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Abstract. We consider a rather general class of mathematical programming problems with data
uncertainty, where the uncertainty set is represented by a system of convex inequalities. We prove
that the robust counterparts of this class of problems can be reformulated equivalently as finite and
explicit optimization problems. Moreover, we develop simplified reformulations for problems with
uncertainty sets defined by convex homogeneous functions. Our results provide a unified treatment
of many situations that have been investigated in the literature and are applicable to a wider range of
problems and more complicated uncertainty sets than those considered before. The analysis in this
paper makes it possible to use existing continuous optimization algorithms to solve more complicated
robust optimization problems. The analysis also shows how the structure of the resulting reformu-
lation of the robust counterpart depends both on the structure of the original nominal optimization
problem and on the structure of the uncertainty set.
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1. Introduction. In classical optimization models, the data are usually assumed
to be known precisely. However, there are numerous situations where the data
are inexact/uncertain. In many applications, the optimal solution of the nominal
optimization problem may not be useful because it may be highly sensitive to small
changes of the parameters of the problem.

Sensitivity analysis and stochastic programming are two traditional methods to
deal with uncertain optimization problems. The former offers only local information
near the nominal values of the data, while the latter requires one to make assumptions
about the probability distribution of the uncertain data which may not be appropriate.
Moreover, the stochastic programming approach often leads to very large optimiza-
tion problems and cannot guarantee satisfaction of certain hard constraints, which is
required in some practical settings.

An increasingly popular approach to optimization problems with data uncertainty
is robust optimization, where it is assumed that possible values of data belong to some
well-defined uncertainty set. In robust optimization, the goal is to find a solution
that satisfies all constraints for any possible scenario from the uncertainty set and
optimizes the worst-case (guaranteed) value of the objective function. See, e.g., [5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 29, 35, 39, 40]. The solutions
of robust optimization models are “uniformly good” for realizations of data from the
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uncertainty set. Early work in this direction was done by Soyster [39, 40] and Falk [22]
under the name of “inexact linear programming.” The robust optimization approach
has been applied to various problems in operations management, financial planning,
and engineering design (see, e.g., [29, 26, 10, 6, 31, 35]).

A formulation of a robust model as a mathematical programming problem is called
a robust counterpart. Since in the robust approach the constraints must be satisfied
for all possible realizations of data from the uncertainty set, the robust counterpart is
typically a complicated semi-infinite optimization problem. A fundamental question
in robust optimization is whether the robust counterpart can be represented as a
single finite and explicit optimization problem, so that existing optimization methods
can be used to solve it. Such an analysis also helps to understand computational
complexity of robust optimization problems.

So far, to obtain sufficiently simple robust counterparts, the uncertainty set was
normally assumed to have a fairly simple structure, for example, a Cartesian product
of intervals, an ellipsoid, an intersection of ellipsoids, or a set defined by certain norms
(see, e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 24, 25, 26, 29]). Of course, the
simpler the uncertainty set is, the easier it is to solve the robust optimization problem,
and in some situations simplifying assumptions about uncertainty sets is natural when
modelling a practical problem. However, more complicated uncertainty sets may be
encountered in both theoretical study and in applications (see Remark 3.1 for details).
Therefore, it is important to understand possibilities of the robust approach dealing
with problems involving complicated or general uncertainty sets. Study of robust
optimization problems with general uncertainty sets may provide additional tools for
modelling intricate real-life situations and a unified treatment of specialized cases.
Moreover, such a study can provide additional insights and results and even improve
known results for some specialized cases when general results are reduced to such
specialized cases (see section 6 for details).

In this paper, we consider robust optimization problems with uncertainty sets
defined by a system of convex inequalities. The optimization problems we consider
may be nonconvex and are wide enough to include linear programming, linear com-
plementarity problems, quadratic programming, second order cone programming, and
general polynomial programming problems. We prove that the robust counterparts
of the considered problems with uncertainty are finite optimization problems which
can be formulated by using the nominal data of the underlying optimization prob-
lem and the conjugates of the functions defining the uncertainty set. Compared with
the original optimization problem, a major extra difficulty of the robust counterpart
comes from the conjugates of the functions that define the uncertainty set. The con-
jugates of these functions usually are not given explicitly and may be difficult to
compute. To identify explicit and simplified formulations of robust counterparts, we
focus on a class of convex functions whose conjugates can be expressed explicitly.
Our strongest results and simplest reformulations of robust counterparts correspond
to the case where the uncertainty sets are defined by convex homogeneous functions.
This class of uncertainty sets is broad enough to include most uncertainty models that
have been investigated in the literature, as well as many other important cases, for
example, where deviations of data from nominal values may be asymmetric and not
even defined by norms.

