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A NEW COMPUTATIONAL METHOD FOR THE SPARSEST
SOLUTIONS TO SYSTEMS OF LINEAR EQUATIONS

YUN-BIN ZHAO∗ AND MICHAL KOČVARA†

Abstract. The connection between the sparsest solution to an underdetermined system of lin-
ear equations and the weighted ℓ1-minimization problem is established in this paper. We show that
seeking the sparsest solution to a linear system can be transformed to searching for the densest slack
variable of the dual problem of weighted ℓ1-minimization with all possible choices of nonnegative
weights. Motivated by this fact, a new reweighted ℓ1-algorithm for the sparsest solutions of linear
systems, going beyond the framework of existing sparsity-seeking methods, is proposed in this paper.
Unlike existing reweighted ℓ1-methods that are based on the weights defined directly in terms of it-
erates, the new algorithm computes a weight in dual space via certain convex optimization and uses
such a weight to locate the sparsest solutions. It turns out that the new algorithm converges to the
sparsest solutions of linear systems under some mild conditions that do not require the uniqueness of
the sparsest solutions. Empirical results demonstrate that this new computational method remark-
ably outperforms ℓ1-minimization and stands as one of the very efficient sparsity-seeking algorithms
for the sparsest solutions of systems of linear equations.
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1. Introduction. Sparsity has long been utilized in the signal and image pro-
cessing community (see, e.g., Beurling [5], Pennebaker and Mitchell [49], Gorodnitsky,
George, and Rao [32], Donoho [23], and Mallat [42]) and dates back to the early 1900’s
(e.g., Carathéodory [13]). It has long been exploited in learning theory and statistics
as well (e.g., Tibshirani [51], Mangasarian [44], Vapnik [55], and Hastie, Tibshirani,
and Friedman [34]). The compressed sensing, initiated by Candès, Romberg, and Tao
[11, 9, 10] and Donoho [24], has attracted considerable cross-disciplinary attention in
recent years and stimulates a plethora of new applications of sparsity in such fields
as geophysical data analysis, medical imaging, communications, sensor network, and
computational biology. A central question in these applications can be cast, typically,
as the so-called ℓ0-minimization problem

min{‖x‖0 : Ax = b}, (1.1)

where A ∈ Rm×n (m < n) is a given full-rank matrix (i.e., rank(A) = m), b ∈ Rm is a
given vector, and ‖ ·‖0 counts the nonzeroes of a vector. We assume b 6= 0 throughout
the paper. Clearly, the optimal solution of (1.1) is the sparsest solution to the linear
system Ax = b.

Developing efficient algorithms to solve the problem (1.1) is fundamentally im-
portant and has become a common request in various applications. Over the past
few years, some practical methods have been proposed for this problem, including the
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greedy pursuit (see, e.g., [43, 22, 52, 25, 6, 19, 48, 7]) and convex optimization (e.g.,
[16, 27, 31, 52, 11, 10, 53]). Closely related to greedy pursuits are thresholding meth-
ods (see, e.g., [20, 6, 47, 4, 41]), which also attract considerable recent attention in the
field of sparse signal recovery. Other methods, such as nonconvex optimization and
Bayesian framework, are exploited by some researchers as well (e.g., [14, 56]). A good
introduction and survey of these methods can be found in [8, 28, 54]. Particularly,
ℓ1- and weighted ℓ1-minimization play a vital role in the development of compressed
sensing theory, and have been widely used for solving the ℓ0-problem (1.1).

The efficiency of ℓ1-minimization has been analyzed (largely in the context of
compressed sensing) under various assumptions such as the mutual coherence [26, 28],
restricted isometry property (RIP) [11], null space property (NSP) [18], exact recovery
condition (ERC) [52, 31], and the range space property [58]. These analyses also mo-
tivate ones to explore a more efficient method than ℓ1-minimization. Candès, Wakin,
and Boyd [12] have proposed the reweighted ℓ1-minimization and have empirically
demonstrated that this method often outperforms ℓ1-minimization. Needell [46] has
analyzed this method in the noisy case and obtained an improved stability result un-
der the RIP assumption. Asif and Romberg [1] have presented a homotopy method
to solve the reweighted ℓ1-minimization inexpensively as the weight changes. They
also utilized the reweighted ℓ1-method to cope with the sparse recovery of stream-
ing signals (from streaming measurements) (see [2]). Zhao and Li [59] have shown
that a large family of reweighted ℓ1-algorithms converges to sparse solutions of under-
determined linear systems under certain assumptions imposed on the matrix. This
family includes many existing reweighted ℓ1-algorithms (e.g., [12, 30, 39, 57, 17])
as special cases. Moreover, the reweighted ℓ1-method is also used for the study of
partial-support-information-based signal recovery (see Khajehnejad et al. [38]).

Close to reweighted ℓ1-algorithms is the reweighted ℓ2-method which has a rel-
atively long history (see, e.g., [35, 32, 29, 15, 57, 21, 3, 40, 50]). As pointed out by
Wipf and Nagarajan [57], both reweighted (ℓ1- and ℓ2-) methods can be derived by
estimating the upper bound of certain sparsity merit functions. It is worth noting
that the main difference between various reweighted ℓ1-methods lies in the updating
scheme of weights (see, e.g., [30, 39, 57, 37, 57, 17, 36, 59]). A common feature for
these methods is that the magnitude of the weight wk is determined locally at the
current iterate xk. The weight is often chosen to penalize those components of the
solution, which correspond to the small components of the current iterate. Such a
weight might force the next iterate to admit a sparsity pattern very similar to the
current iterate, and thus the next iterate may still fail to change toward the sparsest
pattern of solutions if the current iterate is far from being the sparsest.

In this paper, we develop a new reweighted ℓ1-method to locate the sparsest
solution of linear systems. A unique feature of this method is that the weight is
computed in certain dual space via convex optimization, instead of being defined
locally on the current iterate. We first employ the strict complementarity theory of
linear programs to prove that ℓ0-minimization can be reformulated as an equivalent ℓ0-
maximization problem with bilevel constraints. As a result, solving ℓ0-minimization
can be translated to the computation of an optimal weight, which can be achieved,
in theory, by searching the densest possible slack variable of the dual problem of
weighted ℓ1-minimization with all possible weights. This connection between the
sparsity in primal space and density in dual (complementary) space leads to a new
computational method for solving ℓ0-minimization, which goes beyond the framework
of existing sparsity-seeking methods and does not share the aforementioned common
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feature. Under certain conditions, we prove that the proposed algorithm converges to
the sparsest solutions of systems of linear equations. Our convergence analysis permits
the linear system to admit multiple sparsest solutions. The perturbation theory for
linear programs, established by Mangasarian and Meyer [45], plays a vital role in
our analysis. Empirical results indicate that this computational method remarkably
outperforms the standard ℓ1-minimization, and its performance is very comparable to
the state-of-art reweighted ℓ1-algorithms for ℓ0-problems.

In section 2, we establish some theoretical results on the relationship between
ℓ0- and weighted ℓ1-minimization and provide an intrinsic connection between bilevel
optimization and ℓ0-minimization. Based on the results in section 2, we propose a
new reweighted ℓ1-method in section 3. The convergence analysis for this method is
carried out in section 4, and the numerical results are given in section 5.

Notation. In this paper, all vectors are column vectors, unless stated otherwise.
Rn

+ (Rn
++) is the set of nonnegative (positive) vectors in Rn. We interchangeably

use w ∈ Rn
+ (w ∈ Rn

++) and w ≥ 0 (w > 0), and we use e to denote the vector
of ones, i.e., e = (1, 1, ..., 1)T . For a given subset J ⊆ {1, 2, ..., n} and a matrix
A ∈ Rm×n, AJ denotes the submatrix of A consisting of the columns indexed by
J, and AT

J is the transpose of AJ . Similarly, for the vector x ∈ Rn, xJ denotes
the subvector of x indexed by J, and xT

J is the transpose of xJ , and we denote by
J+(x) = {i : xi > 0}, J−(x) = {i : xi < 0} and J0(x) = {i : xi = 0}. Clearly,
J+(x)∪ J−(x) = supp(x) := {i : xi 6= 0}, the support of x. R(AT ) = {AT y : y ∈ Rm}
denotes the range space of AT . For x, y ∈ Rn, the inequality x ≤ y (x < y) means
xi ≤ yi (xi < yi) for all i = 1, ..., n. We use | · | throughout the paper: For a set S, |S|
denotes its cardinality; for a vector x = (x1, ..., xn)

T , |x| is the absolute value of x,
i.e., |x| = (|x1|, ..., |xn|)T ; for a matrix A = (aij), |A| stands for the absolute version
of A, i.e., |A| = (|aij |).

2. Sparsity and density. In this section, we develop some theoretical results
concerning the connection between ℓ0- and weighted ℓ1-minimization. These results
provide an incentive to develop a new computational method for ℓ0-problems (see
section 3 for details). Let us first recall the following result.

Lemma 2.1 (Theorem 2.10 in [58]). x is the unique solution to the ℓ1-problem
min{‖x‖1 : Ax = b} if and only if the following conditions hold: (AJ+(x), AJ−(x))

has a full-column rank, and there exists a vector η ∈ R(AT ) such that ηJ+(x) =
eJ+(x), ηJ−(x) = −eJ−(x), and ‖ηJ0(x)‖∞ < 1.

The above sufficiency and necessity were established in [31] and [58], respec-
tively. By Lemma 2.1, we can characterize the uniqueness of solutions to weighted
ℓ1-minimization.

