xi| by |xi|+ ε,
where ε > 0 is a given parameter. This leads to the approximation problem of (P0):

min

{
Fε(x) =

n∑

i=1

φi(|xi|+ ε) : Ax = b

}
. (2.1)

For example, if all φi(t) = tp with p ∈ (0, 1), problem (2.1) is the ℓp-quasi-norm
minimization (see e.g., [10, 15, 24]). By setting φi(t) = log(t), the function Fε(x) =∑

xi 6=0 log(|xi| + ε) was used by Gorodnitsky and Rao [25] to design the FOCUSS
algorithm for sparse signal reconstruction.

We use e = (1, 1, ..., 1)T ∈ Rn throughout to denote the vector of ones. Recall
that a function f : Rn → R is said to be coercive in the region D ⊆ Rn if f(x) → ∞



REWEIGHTED ℓ1-MINIMIZATION 5

as ‖x‖ → ∞ and x ∈ D. We now specify a class of merit functions satisfying the
following assumption.

Assumption 2.1. For any given ε > 0, the merit function Fε : R
n → R satisfies

the following properties:
(a) Fε(x) = Fε(|x|) for any x ∈ Rn, and Fε(x) is separable in x, and twice

continuously differentiable with respect to x ∈ Rn
+.

(b) In Rn
+, Fε(x) is strictly increasing with respect to every component xi and ε,

and for any given γ > 0 there exists a finite number Q(γ) such that for any
S ⊆ {1, ..., n}, g(xS) := infε↓0 Fε(xS) ≥ Q(γ) provided xS ≥ γeS, and g(xS)
is coercive in the set {xS : xS ≥ γeS}.

(c) In Rn
+, the gradient satisfies that ∇Fε(x) ∈ Rn

++ for any (x, ε) ∈ Rn
+ ×R++,

[∇Fε(x)]i → ∞ as (xi, ε) → 0, and for any given xi > 0 the component
[∇Fε(x)]i is continuous in ε and tends to a finite positive number (dependent
only on xi) as ε → 0.

(d) In Rn
+, the Hessian satisfies that yT∇2Fε(x)y ≤ −C(ε, r)‖y‖2 for any y ∈ Rn

and x ∈ Rn
+ with ‖x‖ ≤ r, where r > 0 and C(ε, r) > 0 are constants, and

C(ε, r) is continuous in ε and bounded away from zero as ε → 0. (Thus Fε(x)
is strictly concave with respect to x.)

There exists a large family of functions satisfying the above assumption, and
we show that it is very easy to construct examples in this family. Note that any
nonnegative combination of a finite number of functions satisfying Assumption 2.1
still satisfies this assumption. So the set of such functions is a convex cone, denoted
by M, i.e.,

M = {Fε : Fε satisfies Assumption 2.1 for ε > 0}.

Based on the merit functions inM, we can derive a family of reweighted ℓ1-minimization
algorithms. Note that for any Fε ∈ M, problem (2.1) can be rewritten as

min{Fε(v) : Ax = b, |x| ≤ v} = min
(x,v)∈F

Fε(v), (2.2)

where |x| = (|x1|, ..., |xn|)T and

F = {(x, v) : Ax = b, |x| ≤ v}.

Throughout this paper, we assume that the system Ax = b has a solution, i.e., F 6= ∅.
This can be always guaranteed when the system is underdetermined.

At the current point vk, since Fε(v) = Fε(v
k) +∇Fε(v

k)T (v − vk) + o(‖v − vk‖),
the simplest tractable approximation to the concave minimization (2.2) is the problem
of minimizing the linear approximation of Fε(v) over the same feasible set. Thus it
makes sense to solve the following problem to generate the next point (xk+1, vk+1) :

(xk+1, vk+1) = arg min
(x,v)∈F

{
Fε(v

k) +∇Fε(v
k)T (v − vk)

}

= arg min
(x,v)∈F

∇Fε(v
k)T v, (2.3)

which is an LP. Note that vk ∈ Rn
+ and ∇Fε(v

k) ∈ Rn
++ (by Assumption 2.1(c)). It

is easy to see that the optimal solution (xk+1, vk+1) of (2.3) always satisfies

vk+1 = |xk+1| for all k ≥ 0. (2.4)
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Hence it follows from (2.4) and the positiveness of ∇Fε(v
k) that

∇Fε(v
k)T vk+1 = ∇Fε(|x

k|)T |xk+1| =
∥∥diag

(
∇Fε(|x

k|)
)
xk+1

∥∥
1
.

Therefore, the iterative scheme (2.3) is nothing but

xk+1 = argmin
{∥∥diag

(
∇Fε(|x

k|)
)
x
∥∥
1
: Ax = b

}
, (2.5)

which is the reweighted ℓ1-minimization with weight wk = ∇Fε(|xk|) ∈ Rn
++. By As-

sumption 2.1(c), we have that [∇Fε(v
k)]i → ∞ as (vi, ε) → 0, so for small vki (= |xk

i |)
and ε > 0, the corresponding weight [∇Fε(v

k)]i is large. The iterative scheme (2.3)
(equivalently, (2.5)) provides a unified approach to derive reweighted ℓ1-algorithms
for sparse solutions of linear systems, which can be described as follows.

Algorithm 2.2 (Reweighted ℓ1-minimization)
S1. Choose α, ε0 ∈ (0, 1), and let (x0, v0) ∈ Rn ×Rn

+ be an initial point.
S2. At the current iterate (xk, vk) with εk > 0, compute

(xk+1, vk+1) = arg min
(x,v)∈F

(
∇Fεk(v

k)
)T

v

(i.e., xk+1 = argmin{‖diag(∇Fεk (|x
k|))x‖1 : Ax = b}).

S3. Set εk+1 = αεk. Replace (xk, vk, εk) by (xk+1, vk+1, εk+1) and repeat S2.
Note that ε is reduced by a factor after every iteration, and several stoping criteria

can be used in Algorithm 2.2, for instance, εk < ε∗ or ‖vk+1 − vk‖ < ε∗ (ε∗ is a
prescribed tolerance). We note that the general concave optimization theory is a long-
lasting research topic in the field of global optimization (see for instance [30]). From
a concave programming point of view, Algorithm 2.2 is not new, which is essentially a
linearization method for concave minimization. However, it is the objective function
(i.e., the merit function for sparsity) that makes the algorithm unique.

Algorithm 2.2 is a general framework for reweighted ℓ1-algorithms, from which
many specific algorithms, including some existing ones, can be immediately obtained
by choosing various merit functions. In this paper, we focus on the merit functions
in M. A few examples of such functions together with their gradients are given as
follows.

Example 2.3. (i) Note that
(
n+

∑
n
i=1 log(|xi|+ε)

− log ε

)
→ ‖x‖0 as ε → 0. This moti-

vates the merit function

Fε(x) =

n∑

i=1

log(|xi|+ ε)

inM. The gradient of this function at x ∈ Rn
+ is given by∇Fε(x) =

(
1

x1+ε , ...,
1

xn+ε

)T

∈ Rn
++, and the Hessian ∇2Fε(x) = −diag

(
1

(x1+ε)2 , ...,
1

(xn+ε)2

)
. Using this merit

function, (2.3) is exactly the CWB reweighted ℓ1-method with weights given by (1.1),
which has been studied by several authors [21, 22, 33, 9, 36]. A convergence result
for this method can be obtained as a special case of our general framework.

(ii) Let p ∈ (0, 1). It is easy to verify that the function

Fε(x) =

n∑

i=1

log (|xi|+ ε+ (|xi|+ ε)p)
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is also in M. At x ∈ Rn
+, the gradient is given by [∇Fε(x)]i =

p+(xi+ε)1−p

(xi+ε)1−p[xi+ε+(xi+ε)p] ,

i = 1, ..., n, and the Hessian ∇2Fε(x) is a diagonal matrix with diagonal entries

−
1

[xi + ε+ (xi + ε)p]
2

(
1 +

p(3− p)

(xi + ε)1−p
+

p

(xi + ε)2(1−p)

)
, i = 1, ..., n.