We note that instead of optimizing the worst-case value of the objective function,
another possibility is to optimize the worst-case regret, which is the worst-case devia-
tion of the objective function value from the optimal value under the realized scenario,
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1438 IGOR AVERBAKH AND YUN-BIN ZHAO

or, in other words, to minimize the worst-case loss in the objective function value that
may occur because the decision is made before the realized scenario is known. This
criterion leads to minmax regret optimization models [29, 2, 1, 3, 4]. Minmax regret
problems are typically computationally hard [29, 4], although there are exceptions
(see, e.g., [2, 1, 3]). Minmax regret problems also fit the general paradigm of robust
optimization, but we do not consider them in this paper. We also note that there are
other concepts of robustness in the literature under the name of “model uncertainty”
or “ambiguity.” See, e.g., [42, 28, 17, 33, 18, 38, 27, 37, 16, 19, 20, 21, 31, 41].

This paper is organized as follows. In section 2, we describe the class of optimiza-
tion problems that we consider. In section 3, we define the uncertainty set of data and
provide an equivalent, deterministic representation of the robust optimization prob-
lems via Fenchel’s conjugate functions. In section 4, we give an explicit representation
for the robust counterpart when the uncertainty set is defined by (nonhomogeneous)
convex functions that fall in the linear space generated by homogeneous functions of
arbitrary degrees. The case of uncertainty sets defined by homogeneous functions is
studied in section 5. Specializing the general results of sections 3, 4, and 5 to robust
problems where the nominal problem is a linear programming problem and/or the
uncertainty set is of a special type commonly used in the literature is discussed in
section 6, and concluding remarks are provided in section 7.

2. A class of optimization problems with data uncertainty. We consider
the following optimization problem:

(1) min{cTx : fi(x) ≤ bi, i = 1, . . . ,m, F (x) ≤ 0},

where c = (c1, . . . , cn)T and b = (b1, . . . , bm)T are fixed vectors, and fi’s are functions
of the form

(2) fi(x) =
(
W (i)(x)

)T
M (i)V (i)(x), i = 1, . . . ,m,

where W (i)(x) and V (i)(x) are two mappings from Rn to RNi , M (i) is an Ni×Ni real
matrix, and Ni’s are positive integers. We write W (i)(x) and V (i)(x) as W (i)(x) =

(W
(i)
1 (x), . . . ,W

(i)
Ni

(x))T and V (i)(x) = (V
(i)
1 (x), . . . , V

(i)
Ni

(x))T , where each W
(i)
j (j =

1, . . . , Ni) is a function from Rn to R.
We assume that only the data M (i), i = 1, . . . ,m, are subject to uncertainty. In

(1), F (x) ≤ 0 denotes constraints without uncertainty, e.g., the simple constraints
x ≥ 0. We assume that c and b are certain without loss of generality, because a
problem with uncertain c and b can be easily transformed into a problem with certain
coefficients of the objective function and right-hand sides of the constraints. Also, if
the objective function is not linear, it can be made linear by introducing an additional
variable and a new constraint. We note that functions fi are linear in the uncertain
data M (i) (but can be nonlinear in the decision variables x).

The above optimization model is very general. For example, it includes the fol-
lowing important special cases.

Linear programming (LP). Let A ∈ Rm×n (i.e., an m × n matrix) and b =
(b1, . . . , bm)T . Without loss of generality, we assume m ≤ n. Consider functions fi(x)
of the form (2), where

W (i)(x) = ei ∈ Rn, V (i)(x) = x ∈ Rn, M (i) =

[
A
0

]
n×n

,
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where ei, throughout this paper, denotes the ith column of an n× n identity matrix,
and 0 in M (i) denotes an (n−m) × n zero matrix. It is evident that the inequalities
fi = (W (i))TM (i)V (i) ≤ bi, i = 1, . . . ,m, are equivalent to Ax ≤ b. Therefore,
problem (1) with F (x) = −x ≤ 0 reduces to the following LP problem:

(3) min{cTx : Ax ≤ b, x ≥ 0}.