Theorem 2.2. Let w ∈ Rn
++ be a given weight and W = diag(w). Then x is the

unique solution to the weighted ℓ1-problem

min{‖Wx‖1 : Ax = b} (2.1)

if and only if the following conditions hold: (AJ+(x), AJ−(x)) has a full-column rank,

and there is a vector ξ ∈ R(AT ) satisfying that ξJ+(x) = wJ+(x), ξJ−(x) = −wJ−(x)

and |ξJ0(x)| < wJ0(x).
Proof. By setting u = Wx, the problem (2.1) can be written as

min{‖u‖1 : (AW−1)u = b}. (2.2)

Since W is a diagonal matrix with positive diagonal entries, we see that u and x have
the same support sets and J+(u) = J+(x) and J−(u) = J−(x). Clearly, x is the unique
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solution to the problem (2.1) if and only if u is the unique solution to the problem
(2.2). By Lemma 2.1, u is the unique solution to (2.2) if and only if the following two
conditions hold: (i) ((AW−1)J+(u), (AW

−1)J−(u)) has a full-column rank; (ii) there

exists a vector η ∈ R((AW−1)T ) such that

ηJ+(u) = eJ+(u), ηJ−(u) = −eJ−(u), ‖ηJ0(u)‖∞ < 1. (2.3)

Since J+(u) = J+(x), J−(u) = J−(x) and W−1 is a diagonal nonsingular matrix,
we deduce that the condition (i) above is equivalent to that (AJ+(x), AJ−(x)) has a

full-column rank. Note that η ∈ R((AW−1)T ) is equivalent to ξ = Wη ∈ R(AT ).
The condition (2.3) is equivalent to ξJ+(x) = wJ+(x), ξJ−(x) = −wJ−(x) and |ξJ0(x)| =
|(Wη)J0(x)| < wJ0(x). �

For any x∗ satisfying Ax∗ = b, if Asupp(x∗) has a full-column rank, we can prove
that there is a weight w such that x∗ is the unique solution to the problem (2.1).

Theorem 2.3. Let x∗ be a solution to the system Ax = b with Asupp(x∗) having a
full-column rank. Let w ∈ Rn

++ with wJ+(x∗) and wJ−(x∗) being given. If wJ0(x∗) > η∗

where η∗ is an optimal solution to the linear program

min
(y,η)

{eT η : AT
J+(x∗)y = wJ+(x∗), AT

J−(x∗)y = −wJ−(x∗), − η ≤ AT
J0(x∗)y ≤ η}, (2.4)

then x∗ is the unique solution to the weighted ℓ1-problem min{‖Wx‖1 : Ax = b},
where W = diag(w).

Proof. When (AJ+(x∗), AJ−(x∗)) has a full-column rank, the range space of (AJ+(x∗),

AJ−(x∗))
T is the whole space R|J+(x∗)|+|J−(x∗)| = R|supp(x∗)|. Thus for any vector

u ∈ R|J+(x∗)| and v ∈ R|J−(x∗)|, there always exists a vector y ∈ Rm such that
AT

J+(x∗)y = u and AT
J−(x∗)y = −v. Hence, the problem (2.4) is always feasible for any

given (wJ+(x∗), wJ−(x∗)) > 0. Let (y∗, η∗) be an optimal solution to the problem (2.4).

Clearly, we must have that η∗ = |AT
J0(x∗)y

∗|. Let wJ0(x∗) > η∗. By setting ξ = AT y∗,

we see from the problem (2.4) that

ξJ+(x∗) = wJ+(x∗), ξJ−(x∗) = −wJ−(x∗), |ξJ0(x∗)| = |AT
J0(x∗)y

∗| = η∗ < wJ0(x∗).

Thus, by Theorem 2.2, x∗ is the unique solution to the weighted ℓ1-problem. �

In Theorems 2.2 and 2.3, the weight w is required to be positive. However, this
is not required in the next result.

Theorem 2.4. Let x∗ be a solution to the system Ax = b with Asupp(x∗) having
a full-column rank. If w ∈ Rn

+ satisfies that

wJ0(x∗) >
∣∣∣AT

J0(x∗)Asupp(x∗)(A
T
supp(x∗)Asupp(x∗))

−1
∣∣∣wsupp(x∗), (2.5)

then x∗ is the unique solution to the weighted ℓ1-problem min{‖Wx‖1 : Ax = b},
where W = diag(w).

Proof. Let x∗ be a solution to the linear system Ax = b and let Asupp(x∗) have a
full-column rank. Denote by J = supp(x∗) and J0 = J0(x

∗) for simplicity. Let y be
an arbitrary solution to the linear system. Since AJx

∗
J = b and AJyJ + AJ0

yJ0
= b,

we have AJ(yJ − x∗
J ) +AJ0

yJ0
= 0. Thus

x∗
J = yJ + (AT

JAJ)
−1AT

JAJ0
yJ0

, (2.6)
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which implies that |x∗
J | ≤ |yJ |+ |(AT

JAJ )
−1AT

JAJ0
| · |yJ0

|. Therefore,

‖Wx∗‖1 − ‖Wy‖1 = wT |x∗| − wT |y| = wT
J |x∗

J | − wT
J |yJ | − wT

J0
|yJ0

|
≤ wT

J |(AT
JAJ )

−1AT
JAJ0

| · |yJ0
| − wT

J0
|yJ0

|
=
(
|AT

J0
AJ(A

T
JAJ )

−1|wJ − wJ0

)T |yJ0
|.

For any solution y 6= x∗, we see from (2.6) that yJ0
6= 0. From (2.5) and the inequality

above, we infer that ‖Wx∗‖1 − ‖Wy‖1 < 0 for any solution y 6= x∗ to the system
Ax = b. Thus x∗ is the unique solution to the weighted ℓ1-problem. �

While a certain relationship between Theorems 2.3 and 2.4 exists, these results
are different in general. In (2.5), the components wi, i ∈ supp(x∗), are allowed to
be zero, while these components are positive in (2.4). It is well known that at any
sparsest solution x∗ of the system Ax = b, the associated matrix Asupp(x∗) always
has a full-column rank. Thus the following corollary is an immediate consequence of
Theorems 2.3 and 2.4.

Corollary 2.5. Let x∗ be a sparsest solution to the system Ax = b. Let W =
diag(w), where w satisfies one of the following conditions:

(i) w ∈ Rn
+ and wJ0(x∗) >

∣∣∣AT
J0(x∗)Asupp(x∗)(A

T
supp(x∗)Asupp(x∗))

−1
∣∣∣wsupp(x∗).

(ii) w ∈ Rn
++ and wJ0(x∗) > η∗, where η∗ is an optimal solution of (2.4).

Then x∗ is the unique solution to the weighted ℓ1-problem min{‖Wx‖1 : Ax = b}.
Thus for any sparsest solution x∗, there exists a weight accordingly such that x∗

is the unique optimal solution to the weighted ℓ1-problem. Clearly, such a weight
(as indicated by Corollary 2.5) is not unique. Although the choice of such weights
depends on the support of the sparsest solution, Corollary 2.5 remains very useful
for the development of some theoretical properties and computational methods for
ℓ0-problems. Indeed, based on Corollary 2.5 and the strict complementarity theory of
linear programs, we can reformulate ℓ0-minimization as a structured bilevel optimiza-
tion problem, which eventually leads to a practical algorithm for ℓ0-minimization.
Note that the problem (2.1) can be written as

min
(x,t)

{wT t : Ax = b, |x| ≤ t}. (2.7)

Clearly, x∗ is an optimal solution to the problem (2.1) if and only if (x∗, t∗), where
t∗ = |x∗|, is an optimal solution to the problem (2.7). By introducing variables
α, β ∈ Rn

+, the problem (2.7) can be further written as

min
(t,x,α,β)

{wT t : t− x− α = 0, − t− x+ β = 0, Ax = b, (t, α β) ≥ 0}. (2.8)

Let (x∗, t∗, α∗, β∗) be an optimal solution to the problem above. Clearly, t∗ = |x∗|,
α∗ = t∗ − x∗ = |x∗| − x∗, and β∗ = t∗ + x∗ = |x∗|+ x∗. The dual problem of (2.8) is
given as

max
(u,z,y)

{bT y : u− z ≤ w, u+ z −AT y = 0, − u ≤ 0, z ≤ 0}.

By setting v = −z and s = w − (u − z) = w − u− v, the problem can be written as

max
(s,y,u,v)

{
bT y : AT y − u+ v = 0, s = w − u− v, (s, u, v) ≥ 0

}
. (2.9)
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It should be noted that some of variables in (2.9) can be eliminated to slightly simplify
the problem and the statement of the algorithm in later sections. However, we retain
these variables since it is convenient to include them as we carry out the convergence
analysis in section 5. By the complementarity property, the optimal solutions of (2.8)
and (2.9) satisfy the complementarity conditions

tT s = 0, αTu = 0, βT v = 0, (t, α, β, s, u, v) ≥ 0, (2.10)

and hence ‖t‖0+ ‖s‖0 ≤ n. So the sparsity of t in the original problem (2.8) is closely
related to the density of the variable s in the dual problem (2.9). Moreover, by linear
programming theory, there exists a pair of solutions to (2.8) and (2.9) which are
strictly complementary in the sense that they satisfy (2.10) and t+ s > 0, α+ u > 0
and β + v > 0. We summarize this fact as follows.

Lemma 2.6. Let w ∈ Rn
+ be given. Then x∗ is an optimal solution to the problem

(2.1) if and only if (x∗, t∗, α∗, β∗) is an optimal solution to the problem (2.8). For any
optimal solution (x∗, t∗, α∗, β∗) of (2.8), we must have that t∗ = |x∗|, α∗ = |x∗| − x∗

and β∗ = |x∗| + x∗. Moreover, there always exists a solution (t∗, x∗, α∗, β∗) to (2.8)
and a solution (s∗, y∗, u∗, v∗) to (2.9) such that t∗ and s∗ are strictly complementary,
i.e., (t∗, s∗) ≥ 0, (t∗)T s∗ = 0 and t∗ + s∗ > 0.