This merit function yields a reweighted ℓ1-algorithm with the weights

wi = [∇Fε(|x|)]i =
p+ (|xi|+ ε)1−p

(|xi|+ ε)1−p [|xi|+ ε+ (|xi|+ ε)p]
, i = 1, ..., n,

(termed the ‘NW1’ algorithm) which has not been studied in the literature so far.
Example 2.4. Note that ‖x‖pp → ‖x‖0 as p → 0. For a given p ∈ (0, 1), we define

Fε(x) =
1
p

∑n
i=1(|xi| + ε)p, which is in M. At x ∈ Rn

+, the gradient of this function
is given by

∇Fε(x) =

(
1

(x1 + ε)1−p
, ...,

1

(xn + ε)1−p

)T

∈ Rn
++,

and the Hessian ∇2Fε(x) = −diag
(

1
(x1+ε)2−p , ...,

1
(xn+ε)2−p

)
. By this merit function,

(2.3) is exactly the reweighted ℓ1-method with weights wi =
1

(|xi|+ε)1−p , i = 1, ..., n,

(termed the ‘Wlp’ algorithm) which was recently studied in [24, 31, 12]. Some new
properties of this method can be extracted from our general results in this paper.

Example 2.5. Let p and q ∈ (0, 1) be given. Define

Fε(x) =
1

p

n∑

i=1

(|xi|+ ε+ (|xi|+ ε)q)p ,

which is in M. The gradient of this function at x ∈ Rn
+ is given by

[∇Fε(x)]i =
q + (xi + ε)1−q

(xi + ε)1−q [xi + ε+ (xi + ε)q]
1−p , i = 1, ..., n,

and the Hessian of this function is a diagonal matrix with diagonal entries

−
1

[xi + ε+ (xi + ε)q]
2−p

(
(1− p) +

2q(1− p) + q(1− q)

(xi + ε)1−q
+

q2(1− p) + q(1− q)

(xi + ε)2(1−q)

)
.

Based on this merit function, the associated reweighted ℓ1-minimization (termed the
‘NW2’ algorithm) remains new. It is interesting to note that the parameter q above
can be chosen to be greater than 1 if we restrict the range of p. For instance, we can
let q = 2 and p ≤ 1

2 . Then the function

Fε(x) =
1

p

n∑

i=1

(
|xi|+ ε+ (|xi|+ ε)2

)p

is in M. The associated reweighted ℓ1-minimization (termed the ‘NW3’ algorithm)
with

wi = [∇Fε(|x|)]i =
1 + 2(|xi|+ ε)

(|xi|+ ε+ (|xi|+ ε)2)1−p
, i = 1, ..., n
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is also a new algorithm. Numerical experiments show that NW2 and NW3 are quite
strong in finding the sparsest solution of linear systems in many situations (see section
4 for details).

Example 2.6. Let p ∈ (0,∞) be fixed. Note that ϕε(x) =
∑n

i=1
(|xi|+ε)p−εp

(|xi|+ε)p →

‖x‖0 as ε → 0 (in particular, for p = 1, ϕε(x) =
∑n

i=1
|xi|

|xi|+ε → ‖x‖0 as ε → 0).

This motivates the merit function gε(x) = −
∑n

i=1
1

(|xi|+ε)p which satisfies almost all

conditions of Assumption 2.1 except for the coercivity. However, we can make this
function coercive as follows: Adding a log function to gε(x) yields the merit function
(in M)

Fε(x) =

n∑

i=1

[
log(|xi|+ ε)−

1

(|xi|+ ε)p

]
, (2.6)

for which the gradient at x ∈ Rn
+ is given by ∇Fε(x) =

(
1+(x1+ε)p

(x1+ε)p+1 , ...,
1+(xn+ε)p

(xn+ε)p+1

)
,

and the Hessian ∇2Fε(v) = −diag
(

p+1+(v1+ε)p

(v1+ε)p+2 , ..., p+1+(vn+ε)p

(vn+ε)p+2

)
. The associated

reweighted ℓ1-minimization (termed the ‘NW4’ algorithm) uses the weights wi =
1+(|xi|+ε)p

(|xi|+ε)p+1 , i = 1, ..., n. Another way to make gε coercive is to add the ℓ1-norm,

leading to the merit function

Fε(x) =

n∑

i=1

(
|xi| −

1

(|xi|+ ε)p

)
,

which is in M and yields a new reweighted ℓ1-method with weights wi = [∇Fε(|x|)]i =
1+(|xi|+ε)p+1

(|xi|+ε)p+1 , i = 1, ..., n.

Note that when p → 0, the function in Example 2.4 reduces to that of Example
2.3 (i), and the function in Example 2.5 reduces to that of Example 2.3(ii). Thus the
CWB method can be viewed as an extreme case of the Wlp method as p → 0, and it
can be also viewed as an extreme case of (2.6) as p → 0.

Remark. Examples 2.3-2.6 show that it is not difficult to construct merit functions
for sparsity in M, and the well-known CWB and Wlp methods fall into this family.
To construct a function in M, we may start with a choice of the kernel function φi(t),
which should be twice continuously differentiable, strictly concave and increasing in
Rn

+. Every merit function in M yields a reweighted ℓ1-minimization algorithm for the
sparse solution of linear systems. The family of such algorithms is large. Because M
is a convex cone, any positive combination of functions in M is in this family. Thus,
the combination can be used to generate new merit functions from known ones. For
instance, a simple combination of Example 2.3(i) and Example 2.4 yields the function

Fε(v) =

(
n∑

i=1

log(vi + ε)

)
+

(
n∑

i=1

(vi + ε)p

)

in M, where p ∈ (0, 1). Its kernel function is φi(t) = log(t)+ tp (i = 1, ..., n). In many
cases, applying the log operation to a nonnegative convex function a finite number of
times, we may reverse the convexity to concavity (see Zhao et al [45]). For instance, if
φ : R+ → R+ is a twice differentiable, strictly increasing and convex function obeying
φ′′(t)(1+φ(t)) < (φ′(t))2, then log(1+φ(t)) is concave, so is log(1+log(1+φ(t))). Since
the log operation maintains the coercivity and monotonicity of the original function,
this strategy can be used to construct a concave merit function for sparsity from a
convex function.
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3. Convergence analysis of reweighted ℓ1-minimization. From the above
section, we see that there exist infinitely many reweighted algorithms. Therefore it is
necessary to study these algorithms in a unified approach, in order to identify their
common properties. The remainder of this paper is devoted to this task. We carry
out a unified convergence analysis for Algorithm 2.2 based on the merit functions for
sparsity in M. We note that Algorithm 2.2 can start at any initial point (x0, v0) with
v0 = |x0| where x0 is not necessarily a solution to Ax = b. After the first step, the
algorithm will generate an iterate (x1, v1) satisfying v1 = |x1| and Ax1 = b, from
which all subsequent iterates satisfy Ax = b and (2.4), i.e., vk = |xk| for all k ≥ 1.

The first result below shows that if the algorithm generates at the kth step a new
point vk+1 6= vk, then the value of the merit function for sparsity strictly decreases.

Lemma 3.1. Suppose that Fε satisfies Assumption 2.1, i.e., Fε ∈ M. For a given
(x̃, ṽ) ∈ F with ṽ = |x̃| and a parameter ε > 0, let

(x+, v+) = arg min
(x,v)∈F

∇Fε(ṽ)
T v. (3.1)

If v+ 6= ṽ, then Fε(v
+) < Fε(ṽ).

Proof. Note that (x̃, ṽ) is feasible to the problem (3.1). Thus the minimizer v+

satisfies that ∇Fε(ṽ)
T v+ ≤ ∇Fε(ṽ)

T ṽ. When v+ 6= ṽ, we have only two cases.
Case 1. ∇Fε(ṽ)

T (v+− ṽ) < 0. In this case, by concavity of Fε, we have Fε(v
+) ≤

Fε(ṽ) +∇Fε(ṽ)
T (v+ − ṽ) < Fε(ṽ).