This implies that the LP problem (3) with uncertain coefficient matrix A is a special
case of the optimization problem (1) with uncertain data M (i). There is also another
way to write an LP problem in the form (1)–(2); see (38) and (39) in section 6.2 for
details.

Linear complementarity problem (LCP). Given a matrix M ∈ Rn×n and a vector
q ∈ Rn, the LCP is defined as

Mx + q ≥ 0, x ≥ 0, xT (Mx + q) = 0.

Solutions to the LCP are very sensitive to changes in data because of the equation
xT (Mx + q) = 0. When the matrix M is uncertain, it is hard to find a solution that
satisfies the above system and is “immune” to changes of M. Thus, it is reasonable
to consider the optimization form of the LCP, i.e.,

min{xT (Mx + q) : Mx + q ≥ 0, x ≥ 0},

or equivalently

min{t : xT (Mx + q) − t ≤ 0, Mx + q ≥ 0, x ≥ 0},

which is less sensitive in the sense that it is equivalent to the LCP if the LCP has a
solution and can still have a solution even when the LCP has no solution. The above
optimization problem can be reformulated as (2) by letting

W (1)(x) =

⎛⎜⎝ x

1

e1

⎞⎟⎠ ∈ R2n+1, W (i) =

(
0(n+1)

ei−1

)
∈ R2n+1 for i = 2, . . . , n + 1,

M (i) =

⎡⎢⎢⎢⎣ M q 0

n−1︷ ︸︸ ︷
0 . . . 0

0 0 −1 0 . . . 0

−M −q 0 0 . . . 0

⎤⎥⎥⎥⎦ ,

V (i)(x) =

⎛⎜⎜⎜⎝
x

1

t

0(n−1)

⎞⎟⎟⎟⎠ ∈ R2n+1, i = 1, . . . , n + 1,

where t ∈ R, and 0(n+1) and 0(n−1) denote (n + 1)- and (n − 1)-dimensional zero
vectors, respectively. It is easy to verify that problem (1) with F (x) = −x ≤ 0 and
fi = (W (i))TM (i)V (i) ≤ 0 (i = 1, . . . , n+1) is the same as the optimization form of the
LCP. It is worth mentioning that Zhang [43] considered equality constrained robust
optimization, and his approach may be also used to deal with LCPs with uncertain
data.
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1440 IGOR AVERBAKH AND YUN-BIN ZHAO

(Nonconvex) quadratic programming (QP). Consider functions fi(x) of the form
(2), where

W (i)(x) =

(
x
1

)
∈ Rn+1 for i = 0, . . . ,m,

V (0)(x) =

(
x
t

)
∈ Rn+1, V (i)(x) =

(
x
0

)
∈ Rn+1 for i = 1, . . . ,m

and

(4) M (i) =

[
Qi 0

qTi −1

]
(n+1)×(n+1)

for i = 0, . . . ,m,

where each Qi is an n× n symmetric matrix and each qi is a vector in Rn. Then the
optimization problem (1) with the objective t and constraints fi = (W (i))TM (i)V (i) ≤
−ci(i = 0, . . . ,m) is reduced to the following QP problem:

min xTQ0x + qT0 x + c0

s.t. xTQix + qTi x + ci ≤ 0 for i = 1, . . . ,m.

Thus, a QP problem with uncertain coefficients (Qi, qi)(i = 0, . . . ,m) can be repre-
sented as an optimization problem (1) with uncertain data M (i) given as (4).

Second order cone programming (SOCP). Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and β
be a scalar. Let

W (1)(x) = V (1)(x) =

(
x
1

)
∈ Rn+1

and

(5) M (1) =

[
ATA− ccT 0

2bTA− 2βcT bT b− β2

]
,

and W (2)(x) = e ∈ Rn (the vector with all components equal to 1), V (2)(x) = x ∈
Rn, and

M (2) =

[
−cT

0

]
n×n

.