From the above lemma, we must have t∗ = |x∗| (where x∗ is the optimal solution
to the weighted ℓ1-problem (2.1)). The strict complementarity of s∗ and t∗ implies
that ‖x∗‖0 + ‖s∗‖0 = ‖t∗‖0 + ‖s∗‖0 = n. Thus, if s∗ is the densest variable of (2.9),
then x∗ must be the sparsest solution of the linear system. We now prove that a
certain bilevel optimization problem (which seeks the density of the dual variable
s) provides an optimal weight w∗, by which the weighted ℓ1-minimization yields the
sparsest solution of the linear system.

Theorem 2.7. Let (s∗, y∗, w∗, u∗, v∗, γ∗) be an optimal solution to the bilevel
optimization

max
(s,y,w,u,v,γ)

‖s‖0

s.t. bT y = γ, AT y − u+ v = 0, s = w − u− v, (s, u, v) ≥ 0, (2.11)

w ≥ 0, γ = min
x

{‖Wx‖1 : Ax = b},

where W = diag(w). Then any optimal solution to the weighted ℓ1-problem (2.1) with
w = w∗ is a sparsest solution to the system Ax = b.

Proof. Let x̂ be a sparsest solution to the system Ax = b. By Corollary 2.5, there
exists a weight ŵ ∈ Rn

+ such that x̂ is the unique solution to the weighted ℓ1-problem

min{‖Ŵx‖1 : Ax = b}, where Ŵ = diag(ŵ). Then by Lemma 2.6, (t̂, x̂, α̂, β̂) is the

unique solution to the problem (2.8), where t̂ = |x̂|, α̂ = |x̂| − x̂ and β̂ = |x̂| + x̂.
Consider the dual problem of the above weighted ℓ1-minimization

max
(s,y,u,v)

{bT y : AT y − u+ v = 0, s = ŵ − u− v, (s, u, v) ≥ 0}.

By Lemma 2.6, there exists an optimal solution to the above dual problem, denoted by
(ŝ, ŷ, û, v̂), such that (t̂, α̂, β̂) and (ŝ, û, v̂) are strictly complementary. In particular, t̂
and ŝ are strictly complementary. Thus ‖t̂‖0 + ‖ŝ‖0 = n and

‖x̂‖0 = ‖t̂‖0 = n− ‖ŝ‖0. (2.12)
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By linear programming strong duality, we have that bT ŷ = γ̂ := min{‖Ŵx‖1 :
Ax = b}. Therefore, (ŝ, ŷ, ŵ, û, v̂, γ̂) is a feasible point to the problem (2.11). Since
(s∗, y∗, w∗, u∗, v∗, γ∗) is an optimal solution to (2.11), by optimality, we have

‖ŝ‖0 ≤ ‖s∗‖0. (2.13)

Let x∗ be an optimal solution to the problem min{‖W ∗x‖1 : Ax = b} where W ∗ =
diag(w∗). Then by Lemma 2.6 again, (t∗, x∗, α∗, β∗), where t∗ = |x∗|, α∗ = |x∗| − x∗

and β∗ = |x∗| + x∗, is an optimal solution to the problem (2.8) with w = w∗. Note
that (s∗, y∗, w∗, u∗, v∗, γ∗) satisfies the constraints of the problem (2.11). Since bT y∗ =
γ∗ = min{‖W ∗x‖1 : Ax = b}, by duality, (s∗, y∗, u∗, v∗) is an optimal solution to the
dual problem (2.9) with w = w∗. By Lemma 2.6, the vectors s∗ and t∗ = |x∗| are
complementary, i.e., (t∗)T s∗ = 0. This implies that ‖t∗‖0+‖s∗‖0 ≤ n. Combining this
fact with (2.12) and (2.13) yields

‖x∗‖0 = ‖t∗‖0 ≤ n− ‖s∗‖0 ≤ n− ‖ŝ‖0 = ‖x̂‖0.

Thus x∗ is a sparsest solution to the linear system (since x̂ is a sparsest solution). �

The above result implies that seeking the sparsest solutions of linear systems can
be achieved by finding the densest slack variable s ∈ Rn

+ of the dual problem of the
weighted ℓ1-problem with all possible choices of w ∈ Rn

+. In fact, let x(w) be an
optimal solution to the weighted ℓ1-problem (2.1), and let (t(w), x(w), α(w), β(w))
be an optimal solution to the problem (2.8), and let (s(w), y(w), u(w), v(w)) be an
optimal solution to the problem (2.9). By complementarity (Lemma 2.6), s(w) and
t(w) are complementary. Thus ‖s(w)‖0 + ‖t(w)‖0 ≤ n for any given w ∈ Rn

+. By
Lemma 2.6, we have t(w) = |x(w)|, and thus

‖s(w)‖0 + ‖x(w)‖0 ≤ n for any w ∈ Rn
+. (2.14)

By Corollary 2.5, for any sparsest solution x∗, there exists a weight w∗ such that
x∗ = x(w∗) is the unique solution to the weighted ℓ1-problem (2.1) with w = w∗.
By picking a strict complementarity solution (s(w∗), y(w∗), u(w∗), v(w∗)) to its dual
problem (2.9), the equality can be achieved in (2.14). As a result, s(w∗) is the densest
vector among all possible choices of w ∈ Rn

+, i.e., s(w
∗) = argmax{‖s(w)‖0 : w ∈

Rn
+}. We summarize these facts as follows.

Corollary 2.8. Let x∗ be a sparsest solution of the system Ax = b. Then there
exists a weight w∗ ∈ Rn

+ such that the dual problem (2.9), where w = w∗, admits a
solution (s∗, y∗, u∗, v∗) satisfying that ‖x∗‖0 = n− ‖s∗‖0.

The weightw∗ in Theorem 2.7 and Corollary 2.8 is referred to as an optimal weight
in this paper. The above discussion indicates that an optimal weight can be found,
in theory, by searching for the densest dual variable s(w) among all possible choices
of w ∈ Rn

+. It is the strict complementarity theory of linear programs that provides
this new perspective to understand ℓ0-minimization, leading to a new computational
method for this problem.

3. A new reweighted ℓ1-method. Theorem 2.7 indicates that solving the
bilevel optimization problem (2.11) yields an optimal weight by which the sparsest
solution of a system of linear equations can be found. However, directly solving a
bilevel optimization problem to optimality is difficult. This motivates us to consider
an approximation of (2.11). Let γ(w) denote the optimal value of (2.1), i.e.,

γ(w) = min
x

{‖Wx‖1 : Ax = b}, (3.1)
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where W = diag(w). By the duality theory of linear programs, the constraints of
(2.11) imply that for any feasible point (y, s, w, u, v, γ) of (2.11), (y, s, u, v) must be
an optimal solution to the problem (2.9). Thus the purpose of the bilevel problem
(2.11) is actually to achieve two-level maximization. At the lower level, the dual
objective bT y is maximized subject to the constraints of (2.9) for every given w ≥ 0.
This yields a feasible point, denoted by (y(w), s(w), w, u(w), v(w), γ(w)), to the bilevel
problem (2.11). Then at the higher level, ‖s(w)‖0 is maximized among all possible
choices of w ≥ 0. Thus the following model is a certain approximation of (2.11):

max{α‖s‖0 + bT y : AT y − u+ v = 0, s = w − u− v, (s, u, v, w) ≥ 0}, (3.2)

where α > 0 is a given parameter. The model (3.2) is used to maximize the com-
bination of ‖s‖0 and bT y in order to possibly achieve the above-mentioned two-level
maximization. By the structure of (2.11), the maximization of ‖s‖0 should be carried
out under the constraint that (y, s, u, v) is an optimal solution to (2.9). This suggests
that the parameter α in (3.2) should be chosen small.

Note that the function ‖s‖0 over the first orthant Rn
+ can be approximated by

various concave functions (see [44, 42, 59]) which are called the merit functions for
sparsity. There exists a class of merit functions for sparsity that are continuously
differentiable in an open set containing Rn

+. Let Φε : D → R+, where D is an open
set containing Rn

+, be such a concave function satisfying that for every given s ∈ Rn
+,

Φε(s) → ‖s‖0 as ε → 0. It is easy to construct such functions (see Definition 3.2 and
Proposition 3.3 in this section and Examples 2.3–2.6 in [59]). Replacing ‖s‖0 by Φε(s)
in (3.2) yields

max{αΦε(s) + bT y : AT y − u+ v = 0, s = w − u− v, (s, u, v, w) ≥ 0}, (3.3)

which is a convex optimization problem.
Note that the solution to the weighted ℓ1-problem (2.1) is invariant when w is

replaced by λw for any positive number λ > 0. We also note that if (y, s, w, u, v, γ)
is an optimal solution to (2.11), then λ(y, s, w, u, v, γ) is also an optimal solution
to (2.11) for any positive number λ > 0, due to the fact ‖λs‖0 = ‖s‖0. Therefore,
on one hand, any weight that is large in magnitude can be scaled down to a small
weight without affecting the optimal solution of (2.1) and the optimal objective value
of (2.11). Thus w can be confined to a bounded convex set Ω ⊂ Rn

+. On the other
hand, the value of γ is not essential in (2.11) since (by a suitable scaling) the original
strong-duality-type constraint bT y = γ = min{‖Wx‖1 : Ax = b} can be replaced by

bT y = 1 = min{‖Wx‖1 : Ax = b} (3.4)

without any damage of the conclusion in Theorem 2.7. However, this key constraint
in model (2.11) is lost in (3.2) and (3.3). To achieve a good approximation of (2.11),
we should include at least a certain relaxation of (3.4) into the model (3.3). Clearly,
the weak duality condition is a judicious choice. Let γ(w) be scaled down to 1 (under
a suitable scaling of w). By the weak duality of linear programs, this is equivalent
to imposing the same upper bound on the dual objective bT y. Thus the constraint
bT y ≤ 1 (as a relaxation of the strong-duality condition (3.4)), together with the
constraint w ∈ Ω, can be introduced into (3.3), leading to the well-defined model

maxαΦε(s) + bT y (3.5)

s.t. AT y − u+ v = 0, s = w − u− v, bT y ≤ 1, w ∈ Ω, (s, u, v, w) ≥ 0.
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which admits a finite optimal value.