Case 2. ∇Fε(ṽ)
T (v+ − ṽ) = 0. Let r > 0 be a constant such that ‖ṽ‖ ≤ r. Then

for any sufficiently small t > 0, we have

Fε(ṽ + t(v+ − ṽ))

= Fε(ṽ) + t∇Fε(ṽ)
T (v+ − ṽ) +

1

2
t2(v+ − ṽ)T∇2Fε(ṽ)(v

+ − ṽ) + o(t2)

= Fε(ṽ) +
1

2
t2(v+ − ṽ)T∇2Fε(ṽ)(v

+ − ṽ) + o(t2)

≤ Fε(ṽ)−
t2

2
C(ε, r)‖v+ − ṽ‖2 + o(t2)

< Fε(ṽ). (3.2)

The first inequality above follows from the strict concavity of Fε (Assumption 2.1(d)).
The concavity of Fε also implies that, for any sufficiently small t > 0, we have

Fε(ṽ + t(v+ − ṽ)) ≥ tFε(v
+) + (1− t)Fε(ṽ) = t(Fε(v

+)− Fε(ṽ)) + Fε(ṽ),

which, together with (3.2), implies that Fε(v
+)− Fε(ṽ) < 0.

By the structure of Algorithm 2.2, we have the following corollary, showing that
the merit function strictly decreases after every iteration.

Corollary 3.2. Let Fε ∈ M and {(xk, vk)} be generated by Algorithm 2.2.
Then the sequence {Fεk(v

k)} is strictly decreasing in the sense that Fεk+1
(vk+1) <

Fεk(v
k) for all k ≥ 1.

Proof. First, we note that Fεk(v
k+1) ≤ Fεk(v

k). In fact, it holds trivially if
vk+1 = vk; otherwise, it holds strictly by Lemma 3.1. Since Fε is strictly increasing
in ε (by Assumption 2.1(b)), we have Fεk+1

(vk+1) < Fεk(v
k+1) ≤ Fεk(x

k).
Lemma 3.3. Let Fε ∈ M and {(xk, vk)} be the sequence generated by Algorithm

2.2. If there is a subsequence, denoted by {(xkj , vkj ) : j = 1, 2, ..., }, such that |xkj | ≥
γe for all j where γ > 0 is a constant, then there exists a finite constant C∗ > 0
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such that
∑∞

j=1

∥∥vkj+1 − vkj

∥∥2
2
≤ C∗. In particular, we have

∥∥vkj+1 − vkj

∥∥ → 0 as
j → ∞.

Proof. Note that vk = |xk| for all k ≥ 1. By Assumption 2.1(b), it follows from
vkj = |xkj | ≥ γe that

Fεkj
(vkj ) ≥ Fεkj

(γe) ≥ inf
ε↓0

Fε(γe) ≥ Q(γ),

and hence the sequence {Fεkj
(vkj )} is bounded below. By Corollary 3.2, the sequence

{Fεk(v
k)} is strictly decreasing, and thus Fεkj

(vkj ) ≤ Fε0(v
0) for any j. This, together

with the coercivity of g = infε↓0 Fε (Assumption 2.1 (b)), implies that the sequence
{vkj} must be bounded. In fact, if {vkj} is unbounded, then there exists a subse-
quence, denoted still by {vkj}, such that ‖vkj‖ → ∞. Since vkj ≥ γe, it follows from
Assumption 2.1 (b) that Fεkj

(vkj ) ≥ infε↓0 Fε(v
kj ) = g(vkj ) → ∞ as ‖vkj‖ → ∞,

which contradicts the inequality Fεkj
(vkj ) ≤ Fε0(v

0) for all j. Thus, the sequence

{vkj} must be bounded. So there is a positive constant γ′ > γ such that γe ≤ vkj ≤
γ′e for all j. For any ε > 0, since Fε(v) is separable in v ∈ Rn

+ and [∇2Fε(v)]ii is
negative (Assumption 2.1 (d)), it implies that for every i, [∇Fε(v)]i is decreasing with
respect to vi. Therefore,

∇Fεkj
(γ′e) ≤ ∇Fεkj

(vkj ) ≤ ∇Fεkj
(γe). (3.3)

Assumption 2.1 (c) implies that for every i, the components [∇Fε(γ
′e)]i and [∇Fε(γe)]i

are both positive, and bounded from above and away from zero over the region
ε ∈ (0, ε0]. This, together with (3.3), implies that there exist two constants β1 and β2

(0 < β1 < β2) such that

β1e ≤ ∇Fεkj
(vkj ) ≤ β2e for all j. (3.4)

By optimality, we have ∇Fεkj
(vkj )T vkj+1 ≤ ∇Fεkj

(vkj )T vkj for any j. This, together

with (3.4) and γe ≤ vkj ≤ γ′e, implies that the sequence {vkj+1} is bounded.
Since {Fεkj

(vkj )} is decreasing and bounded below, we have Fεkj
(vkj ) → F ∗ as

j → ∞, where F ∗ is a constant. Let r > 0 be a constant such that

max{max
j≥1

‖vkj‖,max
j≥1

‖vkj+1‖} ≤ r,

which is finite since {vkj} and {vkj+1} are bounded. Note that εk(j+1)
≤ · · · ≤

ε(kj+1) < εkj
. By the decreasing property of the sequence {Fεk(v

k)} and Assumption
2.1 (b) and (d), we have

Fεk(j+1)
(vk(j+1) ) ≤ Fε(kj+1)

(vkj+1) < Fεkj
(vkj+1)

= Fεkj
(vkj ) +∇Fεkj

(vkj )T (vkj+1 − vkj ) +
1

2
(vkj+1 − vkj )T∇2Fεkj

(v̂)(vkj+1 − vkj )

≤ Fεkj
(vkj ) +∇Fεkj

(vkj )T (vkj+1 − vkj )−
1

2
C(εkj

, r)‖vkj+1 − vkj‖22,

where v̂ is some point on the line segment between vkj+1 and vkj , and hence ‖v̂‖ ≤ r.
The last inequality above follows from Assumption 2.1 (d). Since∇Fεkj

(vkj )T (vkj+1−

vkj ) ≤ 0, it follows from the above inequality that

1

2
C(εkj

, r)‖vkj+1 − vkj‖22 ≤ Fεkj
(vkj )− Fεk(j+1)

(vk(j+1) ).
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By Assumption 2.1 (d), C(εkj
, r) > 0 is bounded away from zero as j → ∞. Therefore

there exists a constant γ∗ > 0 such that C(εkj
, r) ≥ γ∗ > 0 for all j. Thus the above

inequality implies that

lim
j→∞

‖vkj+1 − vkj‖ = 0, and

∞∑

j=0

‖vkj+1 − vkj‖22 ≤
Fε0 (v

0)− F ∗

γ∗
=: C∗.

The proof is complete.
From Examples 2.3 and 2.6, we see that a merit function in M is not necessarily

bounded below as |xi| → 0. However, when a merit function is bounded below (such
as Examples 2.4 and 2.5), we have the next result which claims that the result of
Lemma 3.3 holds for the whole sequence generated by the algorithm, instead of a
subsequence.

Corollary 3.4. Let Fε ∈ M and Fε(x) be bounded below in the region (x, ε) ∈
Rn

+ × R+, and let g(x) = infε↓0 Fε(x) be coercive in Rn
+. Let {(x

k, vk)} be generated
by Algorithm 2.2. Then {(xk, vk)} is bounded and there exists a finite constant C∗

such that
∑∞

k=1 ‖v
k+1 − vk‖ ≤ C∗. In particular, ‖vk+1 − vk‖ → 0 as k → ∞.