Then the constraint f1 = (W (1))TM (1)V (1) ≤ 0, together with f2 = (W (2))TM (2)

V (2) ≤ β, is equivalent to the second order cone constraint: ‖Ax + b‖ ≤ cTx + β. In
fact, f1 ≤ 0 can be written as

(Ax + b)T (Ax + b) ≤ (cTx + β)2,

and f2 ≤ β can be written as cTx+β ≥ 0. Combination of these two inequalities leads
to a second order cone constraint. Thus, uncertainty of the data (A,B, c, β) leads to
uncertainty of the matrices M (1) and M (2).

Polynomial programming. We recall that a monomial in x1, . . . , xn is a product
of the form xα1

1 · xα2
2 · · ·xαn

n , where α1, . . . , αn are nonnegative integers. It is evident
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that if the components of W (x) and V (x) are monomials, then for any given matrix
M , a function of the form (2) is a polynomial. Conversely, any real polynomial is a
linear combination of some monomials, i.e.,

P (x1, x2, . . . , xn) =
∑

(α1,α2,...,αn)

C(α1,α2,...,αn)xα1
1 xα2

2 . . . xαn

n ,

where C(α1,...,αn) are real coefficients. Then the simplest way to write it in the form (2)
is to set W (x) = e , set V (x) to be the vector of all monomials xα1

1 xα2
2 . . . xαn

n appear-
ing in P (x), and set M to be the diagonal matrix with diagonal entries C(α1,α2,...,αn).
Thus polynomial optimization with uncertain coefficients is a special case of (1) with
uncertain data M (i).

3. Robust counterparts as finite deterministic optimization problems.
We start with a description of the uncertainty set. Let Ki, i = 1, . . . ,m, be a bounded
subset of RN2

i that contains the origin. Suppose that the uncertain data M (i) (i =
1, . . . ,m) of the ith constraint of (1) are allowed to vary in such a way that the

deviations from their fixed nominal values M
(i)

fall in Ki. That is, the uncertainty
set of the data M (i) is defined as

(6) Ui =
{
M̃ (i)

∣∣∣vec(M̃ (i)) − vec(M
(i)

) ∈ Ki

}
, i = 1, . . . ,m,

where for a given matrix M , vec(M) denotes the vector obtained by stacking the
transposed rows of M on top of one another. Then the robust counterpart of the
optimization problem (1) with uncertainty sets Ui is defined as follows:

min cTx(7)

s.t. fi =
(
W (i)(x)

)T
M̃ (i)V (i)(x) ≤ bi ∀M̃ (i) ∈ Ui, i = 1, . . . ,m, F (x) ≤ 0,

which is a semi-infinite optimization problem. The optimal solution to this problem
is feasible for all realizations of the data M̃ (i).

We denote by δ(u|K) the indicator function of a set K (see [36]), and the conjugate
function of δ(u|K) is denoted by δ∗(u|K), which is equal to the support function
ψK(u) = max{uT v : v ∈ K}. First we state the following general result, which shows
that the robust counterpart (7) can be written equivalently as a finite deterministic
optimization problem, regardless of the type of uncertainty sets.

Theorem 3.1. The robust optimization problem (7) is equivalent to the following
finite and deterministic optimization problem:

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) + δ∗(χi|cl(coKi)) ≤ bi, i = 1, . . . ,m,

F (x) ≤ 0,

where cl(coKi) denotes the closure of the convex hull of set Ki, and χi = W (i)(x) ⊗
V (i)(x) ∈ RN2

i , i.e., is the Kronecker product of the vectors W (i)(x) and V (i)(x).

Proof. In fact, the constraint fi = (W (i)(x))T M̃ (i)V (i)(x) ≤ bi for all vec(M̃ (i))−
vec(M

(i)
) ∈ Ki is equivalent to

(8) sup
{
W (i)(x)T M̃ (i)V (i)(x) : vec(M̃ (i)) − vec(M

(i)
) ∈ Ki

}
≤ bi.
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Notice that for any square matrices B,C, we have tr(BC ) = (vec(B))T vec(CT ). Thus,
we have(

W (i)(x)
)T

M̃ (i)V (i)(x) = tr

(
M̃ (i)V (i)(x)

(
W (i)(x)

)T)

=
(
vec(M̃ (i))

)T
vec

(
W (i)(x)

(
V (i)(x)

)T)

=
(
vec(M̃ (i))

)T (
W (i)(x) ⊗ V (i)(x)

)
.