We now describe an algorithm based on (3.5). For simplicity, we fix a small
ε ∈ (0, 1) and let α decrease iteratively in the course of the algorithm.

Algorithm 3.1. Let α0 ∈ (0, 1) be a given constant. Let 0 < α∗ ≪ α0 be a
prescribed tolerance. Choose a bounded closed convex set Ω0 ⊆ Rn

+.

Step 1. If αk ≤ α∗, stop; Otherwise, solve the convex optimization

maxαkΦε(s) + bT y (3.6)

s.t. AT y − u+ v = 0, s = w − u− v, bT y ≤ 1, w ∈ Ωk, (w, s, u, v) ≥ 0.

Let (wk+1, yk+1, sk+1, uk+1, vk+1) be a solution to this problem.
Step 2. Let W k+1 = diag(wk+1), and solve the weighted ℓ1-problem

γk+1 = min{‖W k+1x‖1 : Ax = b} (3.7)

to obtain a solution xk+1.
Step 3. Choose αk+1 < αk and update Ωk to obtain Ωk+1. Then replace k by k + 1

and return to Step 1.

The above algorithm may have a number of variants in terms of the updating
schemes for αk and Ωk (ε also can be reduced iteratively). From a computational
point of view, Ω0 and Ωk should be chosen as simple as possible. For instance, we
may choose Ω0 = {w ∈ Rn

+ : ‖w‖1 ≤ ϑ}, where ϑ is a given constant. More generally,
we may pick any initial point x0 ∈ Rn and set

Ω0 = {w ∈ Rn
+ : |x0|Tw ≤ ϑ, w ≤ Γe},

where ϑ > 0 and Γ > 0 are given constants. We may fix Ωk ≡ Ω0 for all iterations,
and may also change Ωk iteratively in the course of algorithm. For example, based
on the iterates (xk, wk, γk), Ωk can be updated as

Ωk =
{
w ∈ Rn

+ : |xk|Tw ≤ ϑ, w ≤ Γke
}
, Γk ≥ ϑ‖wk‖∞/γk. (3.8)

Such an update will be discussed later in sections 4 and 5. Also, we have a large
number of choices for concave merit functions. For the convenience of our theoretical
analysis, we are interested in the following class of functions.

Definition 3.2 (M-class merit functions). Let M := {Φε} be the set of merit
functions for sparsity satisfying the following conditions: (i) for any given s ∈ Rn

+,
Φε(s) → ‖s‖0 as ε → 0; (ii) Φε(s) is continuously differentiable and concave with
respect to s over an open set containing Rn

+; (iii) for any given constants 0 < c1 < c2,
there exists a small ε∗ > 0 such that for any given ε ∈ (0, ε∗],

Φε(s)− Φε(ŝ) ≥ 1/2 (3.9)

holds for any 0 ≤ s, ŝ ≤ c2e satisfying that ‖ŝ‖0 < ‖s‖0 and c1 ≤ si ≤ c2 for all i ∈
supp(s).

The number 1/2 in (3.9) is not essential and can be replaced by any fixed num-
ber in (0, 1). It is easy to construct a merit function in M, as shown by the next
proposition.
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Proposition 3.3. Let ε ∈ (0, 1). All the following functions are in the class M :

Φε(s) =

n∑

i=1

(
1− e−

si
ε

)
, where s ∈ Rn; (3.10)

Φε(s) =
n∑

i=1

si
si + ε

, where si > −ε for all i = 1, ..., n; (3.11)

Φε(s) = n− 1

log ε

(
n∑

i=1

log(si + ε)

)
, where si > −ε for all i = 1, ..., n. (3.12)

Proof. It is straightforward to verify that all functions (3.10)–(3.12) satisfy con-
ditions (i) and (ii) of Definition 3.2. It is also not very difficult to verify that these
functions satisfy the condition (iii) of Definition 3.2. Let s ∈ Rn

+ be any vector sat-
isfying c1 ≤ si ≤ c2 for all i ∈ supp(s), where 0 < c1 < c2 are two given constants,
and let ŝ be any vector satisfying 0 ≤ ŝ ≤ c2e and ‖ŝ‖0 < ‖s‖0. Consider the function
(3.10). We see that

Φε(ŝ) =
∑

ŝj 6=0

(1− e−
ŝj

ε ) ≤ ‖ŝ‖0.

Since e−c1/ε → 0 as ε → 0, there exists an ε∗ ∈ (0, 1) such that ne−
c1
ε < 1/2 for all

ε ∈ (0, ε∗]. This implies that

Φε(s) =
∑

sj 6=0

(1−e−
sj

ε ) ≥
∑

sj 6=0

(1−e−
c1
ε ) = ‖s‖0(1−e−

c1
ε ) ≥ ‖s‖0−ne−

c1
ε ≥ ‖s‖0−1/2

for all ε ∈ (0, ε∗]. Therefore, Φε(s) − Φε(ŝ) ≥ (‖s‖0 − 1/2) − ‖ŝ‖0 ≥ 1/2, where the
last inequality follows from the fact ‖s‖0 > ‖ŝ‖0 which implies that ‖s‖0 − ‖ŝ‖0 ≥ 1.
So (3.10) satisfies condition (iii) of Definition 3.2. By a similar proof (the proof is
omitted), we can verify that (3.11) and (3.12) satisfy the condition (iii) as well. �

By using a merit function in M, the convex problem (3.6) can be solved efficiently
by using existing gradient-type and interior-point-type methods. In the remainder of
this paper, we address the following two questions: Under what condition do the
iterates generated by Algorithm 3.1 converge to the sparsest solution of a system of
linear equations? How good is the numerical performance of this algorithm, compared
with some state-of-art sparsity-seeking methods?

4. Convergence analysis. For simplicity, we show the efficiency of the algo-
rithm which adopts the updating scheme

Ωk ≡ Ω, αk+1 = ταk, k ≥ 0, (4.1)

where τ ∈ (0, 1) is a given constant, and Ω is of the form

Ω = {w ∈ Rn
+ : |x0|Tw ≤ ϑ, w ≤ Γe}, (4.2)

where (ϑ,Γ) > 0 are given numbers, and x0 is a given solution to the linear system.
At present, the guaranteed performance of various sparsity-seeking algorithms

(such as the ℓ1-method, reweighted ℓ1-methods, greedy pursuits, and thresholding-
type methods) has been analyzed mainly under the RIP, NSP or mutual-coherence-
type assumptions which often imply the uniqueness of solutions to the ℓ0-problems.
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Our analysis is remarkably different from existing ones, and the results established
in this section allow the ℓ0-problem to possess multiple optimal solutions. We show
that Algorithm 3.1 converges to a sparsest solution of the system of linear equations
under some assumptions.

Let γ(w) be defined by (3.1) and γmax(Ω) be the supremum of γ(w) over Ω, i.e.,

γmax(Ω) = sup
w∈Ω

γ(w),

which is bounded above, as shown by the lemma below.
Lemma 4.1. Consider the system Ax = b (6= 0). Let Ω be given by (4.2), where

x0 is a solution to the system Ax = b. Then

0 < γmax(Ω) ≤ ϑ. (4.3)

In particular, let w0 ∈ Rn
++ be any given vector and x0 be a solution to the weighted

ℓ1-problem (2.1) with w = w0, and let Γ ≥ ϑ‖w0‖∞/γ0, where γ0 = γ(w0). Then
γmax(Ω) = ϑ.

Proof. Note that Ax0 = b. By the definition of Ω and the optimality, we see that
γ(w) ≤ ‖Wx0‖1 = |x0|Tw ≤ ϑ for all w ∈ Ω. Thus

γmax(Ω) = sup
w∈Ω

γ(w) ≤ ϑ. (4.4)

Since b 6= 0, any solution to the linear system is nonzero, and hence γ(w) > 0 for any
w ∈ Rn

++ in Ω. This implies that γmax(Ω) > 0, which, together with (4.4), yields (4.3).
In particular, for a given w0 ∈ Rn

++, let x0 and γ0 = γ(w0) be an optimal solution
and the optimal value to the weighted ℓ1-problem (2.1) with w = w0, respectively,
and let Γ ≥ ϑ‖w0‖∞/γ0, which implies that ϑw0/γ0 ≤ Γe. By such choices of x0 and
Γ, we see that ϑw0/γ0 ∈ Ω. Therefore, by the definition of γmax(Ω), we have

ϑ = γ(ϑw0/γ0) ≤ γmax(Ω), (4.5)

where the equality follows from the fact that γ(ϑw0/γ0) = ϑγ(w0/γ0) and γ(w0/γ0) =
1. Combining (4.4) and (4.5) yields γmax(Ω) = ϑ, as desired. �

Throughout the remainder of this paper, we use S∗ to denote the set of the
sparsest solutions of the linear system Ax = b. Note that Asupp(x∗) has a full-column
rank for every x∗ ∈ S∗. Thus S∗ contains only a finite number of elements. By
Corollary 2.5, for every x∗ ∈ S∗, there exists a weight w∗ ∈ Rn

+ such that x∗ is the
unique solution to the weighted ℓ1-problem

min{‖W ∗x‖1 : Ax = b} (4.6)

to which the dual problem is given as

max
(y,s,u,v)

{
bT y : AT y − u+ v = 0, s = w∗ − u− v, (s, u, v) ≥ 0

}
. (4.7)

As we have seen from section 2, there exist infinitely many optimal weights for every
x∗ ∈ S∗. We denote by Y(x∗) the set of optimal weights for x∗, i.e.,

Y(x∗) := {w∗ ∈ Rn
+ : x∗ is the unique solution to the problem (4.6)}.