Proof. By the assumption and Corollary 3.2, there exists a constant F ∗ such that
F ∗ ≤ Fεk (v

k) ≤ Fε0 (v
0) for all k which, together with the coercivity of g(x), implies

that {vk} is bounded. Applying the rest proof of Lemma 3.3 to {vk} instead of {vkj},
we can show that ‖vk+1 − vk‖ → 0 and

∑∞
k=1 ‖v

k+1 − vk‖ ≤ C∗ for some C∗.
To further investigate the properties of Algorithm 2.2, we need some condition

on A. We introduce the range space property of AT , based on which we can establish
some convergence results for Algorithm 2.2.

Definition 3.5. (Range Space Property (RSP)) Let A be an m × n matrix
with m ≤ n. Then AT is said to satisfy the range space property of order K with a
constant ρ > 0 if

‖ξSc
‖1 ≤ ρ‖ξS‖1

for all sets S ⊆ {1, ..., n} with |S| ≥ K, and for all ξ ∈ R(AT ), the range space of AT .
Clearly, RSP can be equivalently stated in some other ways. First, note that the

inequality |S| ≥ K in the above definition can be replaced by the equality |S| = K. In
fact, it is easy to see that if ‖ξSc

‖1 ≤ ρ‖ξS‖1 holds for any S ⊆ {1, ..., n} with |S| = K,
then it holds for all S with |S| > K. Second, it is evident that the RSP can be restated
as follows: AT is said to satisfy the range space property of order K with constant
ρ > 0 if ‖ξS‖1 ≤ ρ‖ξSc

‖1 for any set S ⊆ {1, ..., n} with |S| ≤ n − K, and for all
ξ ∈ R(AT ). It is interesting to understand the relationship between this property and
the restricted isometry property (RIP) and null space property (NSP) of A which have
been widely used in the compressed sensing literature. Recall that A has the RIP of
order k if there exists a constant δ ∈ (0, 1) such that (1−δ)‖z‖22 ≤ ‖Az‖22 ≤ (1+δ)‖z‖22
for any k-sparse vector z ∈ Rn, and that A has the NSP of order k if there exists a
constant τ ∈ (0, 1) such that ‖ηS‖1 ≤ τ‖ηSc

‖1 for all S ⊆ {1, ..., n} with |S| ≤ k, and
any η ∈ N (A), the null space of A. In this paper, we do not make use of RIP and
NSP in our analysis. The following proposition and remark shed some light on the
relationship between RIP, NSP, and RSP.

Proposition 3.6. Let m < n, and let A ∈ Rm×n and M ∈ R(n−m)×n be full-rank
matrices satisfying AMT = 0. Then the following hold.

(i) M has the NSP of order k with constant τ ∈ (0, 1) if and only if AT has the
RSP of order (n− k) with the same constant ρ = τ.
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(ii) If M has the RIP of order k with constant δ ∈ (0, 1), then AT has the

RSP of order
(
n− ⌊ ̺k

1+̺⌋
)
with the constant ρ =

(
⌊ ̺k
1+̺

⌋

k−⌊ ̺k
1+̺

⌋

)1/2 (
1
̺

)
< 1 where ̺ =

(1− δ)/(1 + δ).
Proof. (i) Since A and M are full-rank matrices and AMT = 0 (and thus MAT =

0), the columns of AT comprise the basis of the null space of M. Thus R(AT ) =
N (M). Suppose that M has the NSP of order k with constant τ ∈ (0, 1). Then
‖ηL‖1 ≤ τ‖ηLc

‖1 for any η ∈ N (M) and for any set L ⊆ {1, ...., n} with |L| ≤ k. By
setting S = Lc, this is equivalent to saying that ‖ηSc

‖1 ≤ τ‖ηS‖1 for any η ∈ R(AT )
and for any set S ⊆ {1, ...., n} with |S| ≥ n− k. Thus A has the RSP of order (n− k)
with constant ρ = τ. Clearly, the converse can be shown in a similar way.

(ii) Suppose that M has the RIP of order k with constant δ ∈ (0, 1). Denote by
̺ = (1 − δ)/(1 + δ). Let ν = ⌊ ̺k

1+̺⌋, which is smaller than k. It was shown in [13]

that M has the NSP of order ν with constant τ =
√

ν
k−ν

(
1
̺

)
, which is less than

1 by the definition of ν. By (i), this in turn implies that AT has the RSP of order
n− ν = n− ⌊ ̺k

1+̺⌋ with constant ρ = τ.

From Proposition 3.6, if M ∈ R(n−m)×n has the NSP (or more restrictively,
the RIP), we may construct a matrix satisfying the range space property by simply
choosing A = [v1, ..., vm]T where v1, ..., vm ∈ Rn are the basis of the null space of M.

Remark. One might be also interested in the direct relationship between the
NSP of A and RSP of AT , which remains not quite clear at this stage. However, such
a direct relationship might exist as shown by the following observation. Note that for
any ξ ∈ R(AT ) and η ∈ N (A), ξT η = 0 implies that for any index set S ⊂ {1, ..., n}
we have (ξS)

T ηS + (ξSc
)T ηSc

= 0, and hence

‖ξS‖2‖ηS‖2| cos(θ)| = ‖ξSc
‖2‖ηSc

‖2| cos(θ
′)|, (3.5)

where θ is the angle between ξS and ηS , and θ′ between ξSc
and ηSc

. Assume that there
exists a k such that for any S ⊂ {1, ..., n} with |S| ≤ k, it holds that | cos(θ′)| ≥ γ > 0
(where γ is a constant) for any η ∈ N (A) and ξ ∈ R(AT ) with ηSc

6= 0 and ξSc
6= 0.

Under this assumption, we see that when ηSc
6= 0 and ξSc

6= 0, all other terms in (3.5)
are nonzero. In this case, (3.5) can be written as

‖ξS‖2/‖ξSc
‖2 = (‖ηSc

‖2/‖ηS‖2) (| cos(θ
′)|/| cos(θ)|) .

By the equivalence of ‖ · ‖1 and ‖ · ‖2, it is not difficult to see that there exists a
constant ϑ > 0 (dependent on n and k) such that

‖ξS‖1/‖ξSc
‖1 ≥ ϑ (‖ηSc

‖1/‖ηS‖1) (| cos(θ
′)|/| cos(θ)|) .

Now, if A has the NSP of order k, then there exists a constant τ ∈ (0, 1) such that
‖ηSc

‖1/‖ηS‖1 ≥ 1/τ , and thus ‖ξS‖1/‖ξSc
‖1 ≥ (ϑ/τ)(| cos(θ′)|/| cos(θ)|), i.e.,

‖ξSc
‖1 ≤

[ τ
ϑ
(| cos(θ)|/| cos(θ′)|)

]
‖ξS‖1 ≤

τ

γϑ
‖ξS‖1,

which holds for all S ⊂ {1, ..., n} with |S| ≤ k. In particular, it holds for all subset
S with |S| = 1. This implies that AT has the RSP of order 1, and thus AT has the
RSP of any order k ≥ 1, which is the strongest RSP. Note that this conclusion is
restrictive, since it is drawn from the strong assumption on the angle θ′ as above. So
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we believe that this observation has not given a full picture of the true relationship
between RSP and NSP yet.

We now study the properties of reweighted ℓ1-algorithms under the RSP assump-
tion. The first result below shows that if the RSP is satisfied, Algorithm 2.2 with
Fε ∈ M generates a sparse solution from any initial point in the sense that at least
one component of xk tends to zero.

Theorem 3.7. Let A ∈ Rm×n with m ≤ n, and assume that AT has the RSP
of order K with constant ρ > 0 satisfying 1 + ρ < n

K . Let Fε ∈ M and {(xk, vk)} be
generated by Algorithm 2.2. Then

[σ(xk)]n = min
1≤i≤n

|xk
i | → 0 as k → ∞. (3.6)

Proof. We now assume the contrary that (3.6) does not hold. Then there exist a
constant γ > 0 and a subsequence, denoted by {(xkj , vkj )}∞j=1, such that [σ(xkj )]n ≥

γ > 0 for all j. Thus vkj (= |xkj |) ≥ γe for all j. By Lemma 3.3, we have ‖vkj+1 −
vkj‖ → 0 as j → ∞. So there exists a j′ such that for all j ≥ j′ the vector vkj+1 is
positive, i.e., vkj+1 ∈ Rn

++. Let j ≥ j′ and consider the kj-th step of the algorithm.
Note that (xkj+1, vkj+1) is an optimal solution to the LP min{∇Fεkj

(vkj )T v : Ax =

b, |x| ≤ v}, which can be written as

min
{
∇Fεkj

(vkj )T v : Ax = b, xi ≤ vi, − xi ≤ vi, i = 1, ..., n
}
.