Denoting χi = W (i)(x) ⊗ V (i)(x), the constraint (8) can be written as

bi ≥ sup

{(
vec(M̃ (i))

)T
χi : vec(M̃ (i)) − vec(M

(i)
) ∈ Ki

}

=
(
vec(M

(i)
)
)T

χi + sup
u∈Ki

uTχi =
(
vec(M

(i)
)
)T

χi + sup
u∈cl(coKi)

uTχi

=
(
W (i)(x)

)T
M

(i)
V (i)(x) + δ∗(χi|cl(coKi)).

The original semi-infinite constraints become finite and deterministic constraints.
For robust optimization, when the uncertainty set is not convex, the robust coun-

terpart remains unchanged if we replace the uncertainty set by its closed convex hull.
This observation was first mentioned in [7] and can be seen clearly from the above
result. Because of this fact, we may assume without loss of generality that each Ki

is a closed convex set. In applications, the convex set Ki is usually determined by a
system of convex inequalities. So, throughout the rest of the paper, we assume that
Ki is a closed, bounded convex set containing the origin and it can be represented as

(9) Ki =
{
u
∣∣∣ g(i)

j (u) ≤ Δ
(i)
j , j = 1, . . . , �(i)

}
, i = 1, . . . ,m,

where �(i)’s are given integers, Δ
(i)
j ’s are constants, and g

(i)
j ’s are proper closed convex

functions from RN2
i to R. Here R = R∪{+∞} and “proper” means that the function

is finite somewhere (throughout the paper, we use the terminology from [36]). Since

0 ∈ Ki, we have g
(i)
j (0) ≤ Δ

(i)
j for all j = 1, . . . , �(i).

Remark 3.1. In this remark, we give additional motivation for considering the
general uncertainty set (9) as opposed to special uncertainty sets studied in the lit-
erature. We note that the importance of studying robust problems with complicated
uncertainty sets was emphasized, for example, in [15].

(i) Consider the following uncertainty set:

(10) U =

⎧⎨⎩D

∣∣∣∣∣∣∃z ∈ R|N | : D = D0 + ψ(z) = D0 +
∑
j∈N

ΔDjzj , ‖z‖ ≤ Ω

⎫⎬⎭ ,

where Ω is a given number, D0 is a given vector (nominal values of the uncertain
data), and ΔDj ’s are directions of data perturbation. This uncertainty set has been
widely used in the literature (see, e.g., [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 24, 25, 26].
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It is the image of a ball (defined by some norm) under linear transformation; i.e., the
function ψ(z) here is a linear function in z. This widely used uncertainty set can be
written in the form (9) with only one convex inequality g(u) ≤ Ω, where function
g(u) is also homogeneous of 1-degree, and g(u) is not a norm, in general, unless
|N | is equal to the number of data and the data perturbation directions ΔDj ’s are
linearly independent (see section 6.1 for details). This typical example shows that

it is necessary to study the case when the functions g
(i)
j (u) in (9) are convex and

homogeneous (but not necessarily norms). Section 5 of this paper is devoted to this
important case.

For the uncertainty set U defined by (10), the function ψ(z) is linear in z. In some
applications, however, such a model is insufficient for description of more complicated
uncertainty sets. The next two examples show that in some situations the function
ψ(z) may be nonlinear, and hence the uncertainty set may be much more complicated.

(ii) Consider SOCP. It is often assumed that the data (A, b, c) are subject to an
ellipsoidal uncertainty set which is the case of (10) where the norm is the 2-norm.
When we reformulate SOCP into the form of (1), the data M (1) is determined by the
matrix (5). It is easy to see the data M (1) belongs to the following uncertainty set:

(11) U =
{
D
∣∣∣∃z ∈ R|N | : D = D0 + ψ(z), ‖z‖ ≤ Ω

}
,

where ψ(z) is a quadratic function in z. Thus, this example shows that a more com-
plicated uncertainty set than (10) might appear when we make a reformulation of
the problem. Such reformulations are often made when a problem is studied from
different perspectives.