Let

Ω∗ =
⋃

x∗∈S∗

Y(x∗)
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be the set of all optimal weights associated with the sparsest solutions of the linear
system Ax = b. Note that the scaling of a weight does not change the solution of
weighted ℓ1-minimization. For every w∗ ∈ Y(x∗), we have that λw∗ ∈ Y(x∗) for any
λ > 0, and thus Y(x∗) and Ω∗ are cones. Since λw∗ ∈ Ω for all sufficiently small
λ > 0, we have that Y(x∗) ∩ Ω 6= ∅ for every x∗ ∈ S∗, and hence Ω∗ ∩ Ω 6= ∅. Given
x∗ ∈ S∗ and w∗ ∈ Y(x∗), we define the set

Υ(w∗, x∗) = {s : (y, s, u, v) is an optimal solution to (4.7), |x∗|T s = 0, |x∗|+ s > 0}.
Clearly, s ∈ Υ(w∗, x∗) if and only if there exist some vectors y, u, and v such that
(x∗, (y, s, u, v)) is a pair of strictly complementary solutions to (4.6) and (4.7). Such
a pair always exists by the linear programming theory. Thus, Υ(w∗, x∗) 6= ∅ for any
given x∗ ∈ S∗ and w∗ ∈ Y(x∗).

Before showing our main convergence theorem, we state several technical results.
Lemma 4.2. Let Φε(s) ∈ M (as specified in Definition 3.2). Let x∗ ∈ S∗ and

w∗ ∈ Y(x∗) ∩ Ω. Then for any given s∗ ∈ Υ(w∗, x∗), there exists a sufficiently small
ε∗ ∈ (0, 1) accordingly such that for any ε ∈ (0, ε∗], the inequality

Φε(s
∗)− Φε(s) ≥ 1/2 (4.8)

holds for any s satisfying ‖s‖0 < ‖s∗‖0 and s ∈ T (Ω, A) where

T (Ω, A) :=
{
s : AT y − u+ v = 0, s = w − u− v, (s, u, v) ≥ 0, w ∈ Ω

}
. (4.9)

Proof. Note that the vector s = w−u−v ≤ w for any u, v ≥ 0. Since Ω is bounded,
the set T (Ω, A) given by (4.9) is also bounded. There exists an upper bound c2 > 0
such that 0 ≤ s ≤ c2e for all s ∈ T (Ω, A). Let w∗ ∈ Y(x∗) ∩ Ω. By the definition of
Y(x∗), x∗ is the unique solution to the problem (4.6). Let s∗ be a given vector in
Υ(w∗, x∗). Then there exists a vector (y∗, u∗, v∗) such that (y∗, s∗, u∗, v∗) is a solution
to the problem (4.7) and that |x∗| and s∗ are strictly complementary, i.e., |x∗|T s∗ = 0
and |x∗| + s∗ > 0. Since x∗ is a sparsest solution to the linear system, the matrix
Asupp(x∗) ∈ Rm×|supp(x∗)| has a full-column rank. Thus ‖x∗‖0 = |supp(x∗)| ≤ m.
Since m < n and |x∗| and s∗ are strictly complementary, the vector s∗ must contain
at least n−m positive components. Thus we define

c1 = min
s∗
i
>0

s∗i ,

which is a positive number. Since w∗ ∈ Y(x∗) ∩ Ω and (y∗, s∗, u∗, v∗) is a solution
to (4.7), it is easy to see that s∗ ∈ T (Ω, A). Thus s∗ satisfies that 0 ≤ s∗ ≤ c2e.
By the definition of c1, we see that 0 < c1 ≤ s∗i ≤ c2 for all i ∈ supp(s∗). Since
Φε(s) ∈ M, for the above-defined c1 and c2, there exists a number ε∗ ∈ (0, 1) such
that Φε(s

∗) − Φε(s) ≥ 1/2 holds for any ε ∈ (0, ε∗] and for any s satisfying that
‖s‖0 < ‖s∗‖0 and s ∈ T (Ω, A). �

The next result claims that under some condition, an optimal solution of the
problem (2.9) with a scaled weight can be constructed from a feasible solution of the
original problem (2.9).

Lemma 4.3. Let w ∈ Rn
+ be given. Consider the problem (2.1) and its dual

problem (2.9). Suppose that γ(w) > 1. If (y, s, u, v) is a feasible solution to the
problem (2.9) satisfying that bT y = 1 and |u − v| ≤ (u + v)/γ(w), then (y, s, u, v) =
(y, s

γ(w) , u
′, v′), where u′ = 1

2 [u− v + (u+ v)/γ(w)] and v′ = 1
2 [v − u+ (u+ v)/γ(w)],

is an optimal solution to the problem

max
(y,s,u,v)

{bT y : AT y − u+ v = 0, s =
w

γ(w)
− u− v, (s, u, v) ≥ 0}. (4.10)
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Proof. Since (y, s, u, v) is a feasible solution to (2.9), we have that AT y = u− v,
w − s = u+ v, and (s, u, v) ≥ 0. Since |u− v| ≤ (u+ v)/γ(w), we see that

u′ =
1

2
[u− v + (u+ v)/γ(w)] ≥ 0, v′ =

1

2
[v − u+ (u+ v)/γ(w)] ≥ 0

and that

u′ + v′ = (u+ v)/γ(w) = (w − s)/γ(w), u′ − v′ = u− v = AT y.

Thus (y, s, u, v) = (y, s/γ(w), u′, v′) is a feasible solution to the problem (4.10). Note
that the problem (4.10) is the dual problem of the weighted ℓ1-problemmin{‖( W

γ(w))x‖1 :

Ax = b} to which the optimal value is 1. By strong duality, the optimal value of
the dual problem (4.10) is also 1. Since bT y = 1, the feasible point (y, s, u, v) =
(y, s/γ(w), u′, v′) is an optimal solution to the problem (4.10). �

We will also make use of the following perturbation theorem of linear programs.
Lemma 4.4 (Mangasarian and Meyer [45]). Consider the linear program min{cTu :

u ∈ Q}, where Q ⊆ Rn is the feasible set. Let f be a continuously differentiable convex
function on some open set containing Q. If the solution set S̄ of this linear program is
nonempty and bounded, and cTu+ α̃f(u) is bounded from below on Q for some α̃ > 0,
then the solution set of the perturbed problem

min{cTu+ αf(u) : u ∈ Q}

is contained in S̄ for sufficiently small α > 0.
To prove the convergence of Algorithm 3.1, we need to impose some assumptions

on the linear system Ax = b. Define the set

Ω̃∗ := {w∗ ∈ Ω∗ : γ(w∗) = 1}

which is a nonempty subset of Ω∗. The nonemptiness of Ω̃∗ follows from the fact that
Ω∗ is a cone. In fact, by scaling if necessary, there is a vector w∗ ∈ Ω∗ such that
γ(w∗) = 1. We impose the following assumption on the problem.

Assumption 4.5. Ω ∩ Ω̃∗ 6= ∅.
Later, we will show that Assumption 4.5 is satisfied when ϑ and Γ in (4.2) are

suitably chosen (see Lemma 4.7 for details). The main convergence theorem is sum-
marized as follows.

Theorem 4.6. Consider Algorithm 3.1 with the updating scheme (4.1). Let
Φε ∈ M and Ω be given as (4.2). Suppose that Assumption 4.5 is satisfied. Then
there exist a sufficiently small parameter ε∗ ∈ (0, 1) and a sufficiently small tolerance
α∗ ∈ (0, 1) such that for any fixed small ε ∈ (0, ε∗], the sequence {(xk, wk, uk, vk)},
generated by Algorithm 3.1, satisfies the following properties:

(i)For ϑ = 1, after k0 := ⌈log(α∗/α0)/ log τ⌉ steps, the iterate xk (k ≥ k0) must
be a sparsest solution to the system Ax = b.

(ii) For ϑ > 1, after k0 := ⌈log(α∗/α0)/ log τ⌉ steps, if |uk−vk| ≤ (uk+vk)/γ(wk)
holds for a k ≥ k0, then xk must be a sparsest solution to the system Ax = b.

Proof. By Assumption 4.5, there exists a vector w∗ ∈ Ω∩Ω̃∗. This vector satisfies
that w∗ ∈ Ω∗, w∗ ∈ Ω, and γ(w∗) = 1. By the definition of Ω∗, there exists a sparsest
solution x∗ ∈ S∗ such that w∗ ∈ Y(x∗). Also, there exists a vector s∗ ∈ Υ(w∗, x∗).
Given such vectors (w∗, x∗, s∗), by Lemma 4.2, there exists a sufficiently small ε∗ > 0
accordingly so that for any given ε ∈ (0, ε∗], the inequality

Φε(s
∗)− Φε(s) ≥ 1/2 (4.11)
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holds for all s satisfying ‖s‖0 < ‖s∗‖0 and s ∈ T (Ω, A) defined by (4.9)
We now consider the problem (3.6) with such a fixed ε ∈ (0, ε∗]. For a given

αk ∈ (0, 1), the problem (3.6) is a convex optimization problem, which can be viewed
as a perturbed version of the linear program

max
(w,y,s,u,v)

bT y (4.12)

s.t. AT y − u+ v = 0, s = w − u− v, bT y ≤ 1, (w, s, u, v) ≥ 0, w ∈ Ω.

We use D∗ to denote the set of optimal solutions of (4.12). Note that A ∈ Rm×n(m <
n) has a full-row rank. Since Ω is bounded, the feasible set of (4.12) is bounded, and
so is the solution set D∗. In fact, the constraints of (4.12) imply that

0 ≤ s ≤ w, 0 ≤ u ≤ w, 0 ≤ v ≤ w, y = (AAT )−1A(u − v),

and hence

‖y‖∞ ≤ ‖(AAT )−1A‖∞‖u− v‖∞ ≤ 2‖(AAT )−1A‖∞‖w‖∞.