By the optimality condition, there exist αkj , βkj ∈ Rn
+ and λkj ∈ Rm such that

ATλkj − αkj + βkj = 0, (3.7)

∇Fεkj
(vkj )− αkj − βkj = 0, (3.8)

− x
kj+1
i − v

kj+1
i ≤ 0, α

kj

i

(
−x

kj+1
i − v

kj+1
i

)
= 0, α

kj

i ≥ 0, i = 1, ..., n, (3.9)

x
kj+1
i − v

kj+1
i ≤ 0, β

kj

i

(
x
kj+1
i − v

kj+1
i

)
= 0, β

kj

i ≥ 0, i = 1, ..., n, (3.10)

Axkj+1 = b.

Since vkj+1 ∈ Rn
++, for every i one of the inequalities x

kj+1
i −v

kj+1
i ≤ 0 and −x

kj+1
i −

v
kj+1
i ≤ 0 holds strictly. Thus by the complementarity conditions (3.9) and (3.10),

we see that for every i, either α
kj

i or β
kj

i must be zero. On the other hand, since
vkj ∈ Rn

++, εkj
> 0 and Fεkj

∈ M, it implies that ∇Fεkj
(vkj ) ∈ Rn

++ (Assumption

2.1(c)). Thus it follows from (3.8) that for every i, α
kj

i and β
kj

i cannot vanish at

the same time. So we conclude that for every i, one and only one of α
kj

i and β
kj

i is

equal to zero, and hence α
kj

i + β
kj

i = |α
kj

i − β
kj

i | which, together with (3.7) and (3.8),
implies that

∇Fεkj
(vkj ) = αkj + βkj = |αkj − βkj | = |ATλkj | = |ξkj |,

where ξkj = ATλkj ∈ R(AT ). Thus σ(∇Fεkj
(vkj )) = σ(ξkj ). Since AT has the RSP

of order K with ρ > 0, we have

∥∥∥ξkj

Sc

∥∥∥
1
≤ ρ

∥∥∥ξkj

S

∥∥∥
1
, (3.11)
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for any S ⊆ {1, ..., n} with |S| ≥ K. In particular, we consider the index set S which

is the set of indices i such that |ξ
kj

i | =
[
σ(ξkj )

]
j
where n − K + 1 ≤ j ≤ n, i.e., S

denotes the set of indices corresponding to the K smallest components of |ξkj |. Thus,

∥∥∥ξkj

Sc

∥∥∥
1
=

n−K∑

i=1

[
σ(ξkj )

]
i
=

n−K∑

i=1

[
σ(∇Fεkj

(vkj ))
]

i
,

and

∥∥∥ξkj

S

∥∥∥
1
=

n∑

i=n−K+1

[σ(ξkj )]i =

n∑

i=n−K+1

[
σ(∇Fεkj

(vkj ))
]

i
.

Therefore, by (3.11), we have

n−K∑

i=1

[
σ(∇Fεkj

(vkj ))
]

i
≤ ρ

n∑

i=n−K+1

[
σ(∇Fεkj

(vkj ))
]

i
. (3.12)

However, we have

n−K∑

i=1

[
σ(∇Fεkj

(vkj ))
]

i
≥ (n−K)

[
σ(∇Fεkj

(vkj ))
]

n−K+1

> ρK
[
σ(∇Fεkj

(vkj ))
]

n−K+1
, (3.13)

where the second inequality follows from n−K > ρK and
[
σ(∇Fεkj

(vkj ))
]

n−K+1
> 0

(since ∇Fεkj
(vkj ) ∈ Rn

++). The right-hand side of (3.13) is greater than or equal to

ρ
n∑

i=n−K+1

[
σ(∇Fεkj

(vkj ))
]

i
,

contradicting with (3.12). Thus (3.6) holds.

The above result holds for the whole family of merit functions for sparsity in
M. Roughly speaking, Algorithm 2.2 guarantees to generate a sparse solution if the
RSP is satisfied. However, this result does not confirm how sparse the solution is. So
Theorem 3.7 can be called a weak convergence theorem, based on which some stronger
convergence result can be further proved. To this end, we need to establish the next
technical result. Recall that for a given vector x, T (x) = {i : xi 6= 0} denotes the
support of x.

Lemma 3.8. Let A ∈ Rm×n with m ≤ n, and assume that AT has the RSP of
order K with constant ρ > 0 satisfying 1 + ρ < n

K . Let Fε ∈ M and {(xk, vk)} be
generated by Algorithm 2.2 such that ‖vk+1 − vk‖ → 0 as k → ∞. If there exists
a positive constant µ > 0 such that |Iµ(xk)| ≥ K for all sufficiently large k, where

Iµ(x
k) = {i : |xk

i | ≥ µ}, then there exists a k′ such that ‖xk′

‖0 < n and T (xk) ⊆

T (xk′

) for all k ≥ k′.

Proof. At the k-th step, since (xk+1, vk+1) is an optimal solution to the LP
problem min{∇Fεk(v

k)T v : Ax = b, |x| ≤ v}, by the optimality condition there exist
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αk, βk ∈ Rn
+ and λk ∈ Rm such that

ATλk − αk + βk = 0, (3.14)

∇Fεk(v
k)− αk − βk = 0, (3.15)

− xk+1
i − vk+1

i ≤ 0, αk
i

(
−xk+1

i − vk+1
i

)
= 0, αk

i ≥ 0, i = 1, ..., n, (3.16)

xk+1
i − vk+1

i ≤ 0, βk
i

(
x
k+1)
i − vk+1

i

)
= 0, βk

i ≥ 0, i = 1, ..., n, (3.17)

Axk+1 = b. (3.18)

Since Fε(v) is separable in v. Each component [∇Fεk(v
k)]i is dependent on vki only.

Since the second order derivative [∇2Fεk(v
k)]ii is negative (by Assumption 2.1(d)),

[∇Fεk(v
k)]i is decreasing with respect to vki . This implies that for all i ∈ Iµ(x

k) we
have

[∇Fεk(v
k)]i ≤ [∇Fεk(µe)]i. (3.19)

Since ‖vk+1−vk‖ → 0 as k → ∞, for all sufficiently large k we have vk+1
i 6= 0 for every

i ∈ Iµ(x
k). Thus, for every i ∈ Iµ(x

k), (3.16) and (3.17) imply that either αk
i = 0 or

βk
i = 0. By Assumption 2.1(c), we have ∇Fεk (v

k) ∈ Rn
++ which, together with (3.15),

implies that for every i we have either αk
i 6= 0 or βk

i 6= 0. So we conclude that for
every i ∈ Iµ(x

k), αk
i and βk

i must be strictly complementary, i.e., one and only one of
them is zero. Thus

|αk
i − βk

i | = αk
i + βk

i =
[
∇Fεk(v

k)
]
i

for every i ∈ Iµ(x
k). (3.20)

By (3.19) and (3.20), for all sufficiently large k we have

∑

i∈Iµ(xk)

|αk
i − βk

i | =
∑

i∈Iµ(xk)

αk
i + βk

i =
∑

i∈Iµ(xk)

[
∇Fεk(v

k)
]
i
≤

∑

i∈Iµ(xk)

[∇Fεk(µe)]i .