(iii) This example, taken from [23], shows that a nonlinear function ψ(z) arises
in (11) when robust interpolation problems are considered. Let n ≥ 1 and k be given
integers. We want to find a polynomial of degree n− 1, p(t) = x1 + · · ·+ xnt

n−1 that
interpolates given points (ai, bi), i.e., p(ai) = bi, i = 1, . . . , k. If interpolation points
(ai, bi) are known precisely, we obtain the following linear equation:⎡⎢⎣ 1 a1 · · · an−1

1
...

...
...

1 ak · · · an−1
k

⎤⎥⎦
⎡⎢⎣ x1

...
xn

⎤⎥⎦ =

⎡⎢⎣ b1
...
bn

⎤⎥⎦ .

Now assume that ai’s are not known precisely, i.e., ai(δ) = ai + δi, i = 1, . . . , k, where
the δ = (δ1, . . . , δk) is unknown but bounded, i.e., ‖δ‖∞ ≤ ρ, where ρ ≥ 0 is given. A
robust interpolant is a solution x that minimizes ‖A(δ)x−b‖ over the region ‖δ‖∞ ≤ ρ,
where

A(δ) =

⎡⎢⎣ 1 a1(δ) · · · a1(δ)
n−1

...
...

...
1 ak(δ) · · · ak(δ)

n−1

⎤⎥⎦
is an uncertain Vandermonde matrix. Such a matrix can be written in the form (11)
with nonlinear function ψ(z). In fact, we have (see [23] for details)

A(δ) = A(0) + LΔ(I −DΔ)−1RA,

where L, D, and RA are constant matrices determined by ai’s, and Δ = ⊕k
i=1δiIn−1.
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1444 IGOR AVERBAKH AND YUN-BIN ZHAO

(iv) Our model provides a unified treatment of many uncertainty sets in the
literature. Note that (11) can be written in the form (9) by letting g(D) = inf{‖z‖ :
D = ψ(z)}. Then U − {D0} = {D : g(D) ≤ Ω}. This can be proved by the same
argument as Lemma 6.1.

(v) Studying problems with general uncertainty sets may in fact lead to new or
stronger results for important special cases, as we demonstrate in section 6.

Since robust optimization problems, in general, are semi-infinite optimization
problems which are hard to solve, the fundamental question is whether a robust
optimization problem can be explicitly represented as an equivalent finite optimization
problem, so that the existing optimization methods can be applied. We are addressing
this question in this paper. It should be mentioned that, generally, two research di-
rections are possible: (1) developing computationally tractable approximate (relaxed)
formulations; (2) developing exact formulations which, naturally, will be computation-
ally difficult for sufficiently complicated nominal problems and/or uncertainty sets.
Our paper focuses on the second direction; the first direction was investigated, for
instance, in Bertsimas and Sim [14]. We believe that both directions are important
for theoretical and practical progress in robust optimization; we comment on this in
more detail in section 6.

Let us mention some auxiliary results and definitions. Given a function f we
denote its domain by dom(f) and denote its Fenchel’s conjugate function by f∗, i.e.,

f∗(w) = sup
x∈dom(f)

(
wTx− f(x)

)
.

We recall that the infimal convolution function of gj(j = 1, . . . , �), denoted by g1 �
g2 � · · · � g�, is defined as

(g1 � g2 � · · · � g�)(u) = inf

⎧⎨⎩
�∑

j=1

gj(uj) :

�∑
j=1

uj = u

⎫⎬⎭ .

The following result will be used in our later analysis.

Lemma 3.1 (see [36, Theorem 16.4]). Let f1, . . . , f� : Rn → R be proper convex
functions. Then (cl(f1)+· · ·+cl(f�))

∗ = cl(f∗
1 �· · ·�f∗

� ), where cl(f) denotes the closure
of the convex function f. If the relative interiors of the domains of these functions,
i.e., ri(dom(fi)), i = 1, . . . , �, have a point in common, then(

�∑
i=1

fi

)∗

(x) = (f∗
1 � · · · � f∗

� )(x) = inf

{
�∑

i=1

f∗
i (xi) :

�∑
i=1

xi = x

}
,

where for each x ∈ Rn the infimum is attained.