Thus the boundedness of Ω implies that the feasible set (and hence the solution set
D∗) of (4.12) is bounded. By Definition 3.2, Φε(s) is a continuously differentiable
concave function over an open neighborhood of the first orthant {s ∈ Rn : s ≥ 0}.
Thus the function

Φε(w, y, s, u, v) := Φε(s) + 0Tw + 0T y + 0Tu+ 0T v

is a continuously differentiable concave function over an open neighborhood of the
feasible set of (4.12). Since the feasible set is bounded, for any given α > 0, the
concave function

αΦε(s) + bT y = αΦ̃ε(w, y, s, u, v) + bTy

is bounded from above over the feasible set of (4.12). By Lemma 4.4, there exists a
sufficiently small number α∗ > 0 such that for any αk ∈ (0, α∗], the solution set of
(3.6) is contained in D∗. Thus the optimal solution (wk+1, yk+1, sk+1, uk+1, vk+1) to
the problem (3.6) is also an optimal solution to the problem (4.12) when αk ∈ (0, α∗].
By the updating scheme (4.1), αk is reduced by a factor τ < 1 at each iteration. So
after a finite number of iterations, i.e., k ≥ k0 =: ⌈log(α∗/α0)/ log τ⌉, we must have
that αk ∈ (0, α∗].

We now prove that bTyk+1 = 1 for k ≥ k0. On one hand, the constraint bT y ≤ 1
in (4.12) implies that

bT yk+1 ≤ 1. (4.13)

On the other hand, for the vector (w∗, x∗, s∗) specified at the beginning of this proof,
there exists vectors (y∗, u∗, v∗) accordingly such that (y∗, s∗, u∗, v∗) is an optimal
solution to the dual problem (4.7), and that |x∗| and s∗ are strictly complemen-

tary. Since w∗ ∈ Ω̃∗, by strong duality, we have that bT y∗ = γ(w∗) = 1. Therefore
(w∗, y∗, s∗, u∗, v∗) is a feasible solution to the problem (4.12). By optimality, we must
have that

bT yk+1 ≥ bT y∗ = 1. (4.14)
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Merging (4.13) and (4.14) yields

bT yk+1 = 1 for all k ≥ k0. (4.15)

We now consider the weighted ℓ1-problem with W k+1 = diag(wk+1)

γk+1 = min
x

{‖W k+1x‖1 : Ax = b} (4.16)

and its dual problem

max
(y,s,u,v)

{bTy : AT y − u+ v = 0, s = wk+1 − u− v, (s, u, v) ≥ 0}. (4.17)

By the construction of Step 2 of Algorithm 3.1, we see that wk+1 ∈ Ω. Note that
(yk+1, sk+1, uk+1, vk+1) is a feasible point to the problem (4.17) and it satisfies
(4.15). The optimal value of (4.17) is at least 1. By strong duality, the optimal value
of the problem (4.16) is also at least 1, i.e.,

γk+1 ≥ 1. (4.18)

We now consider the following two cases.
Case 1: ϑ = 1. In this case, by Lemma 4.1, we have γk+1 = γ(wk+1) ≤ γmax(Ω) ≤

ϑ = 1. This, together with (4.18), implies that γ(wk+1) = 1. By strong duality again,
this in turn implies that the optimal value of the dual problem (4.17) is also 1. Since
bT yk+1 = 1, we deduce that (yk+1, sk+1, uk+1, vk+1) is an optimal solution to the
problem (4.17). Thus, by Lemma 2.6, sk+1 and |xk+1| are complementary, i.e.,

|xk+1|T sk+1 = 0 (4.19)

where xk+1 is a solution to the problem (4.16).
Case 2: ϑ > 1 and |uk+1 − vk+1| ≤ (uk+1 + vk+1)/γk+1 for some k ≥ k0. If (4.18)

holds as an equality, the same proof in Case 1 yields (4.19). Thus it is sufficient to
consider the case γk+1 > 1. Note that (yk+1, sk+1, uk+1, vk+1) is a feasible solution
to (4.17) with bT yk+1 = 1 for k ≥ k0. Let

u′ =
1

2
[uk+1−vk+1+(uk+1+vk+1)/γk+1], v′ =

1

2
[vk+1−uk+1+(uk+1+vk+1)/γk+1].

Then by Lemma 4.3, (y, s, u, v) := (yk+1, sk+1/γk+1, u′, v′) is an optimal solution to
the problem

max
(y,s,u,v)

{bTy : AT y − u+ v = 0, s =
wk+1

γk+1
− u− v, (s, u, v) ≥ 0},

which is the dual problem of the weighted ℓ1-problem

min
x

{∥∥∥∥
(
W k+1

γk+1

)
x

∥∥∥∥
1

: Ax = b

}
, (4.20)

where W k+1 = diag(wk+1). Since the scaling of weight does not affect the solution
to the problem (4.16), xk+1 remains an optimal solution to the problem (4.20). By

Lemma 2.6 again, we deduce that |xk+1| and sk+1

γk+1 are complementary, and thus (4.19)
remains valid.
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Therefore, for both cases 1 and 2 above, we have that

‖xk+1‖0 + ‖sk+1‖0 ≤ n. (4.21)

Note that |x∗| and s∗ are strictly complementary. This implies that

‖x∗‖0 + ‖s∗‖0 = n. (4.22)

We now prove that for k ≥ k0, x
k+1 is a sparsest solution to system Ax = b. As-

sume the contrary—that xk+1 is not a sparsest solution, i.e., ‖xk+1‖0 > ‖x∗‖0. Then
combining (4.21) and (4.22) yields

‖s∗‖0 − ‖sk+1‖0 ≥ (n− ‖x∗‖0)− (n− ‖xk+1‖0) = ‖xk+1‖0 − ‖x∗‖0 > 0.

Note that s∗ ∈ Υ(w∗, x∗) and sk+1 ∈ T (Ω, A) for k ≥ k0 (since (wk+1, yk+1,
sk+1, uk+1, vk+1) is an optimal solution to (4.12) for k ≥ k0). It follows from Lemma
4.2 that

Φε(s
∗)− Φε(s

k+1) ≥ 1/2 (4.23)

holds for the fixed small ε ∈ (0, ε∗] and for any sk+1 with k ≥ k0. On the other hand,
since (w∗, y∗, s∗, u∗, v∗) is a feasible point to (3.6), and since (wk+1, yk+1, sk+1, uk+1,
vk+1) is an optimal solution to (3.6) for k ≥ k0, by optimality, we must have that

αkΦε(s
k+1) + bT yk+1 ≥ αkΦε(s

∗) + bT y∗, k ≥ k0.

By (4.15) and bT y∗ = 1, the above inequality is reduced to Φε(s
k+1)−Φε(s

∗) ≥ 0 for
all sufficiently large k ≥ k0. This contradicts (4.23). Therefore, for sufficiently large k,
xk+1 generated at Step 2 of Algorithm 3.1 is a sparsest solution to the linear system
Ax = b. �

We now prove that Assumption 4.5 is satisfied, roughly speaking, if ϑ and Γ are
suitably chosen. Given the system Ax = b, let σ∗(A, b) denote the constant

σ∗(A, b) = min
x∗∈S∗

∥∥∥AT
J0(x∗)Asupp(x∗)(A

T
supp(x∗)Asupp(x∗))

−1
∥∥∥
∞

, (4.24)

where S∗ is the set of the sparsest solutions of the linear system Ax = b.
Lemma 4.7. Let w0 ∈ Rn

++ be a given vector and x0 be an optimal solution of
the problem min{‖W 0x‖1 : Ax = b (6= 0)} to which the optimal value is γ0 = γ(w0).
Choose (ϑ,Γ) satisfying that

ϑ ≥ 1, ϑ > βσ∗(A, b), Γ ≥ ϑ‖w0‖∞/γ0, (4.25)

where σ∗(A, b) is the constant defined by (4.24) and β = ‖w0‖∞

min1≤i≤n w0
i

. Then the set

Ω = {w ∈ Rn
+ : |x0|Tw ≤ ϑ, w ≤ Γe} satisfies Assumption 4.5, i.e., Ω ∩ Ω̃∗ 6= ∅.

Proof. Let w0 ∈ Rn
++ be a given vector, and let ϑ and Γ be chosen to satisfy

(4.25). Consider the weighted ℓ1-problem

min{‖W 0x‖1 : Ax = b}. (4.26)

Since b 6= 0 and w0 ∈ Rn
++, the optimal value γ0 = γ(w0) is positive. Define ŵ =

w0/γ0. Note that the scaling of a weight does not change the solution of (4.26). So
x0 remains an optimal solution to the problem

γ(ŵ) = min{‖Ŵx‖1 : Ax = b}, (4.27)
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where Ŵ = diag(ŵ). Clearly, γ(ŵ) = 1. By (4.24) and finiteness of S∗, there exists a
sparsest solution x∗ ∈ S∗ such that

∥∥∥AT
J0(x∗)Asupp(x∗)(A

T
supp(x∗)Asupp(x∗))

−1
∥∥∥
∞

= σ∗(A, b) < ϑ/β. (4.28)

where the inequality follows from (4.25). In what follows, we use J to denote supp(x∗)
and Jc to denote J0(x

∗) for simplicity. Let θ be defined as

θ := ϑ‖Ŵx∗‖1 = ϑ(ŵJ )
T |x∗

J | ≥ ϑγ(ŵ) = ϑ,

where the inequality follows from the fact that γ(ŵ) is the minimum value of (4.27).
We now construct a weight w∗ ∈ Rn

++ so that x∗ is the unique solution to the problem

γ(w∗) = min{‖W ∗x‖1 : Ax = b}, (4.29)

where W ∗ = diag(w∗). In fact, we may define w∗ as follows:

w∗
J = (

ϑ

θ
)ŵJ , w∗

Jc
=

(
ϑ(σ∗(A, b) + δ)‖ŵJ‖∞

θ

)
eJc

, (4.30)

where δ > 0 is a positive number given by δ = ϑ/β − σ∗(A, b). Note that ‖|B|‖∞ =
‖B‖∞ for any matrix B. By (4.28) and (4.30), we have

∥∥|AT
Jc
AJ (A

T
JAJ )

−1|w∗
J

∥∥
∞ ≤

∥∥|AT
Jc
AJ (A

T
JAJ )

−1|
∥∥
∞ ‖w∗

J‖∞ < [σ∗(A, b)+ δ]‖ϑŵJ

θ
‖∞.