(3.21)
The right-hand side of the above is bounded. In fact, by Assumption 2.1(c), [∇Fε(µe)]i
is continuous in ε and there exists constant γ∗

i > 0 such that [∇Fε(µe)]i → γ∗
i as

ε → 0. Thus there exists a constant W ∗ such that
∑n

i=1 [∇Fε(µe)]i ≤ W ∗ for all
ε ∈ (0, ε0]. Note that εk ∈ (0, ε0]. It follows from (3.21) that for all sufficiently large
k we have

∑

i∈Iµ(xk)

|αk
i − βk

i | ≤
∑

i∈Iµ(xk)

[∇Fεk(µe)]i ≤
n∑

i=1

[∇Fεk(µe)]i ≤ W ∗. (3.22)

We now prove that ‖xk‖0 = |T (xk)| < n for all sufficiently large k. From Assumption
2.1(c), [∇Fε(v)]i → ∞ as (vi, ε) → 0. Thus there exists a small constant 0 < ǫ∗ < µ
such that

[∇Fε(v)]i > ρW ∗ for any |vi|+ ε ≤ ǫ∗. (3.23)

By Theorem 3.7, we have that [σ(xk)]n → 0 as k → ∞. Thus there exists a sufficiently
large number k′ such that [σ(xk)]n + εk < ǫ∗ for all k ≥ k′. Let i0 be the index such
that vk

′

i0
= |xk′

i0
| = [σ(xk′

)]n. Since ǫ∗ < µ, we see that i0 6∈ Iµ(x
k′

). Consider the

next point (xk′+1, vk
′+1), which satisfies the optimality condition (3.14)-(3.18) where

(λk, vk, xk+1, vk+1, αk, βk, εk) is replaced by (λk′

, vk
′

, xk′+1, vk
′+1, αk′

, βk′

, εk′). We
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now prove that xk′+1
i0

= 0. In fact, if it is not, by (3.15)-(3.17), one and only one of

αk′

i0 and βk′

i0 is zero. This, together with (3.15) and (3.23), implies that

|αk′

i0 − βk′

i0 | = αk′

i0 + βk′

i0 =
[
∇Fεk′

(vk
′

)
]

i0
> ρW ∗,

and thus

∑

i6∈Iµ(xk′ )

|αk′

i − βk′

i | ≥ |αk′

i0 − βk′

i0 | > ρW ∗. (3.24)

However, since |Iµ(xk′

)| ≥ K and AT has the RSP of order K with constant ρ > 0,
by (3.14) and (3.22), we have

∑

i6∈Iµ(xk′ )

|αk′

i − βk′

i | =
∑

i6∈Iµ(xk′ )

|ATλk′

|i

≤ ρ
∑

i∈Iµ(xk′)

|ATλk′

|i = ρ
∑

i∈Iµ(xk′)

|αk′

i − βk′

i |

≤ ρW ∗. (3.25)

This contradicts (3.24). So we conclude that xk′+1
i0

= 0 and thus |T (xk′+1)| < n. This

also indicates that [σ(xk′+1)]n = vk
′+1

i0
= 0. Replacing xk′

by xk′+1, considering the

point (xk′+2, vk
′+2) and repeating the same proof above, we can show that xk′+2

i0
=

0. Thus, by induction, we conclude that for all k > k′ the iterates will keep this
component being zero. This proof can be applied to any other component xk′

i = 0
from which we can show that xk

i = 0 for all k > k′. Thus there exists a k′ such that

T (xk) ⊆ T (xk′

) for all k ≥ k′.

The requirement that ‖vk+1 − vk‖ → 0 as k → ∞ used in Lemma 3.8 is mild,
and it can hold trivially when the merit function is suitably chosen. For instance, by
Corollary 3.4, the merit functions in Examples 2.4 and 2.5 can ensure this condition.

In what follows, we prove the next main result in this section. Let Iµ(x) be
defined as in Lemma 3.8. Since b 6= 0, there exists a small number µ0 > 0 such that
for any given µ ∈ (0, µ0) the set Iµ(x) 6= ∅ for any solution of the system Ax = b.
Clearly, we have Iµ(x) ⊆ T (x) (and thus |Iµ(x)| ≤ |T (x)|) for any x ∈ Rn. The next
result is stronger than Theorem 3.7.

Theorem 3.9. Let A ∈ Rm×n with m ≤ n. Assume that AT has the RSP of
order K with constant ρ > 0 satisfying 1 + ρ < n

K . Let Fε ∈ M and the sequence
{(xk, vk)} be generated by Algorithm 2.2. If ‖vk+1 − vk‖ → 0 as k → ∞, then there
is a subsequence {xkj} that converges to a ⌊(1 + ρ)K⌋-sparse solution of Ax = b in
the sense that [σ(xkj )]⌊(1+ρ)K+1⌋ → 0 as j → ∞.

Proof. Consider the sequence {(xk, vk)} generated by Algorithm 2.2. Under the
condition of the theorem, we prove that it has a subsequence {xkj} convergent to a
⌊(1 + ρ)K⌋-sparse solution in the sense that [σ(xkj )]⌊(1+ρ)K+1⌋ → 0 as j → ∞. We
prove this by contradiction. Assume the contrary that there is no such subsequence.
Then [σ(xk)]⌊(1+ρ)K+1⌋ must be bounded away from zero, i.e., there exists a number

µ∗ > 0 such that [σ(xk)]⌊(1+ρ)K+1⌋ ≥ µ∗ for all sufficiently large k. In other words

|Iµ∗(xk)| ≥ ⌊(1 + ρ)K + 1⌋ > (1 + ρ)K
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for all large k. By Lemma 3.8, there exists a k′ such that

‖xk‖0 = |T (xk)| < n, T (xk) ⊆ T (xk′

) for all k ≥ k′. (3.26)

Note that Iµ∗(xk) ⊆ T (xk). So

n > |T (xk)| ≥ |Iµ∗(xk)| > (1 + ρ)K > K for any k ≥ k′. (3.27)

If |T (xk)| > |Iµ∗(xk)| at the k-step (k ≥ k′), we can prove that the algorithm will
continue to reduce the value of |T (xk)| until for some k′′ > k′ we have |T (xk)| =
|Iµ∗(xk)| for all k ≥ k′′. Since Fε(v) is separable in v, it can be represented as
Fε(v) =

∑n
i=1 φi(ε, vi) where φi’s are some kernel functions. From (3.26), we see

that if xk′

i = 0 then xk
i = 0 for all k ≥ k′. Thus for all k ≥ k′ the problem (2.5), i.e.,

min
{
∇Fεk(v

k)T v : Ax = b, |x| ≤ v
}
, is exactly equivalent to the reduced problem

min
{
[∇Fεk (v

k)]TS vS : ASxS = b, |xS | ≤ vS
}
, (3.28)

where S = T (xk′

). In other words, for all k ≥ k′ the solution (xk+1, vk+1) to (2.5) can
be partition into xk+1 = (xk+1

S , 0), vk+1 = (vk+1
S , 0) where (xk+1

S , vk+1
S ) is the solution

to the reduced problem (3.28). The merit function for sparsity associated with (3.28)
is given by

Fε(vS) :=
∑

i∈S

φi(ε, vi),

which still satisfies the Assumption 2.1 in space R|S|, where |S| = |T (xk′

)| > K by
(3.27). (The reduced function above is obtained from Fε(v) by simply dropping the
components φi(ε, vi) with i ∈ Sc = {1, ..., n}\S, and retaining the ones with indices in
S only.) We now show that the reduced matrix AT

S has the same RSP as that of AT .
Indeed, let η ∈ R(AT

S ). Then there exists a λ such that η = AT
Sλ. Setting η′ = AT

Sc
λ

and rearranging the components of (η, η′) if necessary, we have (η, η′) ∈ R(AT ). For
any L ⊆ S with |L| ≥ K, by the RSP of AT , we have

‖(ηLc
, η′)‖1 ≤ ρ‖ηL‖,

where Lc = S\L. Thus ‖ηLc
‖1 ≤ ρ‖ηL‖, which implies that AT

S satisfies the RSP of
order K with the same constant ρ. Similarly, it is evident that removing rows from
the matrix A, the transpose of the resulting submatrix still satisfies the RSP with the
same constant ρ as that of AT . Note that AS ∈ Rm×|S|. If m > |S|, the rows of AS

are linearly dependent, and hence some equations of ASxS = b are redundant, and
can be removed from the system without any change to the solution of (3.28).