Now we consider the robust programming problem (7) where the uncertainty set
is determined by (6) and (9). We have the following general result.

Theorem 3.2. Let Ki (i = 1, . . . ,m) be given by (9), where each g
(i)
j (j =

1 . . . , �(i)) is a closed proper convex function. Suppose that Slater’s condition holds

for each i; i.e., for each i, there exists a point u
(i)
0 such that g

(i)
j (u

(i)
0 ) < Δ

(i)
j for all

j = 1, . . . , �(i). Then the robust counterpart (7) is equivalent to

min cTx
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s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j +

⎛⎝ �(i)∑
j=1

λ
(i)
j g

(i)
j

⎞⎠∗

(χi) ≤ bi,

i = 1, . . . ,m, λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

F (x) ≤ 0,

where χi = W (i)(x) ⊗ V (i)(x). This problem can be further written as

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j + Υ(i)(λ(i), u(i)) ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise,
i = 1, . . . ,m,(12)

λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

F (x) ≤ 0,

where Ji = {j : λ
(i)
j > 0, j = 1, . . . , �(i)}, λ(i) denotes the vector whose components

are λ
(i)
j , j = 1, . . . , �(i), u(i) denotes the vector whose components are u

(i)
j , j ∈ Ji, and

Υ(i)(λ(i), u(i)) =

⎧⎨⎩
∑

j∈Ji
λ

(i)
j

(
g
(i)
j

)∗ (
u

(i)
j /λ

(i)
j

)
if Ji �= ∅,

0 otherwise.

Proof. We see from the proof of Theorem 3.1 that x is feasible to the robust
problem (7) if and only if F (x) ≤ 0 and for each i we have

(13)
(
W (i)(x)

)T
M

(i)
V (i)(x) + max

u∈Ki

uTχi ≤ bi.

Let Z(χi) = max{uTχi : u ∈ Ki}, where Ki is given by (9), which by our assumption
is a bounded, closed convex set. Thus the maximum value of the convex optimiza-
tion problem max{uTχi : u ∈ Ki} is finite and attainable. Denote the Lagrangian

multiplier vector for this problem by λ(i) = (λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)

�(i)
) ∈ R�(i)

+ . Since Slater’s

condition holds for the problem max{uTχi : u ∈ Ki}, by Lagrangian saddle-point
theorem (see, e.g., Theorem 28.3, Corollary 28.3.1, and Theorem 28.4 in [36]), we have

Z(χi) = −min{−uTχi : g
(i)
j (u) ≤ Δ

(i)
j , j = 1, . . . , �(i)}(14)

= − sup
λ(i)∈R�(i)

+

inf
u∈RN2

i

⎛⎝−uTχi +

�(i)∑
j=1

λ
(i)
j

(
g
(i)
j (u) − Δ

(i)
j

)⎞⎠

= − sup
λ(i)∈R�(i)

+

⎡⎣− �(i)∑
j=1

λ
(i)
j Δ

(i)
j + inf

u∈RN2
i

⎛⎝−uTχi +

�(i)∑
j=1

λ
(i)
j g

(i)
j (u)

⎞⎠⎤⎦D
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1446 IGOR AVERBAKH AND YUN-BIN ZHAO

= − sup
λ(i)∈R�(i)

+

⎡⎣− �(i)∑
j=1

λ
(i)
j Δ

(i)
j − sup

u∈RN2
i

⎛⎝uTχi −
�(i)∑
j=1

λ
(i)
j g

(i)
j (u)

⎞⎠⎤⎦

= − sup
λ(i)∈R�(i)

+

⎛⎝−
�(i)∑
j=1

λ
(i)
j Δ

(i)
j −

⎛⎝ �(i)∑
i=1

λ
(i)
j g

(i)
j

⎞⎠∗

(χi)

⎞⎠

= inf
λ(i)∈R�(i)

+

⎛⎝ �(i)∑
j=1

λ
(i)
j Δ

(i)
j +

⎛⎝ �(i)∑
j=1

λ
(i)
j g

(i)
j

⎞⎠∗

(χi)

⎞⎠ .