The above inequalities, together with (4.30), imply that

∣∣AT
Jc
AJ (A

T
JAJ )

−1
∣∣w∗

J < (σ∗(A, b) + δ)(ϑ‖ŵJ‖∞/θ)eJc
= w∗

Jc
.

Therefore, by Corollary 2.5, x∗ is the unique solution to the problem (4.29) where w∗

is determined by (4.30), and thus w∗ ∈ Y(x∗) ⊆ Ω∗. Moreover, the optimal value of
(4.29) is given by

γ(w∗) = ‖W ∗x∗‖1 = (w∗
J )

T |x∗
J | = ϑ(ŵJ )

T |x∗
J |/θ = 1.

Therefore, w∗ ∈ Ω̃∗ = {w ∈ Ω∗ : γ(w) = 1}. To show that Ω ∩ Ω̃∗ 6= ∅, it
suffices to show that w∗ is also in Ω. Indeed, note that ‖ŵJ‖∞ ≤ ‖w0‖∞/γ0 =
β
(
min1≤i≤n w

0
i

)
/γ0, which implies that

|x0
Jc
|T (‖ŵJ‖∞eJc

) ≤ β|x0
Jc
|T
[(

min
1≤i≤n

w0
i

)
eJc

]
/γ0 ≤ β|x0

Jc
|Tw0

Jc
/γ0 = β|x0

Jc
|T ŵJc

.

This inequality, with β(σ∗(A, b) + δ) = ϑ ≥ 1, θ ≥ ϑ and |x0|T ŵ = γ(ŵ) = 1, implies
that

|x0|Tw∗ = ϑ|x0
J |T ŵJ/θ + ϑ(σ∗(A, b) + δ)|x0

Jc
|T (‖ŵJ‖∞eJc

) /θ

≤ ϑ|x0
J |T ŵJ/θ + ϑ(σ∗(A, b) + δ)β|x0

Jc
|T ŵJc

/θ

= ϑ|x0
J |T ŵJ/θ + ϑ2|x0

Jc
|T ŵJc

/θ

≤ ϑ2(|x0|T ŵ)/θ = ϑ2/θ ≤ ϑ
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and

‖w∗‖∞ = max{‖w∗
J‖∞, ‖w∗

Jc
‖∞} = ϑmax{‖ŵJ‖∞, (σ∗(A, b) + δ)‖ŵJ‖∞}/θ

= (ϑ/θ)max{1, (σ∗(A, b) + δ)}‖ŵJ‖∞
≤ max{1, (σ∗(A, b) + δ)}(‖w0‖∞/γ0) ≤ ϑ‖w0‖∞/γ0 ≤ Γ,

where the first inequality follows from the fact ϑ/θ ≤ 1 and ‖ŵJ‖∞ ≤ ‖w0‖∞/γ0,
the second inequality follows from σ∗(A, b) + δ ≤ (σ∗(A, b) + δ)β = ϑ, and the final
inequality follows from (4.25). Therefore, w∗ ∈ Ω, as desired. �

Remark 4.1. It is worth stressing that Assumption 4.5 is a mild condition, as in-
dicated by Lemma 4.7. The existing assumptions for sparsity-seeking algorithms such
as the mutual coherence, RIP, NSP, and ERC are not explicitly needed in our con-
vergence analysis. However, this analysis indicates that for a given linear system, the
constant σ∗(A, b) defined by (4.24) provides an important clue for the sparsest solu-
tions of linear systems. Based on this constant, Assumption 4.5 will be satisfied when
the parameters (ϑ,Γ) are chosen large enough. In particular, when σ∗(A, b) < 1,
Lemma 4.7 indicates that the parameter ϑ = 1 can be taken provided that w0 is
drawn in the neighborhood of e. In this case, Algorithm 3.1 with ϑ = 1 guarantees
finding the sparsest solution of linear systems, as shown by Theorem 4.6. The con-
dition σ∗(A, b) < 1 can be guaranteed when the mutual coherence condition or the
more general ERC condition is satisfied. In fact, it has been shown in [52] that the
mutual coherence condition ‖x∗‖0 < 1

2 (1 + 1
µ(A) ) implies that the ERC condition

‖A†
supp(x∗)AJ0(x∗)‖1 < 1, where A†

supp(x∗) = (AT
supp(x∗)Asupp(x∗))

−1AT
supp(x∗). Clearly,

in terms of σ∗(A, b), the ERC condition is equivalent to σ∗(A, b) < 1. As a result, it
follows from Lemma 4.7 and Theorem 4.6 that Algorithm 3.1 converges to the sparsest
solution of linear systems if the mutual coherence condition or the ERC is satisfied.
The mutual coherence condition implies that x∗ is the unique sparsest solution to the
linear system, but the ERC does not, as shown by the example

A =




1
2
√
2

0 −1 − 1
2

1√
2

1
2 − 1

2

0 − 1
2
√
2

−1 − 1
2 − 1√

2
− 1

2
1
2

0 0 −1 1
2 0 0 0


 , b =




1√
2

− 1√
2

0


 . (4.31)

Clearly, the system Ax = b admits three sparsest solutions: x1 = (0, 0, 0, 0, 1, 0, 0)T ,
x2 = (0, 0, 0, 0, 0,

√
2, 0)T , and x3 = (0, 0, 0, 0, 0, 0,−

√
2)T . However, for this example,

σ∗(A, b) =
∥∥∥AT

J0(x1)Asupp(x1)(A
T
supp(x1)Asupp(x1))

−1
∥∥∥
∞

=

∥∥∥∥
(
1

4
,
1

4
, 0, 0,

1√
2
,− 1√

2

)∥∥∥∥
∞

=
1√
2
< 1.

Thus this example satisfies the ERC. Given w0 > 0 with β = ‖w0‖∞/min1≤i≤n w
0
i ,

we may choose ϑ ≥ 1, ϑ > β/
√
2 and Γ = ϑ‖w0‖∞/γ0 to satisfy (4.25), which ensures

that Assumption 4.5 is satisfied. Moreover, ϑ = 1 can be taken provided w0 is chosen
so that β <

√
2. This example also shows that the convergence of Algorithm 3.1

does not require the uniqueness of the sparsest solutions of linear systems. This is
remarkably different from existing efficiency analyses for sparsity-seeking methods,
which are often carried out under such conditions as the mutual coherence, RIP, or
NSP of order 2k. These conditions imply the uniqueness of k-sparse solutions of linear
systems. It is easy to see that the example (4.31) does not satisfy the RIP or NSP of
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order 2. Thus Assumption 4.5 is mild in the sense that it can be met by choosing the
parameters (ϑ,Γ) large enough, despite the situations where the linear system may
admit multiple sparsest solutions, to which the existing RIP- or NSP-based analysis
doest not apply.

Remark 4.2. Clearly, under the scheme (4.1), performing r iterations of Al-
gorithm 3.1 is equivalent to setting α = (τ)rα0 and using this α to perform only
one iteration of Algorithm 3.1. Thus a simple implementation of Algorithm 3.1 is
to fix (α, ε,Ω) and perform only one iteration, leading to the so-called NewRW-Heu
method in section 5. The numerical performance of this method is demonstrated
in section 5, and the theoretical efficiency of this method can follow directly from
Theorem 4.6: If Ω is given as (4.2) and Assumption 4.5 is satisfied, and if a merit
function is drawn from the class M, then there exists a small pair (α, ε) = (α∗, ε∗)
such that the NewRW-Heu method with this pair guarantees to find a sparsest solution
of the linear system when either ϑ = 1 or ϑ > 1 and |u − v| ≤ (u + v)/γ(w), where
(u, v, w) is a solution to (3.5). While we focus our analysis on (4.1) for simplicity
in this section, it is possible to extend this analysis to the case where Ωk is updated
iteratively. In fact, consider the algorithm using the scheme (3.8). At the current
iterates (yk, wk, sk, uk, vk, xk), the set Ωk−1 is changed to Ωk according to (3.8), and
for this given set Ω = Ωk, the problem (3.6) will be solved by selecting αk < αk−1.
We may choose αk sufficiently small. This is equivalent to starting from αk−1 and
applying the simple updating scheme α+ = τα− repeatedly for a finite number of
times, where τ ∈ (0, 1) is a fixed constant. Thus by replacing the role of Ω by Ωk and
a suitable design of the algorithm, it is possible to extend the convergence analysis in
this section (under some modifications) to the case where Ωk is updated by (3.8). The
performance of Algorithm 3.1 using (3.8) is also demonstrated in the next section.

5. Numerical simulations. In this section, we demonstrate the performance
of the algorithm proposed in this paper. Algorithm 3.1 is a general algorithmic frame-
work which admits a large freedom in the choices of (α, ε,Ω,Φε(s)). For simplicity,
we fix ε and update α and Ω iteratively according to certain simple schemes. The
updating scheme for Ω is motivated by Lemma 4.7. Thus we consider the following
specific version of Algorithm 3.1, which is called the NewRW algorithm in this section.

Algorithm 5.1 (NewRW).Given α0 ∈ (0, 1), τ ∈ (0, 1), ε ∈ (0, 1), 0 < α∗ ≪ α0

and ϑ ≥ 1; perform the following steps:
Step 0. (Initialization) Let x0 and γ0 be a solution and the optimal value of ℓ1-

minimization, respectively. Let Γ0 ≥ ϑmax{1, 1/γ0} be given, and let

Ω0 = {w ∈ Rn
+ : |x0|Tw ≤ ϑ, w ≤ Γ0e}. (5.1)

Step 1. If αk ≤ α∗, stop; otherwise, solve the convex optimization problem (3.6) to
obtain the vector (wk+1, yk+1, sk+1, uk+1, vk+1).