Therefore without loss of generality, the size of AS can be assume to be m× |S|
with m ≤ |S|, and AT

S has the RSP of order K with the same constant as that of AT ,

as shown above. By (3.27), we have that 1+ ρ < |S|
K where |S| = |T (xk′

)|. Therefore,
applying Lemma 3.8 to the m × |S| matrix AS and the reduced merit function for
sparsity Fε(vS) =

∑
i∈S φi(ε, vi) where vS ∈ R|S|, we conclude that there exists a

k′′ > k′ such that |T (xk′′

S )| < |S|, T (xk
S) ⊆ T (xk′′

S ) for all k ≥ k′′. Notice that xk′′

and xk are partitioned, respectively, into (xk′′

S , 0) and (xk
S , 0) for all k ≥ k′′. This is

equivalent to

|T (xk′′

)| < |S| = |T (xk′

)|, T (xk) ⊆ T (xk′′

) for all k ≥ k′′.
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If |T (xk′′

)| remains larger than |Iµ∗(xk′′

)|, which is larger than ⌊(1 + ρ)K⌋ by (3.27),

then replace xk′

by xk′′

and repeat the same proof above, we can conclude that there
exists k′′′ > k′′ such that |T (xk′′′

)| is strictly smaller than |T (xk′′

)|. Therefore, by
induction, there must exist an integer number, denoted still by k′′′, such that

T (xk) = Iµ∗(xk), T (xk) ⊆ T (xk′′′

) for all k ≥ k′′′.

Let S = Iµ∗(xk), which is larger than (1 + ρ)K by (3.27). The above relation implies
that for all k ≥ k′′′ the vector xk is |S|-sparse vector where |S| = |Iµ∗(xk)| > (1+ρ)K,
and all nonzero components of xk are bounded below by µ∗ > 0. All the rest iterations
are equivalent to solving the reduced minimization problem (3.28) with S = Iµ∗(xk) =
T (xk). Note that AS is a submatrix of A, so AS satisfies the RSP with the same
order and constant. Thus applying to the reduced merit function Fε(xS), Theorem
3.7 implies that [σ(xk

S)]|S| → 0 as k → ∞, i.e., the smallest component of xk
|S| tends

to zero, which contradicts with xk
|S| ≥ µ∗e > 0. This contradiction shows that there

must exist a subsequence {xkj} convergent to a ⌊(1+ρ)K⌋-sparse solution in the sense
that [σ(xkj )]⌊(1+ρ)K+1⌋ → 0 as j → ∞.

An immediate result is given as follows.
Corollary 3.10. Under the same condition of Theorem 3.7. Let {(xk, vk)} be

the sequence generated by Algorithm 2.2, and let {(xkj , vkj )} be the subsequence such
that [σ(xkj )]⌊(1+ρ)K+1⌋ → 0 as j → ∞. Then the following hold.

(i) For any given integer number t ≥ 1, the subsequence {xkj+t} converges also
to ⌊(1 + ρ)K⌋-sparse solution in the sense that [σ(xkj+t)]⌊(1+ρ)K+1⌋ → 0 as j → ∞.

(ii) If vk → v∗, then any accumulation point of {xk} is a ⌊(1 + ρ)K⌋-sparse
solution of Ax = b.

(iii) If the ⌊(1 + ρ)K⌋-sparse solution of Ax = b is unique, then the subsequence
{xkj} converges to the sparsest solution of Ax = b. In particular, if xk → x∗ or
vk → v∗, then xk converges to the sparsest solution.

Proof. Clearly, we have

∣∣[σ(xkj+t)]⌊(1+ρ)K+1⌋ − [σ(xkj )]⌊(1+ρ)K+1⌋

∣∣ ≤
∥∥σ(xkj+t)− σ(xkj )

∥∥

=
∥∥σ(vkj+t)− σ(vkj )

∥∥ ≤
∥∥vkj+t − vkj

∥∥ .

Note that
∥∥vkj+t − vkj

∥∥ ≤
∑t

i=1

∥∥vkj+i − vkj+(i−1)
∥∥ → 0 as j → ∞, which follows

from ‖vk+1 − vk‖ → 0 as k → ∞. Combining the two relations above leads to the
result (i). The results (ii) and (iii) are evident.

As shown by Corollary 3.4, the merit function in M can be chosen to ensure that
the sequence {vk} is bounded and ‖vk+1−vk‖ → 0. So the requirement ‖vk+1−vk‖ →
0 used in Theorem 3.9 and Corollary 3.10 can be removed when the merit functions
are suitably chosen (e.g., Examples 2.4 and 2.5). We summarize this result as follows.

Theorem 3.11. Assume that AT has the RSP of order K with constant ρ > 0
satisfying that 1+ρ < n

K . Let Fε ∈ M and Fε(v) be bounded below in (x, v) ∈ Rn
+×R+,

and g(x) = infε↓0 Fε(x) be coercive in Rn
+. Let {(x

k, vk)} be generated by Algorithm
2.2. Then there is a subsequence {xkj} that converges to a ⌊(1+ρ)K⌋-sparse solution
of Ax = b in the sense that [σ(xkj )]⌊(1+ρ)K+1⌋ → 0 as j → ∞.

Remark. Except for Corollary 3.4 and Theorem 3.11, all other results established
in this section can be viewed as the common properties shared among the reweighted
ℓ1-algorithms based on the merit function in M. Theorem 3.7 claims that under RSP,
any reweighted ℓ1-minimization algorithm associated with a merit function in M can
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find a sparse solution of the underdetermined linear system. If the sequence generated
by the algorithm satisfies ‖vk+1 − vk‖ → 0, then Theorem 3.9 further claims that,
under RSP of orderK with (1+ρ)K < n, the algorithm can find at least a ⌊(1+ρ)K⌋-
sparse solution. Since the CWB method falls into the framework of Algorithm 2.2
and it is based on a merit function in M (see Example 2.3), a convergence result for
the CWB method can be extracted from Theorem 3.7 and 3.9 and their corollaries
immediately. The statement of this special result is omitted here. Theorem 3.11 that
is stronger than Theorem 3.9 has further identified a subclass of merit functions in
M, including Wlp, NW2, and NW3 methods, which can ensure that the generated
sequence is bounded and satisfies ‖vk+1 − vk‖ → 0. Thus, the convergence results for
Wlp, NW2, and NW3 methods can be immediately obtained from Theorem 3.11 as
well.

4. Numerical Experiments. As seen in section 3, M is a large family of merit
functions for sparsity, based on which various reweighted ℓ1-methods can be con-
structed. It is interesting to compare these algorithms through numerical experiments.
Since it is impossible to test all algorithms of this family, we single out a few of them,
and compare their performances in finding sparse solution of underdetermined linear
systems. Let us first list a few of these specific methods as follows.

(a) Candès-Wakin-Boyd (CWB) method

xk+1 = arg min

{
n∑

i=1

(
1

|xk
i |+ εk

)
|xi| : Ax = b

}
.

(b) Wlp method

xk+1 = argmin

{
n∑

i=1

(
1

(|xk
i |+ εk)1−p

)
|xi| : Ax = b

}
, p ∈ (0, 1).