Step 2. Set W k+1 = diag(wk+1). Solve the weighted ℓ1-minimization problem (3.7)
to obtain (xk+1, γk+1).

Step 3. Set αk+1 = ταk and Γk+1 ≥ ϑmax{1, ‖wk+1‖∞/γk+1} and let

Ωk+1 = {w ∈ Rn
+ : |xk+1|Tw ≤ ϑ, w ≤ Γk+1e}. (5.2)

Replace k by k + 1 and return to Step 1.
In our experiments, the parameters in Algorithm 5.1 are specified as follows:

α0 = 10−8, τ = 0.1, ε = 10−15, and ϑ = 103. Γ0 and Γk+1 are given by Γ0 =
ϑmax{1, 1/γ0} + 1 and Γk+1 = ϑmax{1, ‖wk+1‖∞/γk+1} + 1. We may perform the
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algorithm any prescribed number of iterations by choosing a sufficiently small toler-
ance α∗. (For instance, under the above choices of parameters the algorithm will be
executed a total of 5 iterations when α∗ = 10−13 is used.) CVX, a package for solving
convex programs [33], is employed to solve the problem (3.6) and the weighted ℓ1-
problem in our implementation. The experiments have been carried out by realizing
the entries of A ∈ Rm×n and the nonzero entries of the sparse vector x∗ from the
standard normal distribution, unless otherwise stated. For each realized pair (A, x∗),
we set b = Ax∗ and then apply the algorithms to the system Ax = b to test their
performance for reconstructing x∗. When the sparsity level of x∗ is low, x∗ is often
the unique sparsest solution to linear systems, so the recovery performance of an
algorithm may reflect its capability of solving ℓ0-minimization problems. In our ex-
periments, we say that x∗ is exactly recovered by an algorithm if the solution x found
by the algorithm satisfies the recovery criterion

RC = ‖x− x∗‖22/‖x∗‖22 ≤ 10−6.

As pointed out in Remark 4.9, performing one iteration of Algorithm 3.1 or 5.1
leads to the following heuristic method: Given small parameters (α, ε) and a set Ω,
solve the convex problem (3.6) to generate a weight, and solve the weighted ℓ1-problem
with this weight to obtain a sparse solution. This is referred to as the NewRW-Heu
method in this section. Our first experiment has been carried out to show the re-
covery performance of the NewRW-Heu and how the performance of the NewRW is
improved as more than one iteration is performed. Specifically, we compare the per-
formance of the NewRW-Heu and the NewRW algorithm with a total of 2, 3, 4 and 7
iterations, respectively (these algorithms are referred to as the NewRW-2i, -3i, -4i and
-7i, respectively). For this experiment, the sparsity level k of the vector x∗ ∈ R1000

ranges from 30 to 100 according to k = 30+2l for l = 0, 1, ..., 35, and for each sparsity
level we run 200 trials of the linear systems with random matrices of size 200× 1000.
The results are given in Fig. 5.1(i). It can be seen that the NewRW-Heu, i.e., a sin-
gle iteration of Algorithm 5.1, remarkably outperforms the standard ℓ1-minimization,
and performing every further iteration of the NewRW may improve the recovery per-
formance of the algorithm. Such an improvement can be remarkable during the first
few iterations, but less remarkable as the number of iterations continues to increase.
(This phenomenon has also been observed for other reweighted ℓ1-methods in the
literature.) The simulations indicate that for most sparsity problems, it is sufficient
to run a few (e.g., 2 to 5) iterations of the NewRW.

We have also tested the performance of the NewRW with three different merit
functions (3.10)–(3.12), which are called the exp-, invpos-, and log-merit functions,
respectively. The frequencies of exact recovery are included in Fig. 5.1 (ii). It can
be seen that the recovery performance of the NewRW method is insensitive to the
choice between the merit functions (3.10)–(3.12). However, in terms of the time
required for solving the convex problem (3.6), the choice of merit functions does
matter when the dimension of the problem is high. Let the size of A ∈ Rm×n vary
from (m,n) = (40, 200) to (400, 2000) according to (m,n) = (40k, 200k), k = 1, ..., 10.
For each of these dimensions, we generate 100 pairs of (A, x∗) in random where the
sparsity level of x∗ is 20. The average time required for solving the convex problem
(3.6) with different merit functions and dimensions is shown in Fig. 5.2(i), from which
we see that as the dimension increases, the time required for solving (3.6) with the
invpos-merit function is remarkably less than the time for solving the problem with
the log-merit function and the exp-merit function. Thus the invpos-merit function is
used as a default in our NewRW algorithm.
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Fig. 5.1. (i) Exact recovery performance of the NewRW with a fixed number of iterations
(1,2,3,4 and 7 iterations). The performance of ℓ1-minimization is also included for comparison.
The experiment was carried out for the linear systems with random matrices in R200×1000 and 200
attempts were made for each sparsity level k = 30, 32, 34, ...,100. (ii) Exact recovery performance
of the NewRW method with different merit functions. The algorithms were performed a total of 5
iterations, and the experiment was carried out for the problems with random matrices in R100×500

and 200 attempts were made for each sparsity level k = 15, ...,50.
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Fig. 5.2. (i) Comparison of the average time required for solving problem (3.6) with different
problem dimensions and with different merit functions. The average is taken over 100 trials for every
specified dimension ranged from (m, n)=(40, 200) to (400, 2000). (ii) Exact recovery performance
of the NewRW, ℓ1-minimization, CWB, Wlp, and NW2 algorithms. Experiments were carried out
for the systems with dimensions (m,n) = (200, 800), and 300 trials were run for each sparsity level
k = 30, 32, ..., 100. The sparse vectors x∗ were drawn from a normal distribution.

We now compare the performance of the NewRW method and several existing
reweighted ℓ1-methods. The first reweighted ℓ1-algorithm using the weight wk+1 =
1/(|xk| + ρ), where ρ > 0 is a fixed parameter, was proposed in [12]. This method,
referred to as the CWB, has been widely used in the literature. Another reweighted
ℓ1-algorithm being widely used is proposed in [30] and referred to as the Wlp; it uses
the weight wk+1 = 1/(|xk| + ρ)p, where p ∈ (0, 1) is a given parameter. Also, the
reweighted ℓ1-algorithm NW2 presented in [59] is also included here for comparison.
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This method uses the weight

wk+1 =
q + (|xk

i |+ ρ)1−q

(|xk
i |+ ρ)1−q

[
|xk

i |+ ρ+ (|xk
i |+ ρ)q

]1−p ,

where (p, q) are given parameters. In our experiments, we set the parameters ρ =
10−3 and p = q = 0.05, and the standard ℓ1-minimizer is used as the initial point,
and all algorithms are performed a total of 5 iterations. We run 300 tries of linear
systems with A ∈ R200×800. As the nonzero entries of the sparse vector x∗ ∈ R800 are
drawn from the standard normal distribution, the exact recovery performance of these
algorithms is shown in Fig. 5.2(ii). When the sparse vectors x∗ ∈ R800 are drawn from
the uniform distribution over [0,1], the performance of algorithms is demonstrated in
Fig. 5.3(i), which seems quite similar to the result in Fig. 5.2(ii). Compared with
existing CWB, Wlp and NW2 methods, it can be seen from both figures that NewRW
is one of the very efficient algorithms in the family of reweighted ℓ1-methods in terms
of sparsity recovery performance. We believe that the performance of the algorithms
still has room for improvement in terms of the updating schemes for (α, ε,Ω) and the
design of Algorithm 3.1. This is a worthwhile future study.
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Fig. 5.3. (i) Exact recovery performance of the NewRW, ℓ1-minimization, CWB, Wlp, and the
NW2 algorithms. Experiments were carried out for the systems with (m,n) = (200, 800), and 300
trials were run for each sparsity level k = 30, 32, ..., 100. Sparse vectors were drawn from a uniform
distribution. (ii) Comparison of runtime between the NewRW and a few reweighted ℓ1-methods.
The size of random matrices A ∈ Rm×n varies from (m,n) = (40, 200) to (400, 2000) according to
(m,n) = (40k, 200k), k = 1, ..., 10. The sparsity level of x∗ is 20. The average runtime for each
given dimension is taken over 100 trials.

Moreover, the average time required for performing one iteration of NewRW (with
invpos-merit function) and a few existing methods is given in Fig. 5.3(ii) which
indicates that the average runtime for NewRW with invpos-merit is reasonably higher
than CWB, Wlp and NW2. Note that a convex problem (i.e., (3.6)) and a reweighted
ℓ1-problem are solved within one iteration of Algorithm 3.1. It can be observed from
Fig. 5.3(ii) that the runtime of Algorithm 3.1 is roughly twice as much of those purely
linear-program-based reweighted ℓ1-methods.

6. Conclusions. The relation between the sparsest solution of a linear system
and weighted ℓ1-minimization has been clarified in section 2 of this paper. Through
the linear programming theory, we have shown that seeking the sparsest solution of
a linear system can be achieved by locating the densest slack variable of the dual
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problem of weighted ℓ1-minimization among all possible choices of weights. As a
result, ℓ0-minimization can be transformed to ℓ0-maximization with certain bilevel
constraints. Based on this observation, we have developed a new reweighted ℓ1-
algorithm, going beyond the framework of existing sparsity-seeking methods. We
have shown that the proposed algorithm converges to the sparsest solutions of linear
systems under some assumptions that do not require a linear system to admit a unique
sparsest solution. Assumption 4.5 is used for the efficiency analysis of sparsity-seeking
methods for the first time. The numerical simulations indicate that the proposed
algorithms outperform the standard ℓ1-minimization method and are comparable to
some existing reweighted ℓ1-algorithms in solving ℓ0-minimization problems.
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