(c) NW1 algorithm derived from Example 2.3(ii)

xk+1 = argmin

{

n
∑

i=1

(

p+ (|xk
i |+ εk)

1−p

(|xk
i |+ εk)1−p

[

|xk
i |+ εk + (|xk

i |+ εk)p
]

)

|xi| : Ax = b

}

,

where p ∈ (0, 1).
(d) NW2 algorithm derived from Example 2.5

xk+1 = argmin

{

n
∑

i=1

[

q + (|xk
i |+ εk)

1−q

(|xk
i |+ εk)1−q

[

|xk
i |+ εk + (|xk

i |+ εk)q
]1−p

]

|xi| : Ax = b

}

,

where p, q ∈ (0, 1).
(e) NW3 algorithm derived from Example 2.5

xk+1 = argmin

{

n
∑

i=1

(

1 + 2(|xk
i |+ εk)

(|xk
i |+ εk + (|xk

i |+ εk)2)1−p

)

|xi| : Ax = b

}

,

where p ∈ (0, 1/2].

(f) NW4 algorithm based on Example 2.6

xk+1 = argmin

{
n∑

i=1

(
1 + (|xk

i |+ εk)
p

(|xk
i |+ εk)1+p

)
|xi| : Ax = b

}
, p ∈ (0,∞).
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To compare these methods, we randomly generate the pair (A, x), where A ∈
R50×250 and x is a k-sparse vector in R250 with k = 1, 2, ..., 30. Throughout this
section, all random pairs (A, x) are generated based on the following assumption: The
entries of A and x on its support are i.i.d Gaussian random variables with zero mean
and unit variances. Once (A, x) is generated, we set b = Ax and test the algorithms
on this system. For every given sparsity k, 500 pairs of (A, x) were generated, and
we compare the success probability of all the above-mentioned algorithms in locating
k-sparse solutions. For all tested instances of Ax = b, every reweighted algorithm
was executed only 4 iterations, and the same parameters α = 0.5, ε0 = 0.01 and the
initial point x0 = e ∈ R250 were used in Algorithm 2.2. Note that x0 = e implies
that the first iteration of the algorithm is actually the ℓ1-minimization. Given a
k-sparse solution x of Ax = b, the algorithm claims to be successful in finding (or
exact reconstruction of) the k-sparse solution x if the found solution xk satisfies that
‖xk‖0̃ ≤ k and ‖xk −x‖ ≤ 10−5 where ‖xk‖0̃ is defined, in our experiments, to be the
number of components of x satisfying |xk

i | ≥ 10−5. Clearly, the main computational
cost in Algorithm 2.2 is solving weighted ℓ1-minimization problems. To solve these
problems, we use CVX, a package for specifying and solving convex programs [26].

Since NW2 has two parameters (p, q), we set q = p for this algorithm in all tests
for simplicity. Our experiments show that no matter what value of p ∈ (0, 1) is taken
(for NW3, p is restricted in (0, 1/2]), all six reweighted ℓ1-algorithms defined above
remarkably outperform ℓ1-minimization in recovering the desired sparse solutions.
The new algorithms NW2 and NW3 proposed in this paper and the existing Wlp
method are particularly strong. The results for p = 0.3 and 0.5 are summarized in
Figure 4.1, in which the success probability of ℓ1-minimization is also included.
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(a) p = 0.5
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(b) p = 0.3

Fig. 4.1. Comparison of success rates of finding the k-sparse solution x of b = Ax, where
A ∈ R50×250 and x ∈ R250. For each k-sparsity, 500 attempts were made. All six reweighted
ℓ1-methods outperform ℓ1-minimization.

The success probability of these algorithms are different. For example, for the
sparsity k = 15, Figure 4.1 (a) shows that the success probability of ℓ1-minimization
to find the desired sparse solution is about 17%, NW4 is about 28%, NW1 and CWB
are about 38%, NW3 is about 46%, and NW2 and Wlp are about 52%. A similar
result can be seen from Figure 4.1 (b). Figure 4.1 demonstrates that NW2 and Wlp
methods perform particularly well in finding the sparse solutions of linear systems.
Thus it is interesting to single out these two algorithms, and further compare their
performances (also with the ℓ1- and CWB method). The experiments show that when
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p is relatively small (e.g. p ≤ 0.2), NW2 outperforms Wlp method. For 0.3 ≤ p ≤ 0.6,
NW2 and Wlp are quite comparable, and in many cases their numerical performances
are almost identical. When p is relatively large (e.g. p ≥ 0.7), Wlp method can
outperform NW2 in many situations. The results for p = 0.01, 0.1, 0.3 and 0.7 were
summarized in Figure 4.2.
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(a) p = 0.7
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(b) p = 0.3
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(c) p = 0.1
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(d) p = 0.01

Fig. 4.2. Comparison of NW2, Wlp, CWB, and ℓ1-minimization through the success frequency
of finding the k-sparse solution of b = Ax, where A ∈ R50×250 . 500 attempts were made for each
k-sparsity (k = 1, ...,30), and different values of p were tested.

The above numerical experiments were carried out by using the updating rule
εk+1 = αεk where α = 0.5. These experiments have demonstrated that all tested
reweighted ℓ1-algorithms (NW1-NW4, CWB, and Wlp) do outperform the standard
ℓ1-minimization in many situations. We also observed that in the aforementioned
testing environment, NW2, NW3 and Wlp perform better than CWB, NW1, and
NW4 in many situations, and NW2 and Wlp methods are quite comparable to each
other.

However, these numerical results cannot imply that the overall performance of
NW2, NW3, and Wlp is always better than CWB, NW1, and NW4. It is interesting
to test algorithms using a different parameter updating rule. Candès, Wakin and
Boyd [9] proposed the following rule:

εk = max
{
[σ(xk)]i0 , 10

−3
}
, (4.1)

where i0 denotes the nearest integer to m/[4 log(n/m)]. Let us replace the updating
scheme εk+1 = εk/2 in Algorithm 2.2 by (4.1), and redo experiments. The results
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for p = 0.5 and 0.3 were summarized in Figure 4.3, from which we see that all tested
reweighted algorithms still remarkably outperform the standard ℓ1-minimization, but
this time CWB, NW1, and NW4 perform better than NW2, NW3, and Wlp, and
these three methods (CWB, NW1, and NW4) are quite comparable and the recovery
by these three methods is robust with respect to the choice of the parameter p.
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(i) p = 0.5, εk is updated by (4.1)
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(ii) p = 0.3, εk is updated by (4.1)

Fig. 4.3. Comparison of success rates of reweighted algorithms with (4.1) in finding the k-sparse
solution of b = Ax, where A ∈ R50×250 . For each k-sparsity, 500 attempts were made.

In summary, all the tested reweighted methods can outperform the standard ℓ1-
method in finding sparse solutions of linear systems. From Figures 4.1 and 4.3, the
numerical performance of a reweighted algorithm may depend on the updating rule
of the parameter εk, and we observe that CWB, NW1, and NW4 perform best when
using (4.1), compared with the remaining algorithms using either the rule (4.1) or
εk+1 = εk/2.

5. Conclusions. Via a merit function for sparsity which is certain concave ap-
proximation of the cardinality function, the concave minimization plays an impor-
tant role in locating sparse solutions of underdetermined linear systems of equations.
Through a linearization technique, minimizing concave merit functions for sparsity
yields a unified approach for reweighted ℓ1-minimization algorithms. This unified
approach not only makes it easy to construct various new specific reweighted ℓ1-
algorithms for the sparse solution of linear systems, but also enables us to develop a
new and unified convergence theory for a large family of such algorithms. The anal-
ysis in this paper is based on the so-called range space property, which is different
from the existing RIP/NSP-based analysis. As special cases of our general frame-
work, a convergence result for the well-known ℓp-quasi-norm-based reweighted algo-
rithm and Candès-Wakin-Boyd method can be obtained, respectively, from Theorems
3.11 and 3.9 in this paper. Moreover, several specific reweighted ℓ1-algorithms have
been constructed, and their efficiency of finding sparse solutions of linear systems has
been demonstrated by numerical experiments. Although the simulation shows that
reweighted ℓ1-algorithms outperform the standard ℓ1-method in many situations, a
rigorous mathematical proof for this phenomena has not been carried out so far. This
remains an open question in this field. What we have actually proved in this pa-
per is that, under suitable conditions, a large family of reweighted ℓ1-algorithms can
generate a solution with a certain level of sparsity to the linear system.
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