Under our assumptions, the above infimum is attainable (by the existence of a saddle
point of the Lagrangian function [36]). Substituting (14) into (13), we see that x
satisfies (13) if and only if it satisfies the following inequalities for some λ(i):

(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j +

⎛⎝ �(i)∑
j=1

λ
(i)
j g

(i)
j

⎞⎠∗

(χi) ≤ bi,(15)

λ(i) = (λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)

�(i)
) ∈ R�(i)

+ .(16)

Indeed, if x is feasible to (13), since the infimum in (14) is attainable, there exists

some λ(i) ∈ R�(i)

+ such that (x, λ(i)) is feasible to the system (15)–(16). Conversely,

if (x, λ(i)) is feasible to (15) and (16), then by (14), we see that (15) implies (13).
Replacing (13) by (15) together with (16), the first part of the desired result follows
from Theorem 3.1.

We now derive the optimization problem (12). Suppose that (x, λ(i)) satisfies (15)
and (16). We have two cases.

Case 1. Ji = {j : λ
(i)
j > 0, j = 1, . . . , �(i)} �= ∅. Denote by u(i) the vector

whose components are u
(i)
j , j ∈ Ji. Notice that for any constant α > 0, the conjugate

(αf)∗(x) = αf∗(x/α). For given λ(i) ∈ R�(i)

+ , by Lemma 3.1, we have⎛⎝ �(i)∑
j=1

λ
(i)
j g

(i)
j

⎞⎠∗

(χi) = inf
u(i)

⎧⎨⎩∑
j∈Ji

λ
(i)
j

(
g
(i)
j

)∗
(u

(i)
j /λ

(i)
j ) : χi =

∑
j∈Ji

u
(i)
j

⎫⎬⎭ .

Again, by Lemma 3.1, the infimum above is attainable, and hence there are u
(i)
j ,

j ∈ Ji, such that ⎛⎝ �(i)∑
j=1

λ
(i)
j g

(i)
j

⎞⎠∗

(χi) =
∑
j∈Ji

λ
(i)
j

(
g
(i)
j

)∗
(u

(i)
j /λ

(i)
j ),

χi =
∑
j∈Ji

u
(i)
j .

Case 2. Ji = ∅. Notice that⎛⎝ �(i)∑
j=1

λ
(i)
j g

(i)
j

⎞⎠∗

(w) = sup
u∈Rn

(wTu− 0) =

{
∞ if w �= 0,

0 if w = 0.
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Since (x, λ(i)) is feasible to (15) and (16), we conclude that for this case

χi = 0,

⎛⎝ �(i)∑
j=1

λ
(i)
j g

(i)
j

⎞⎠∗

(χi) = 0.

Combining the above two cases leads to the optimization problem (12).
We see from Theorem 3.2 that the level of complexity of the robust counterpart,

compared with the nominal optimization problem, is determined mainly by the con-

jugate functions (g
(i)
j )∗ (j = 1, . . . , �(i), i = 1, . . . ,m) and functions χi (i = 1, . . . ,m).

The more complicated the conjugate functions are, the more difficult the robust coun-

terpart is. Notice that the constraint
∑

j∈Ji
u

(i)
j = χi is an explicit expression, and in

some cases, e.g., LP, χi is linear in x and thus does not add difficulty. We also note

that when �(i) = 1, i.e., when Ki is defined by only one constraint, then u
(i)
j = χi,

in which case the formula
∑

j∈Ji
u

(i)
j = χi will not appear in (12). For an arbitrary

function, however, its conjugate function is not given explicitly, and hence (12) is not
an explicit optimization problem. As a result, to obtain an explicit formulation of
the robust counterpart, one has to compute the conjugate functions of the constraint

functions g
(i)
j , which except for very simple cases is not easy. This motivates us to

investigate in the remainder of the paper under what conditions the robust counter-
part in Theorem 3.2 can be further simplified, avoiding the computation of conjugate
functions.

4. Explicit reformulation for robust counterparts. For any function f , let

�D(f) =
⋃

x∈dom(f)

∂f(x);

that is, �D(f) is the range of the subdifferential mapping ∂f(·). If f is differentiable,
�D(f) reduces to the range of its gradient mapping, i.e., �D(f) = {∇f(x) : x ∈
dom (f)}. In this section we make the following assumption.

Assumption 4.1. The functions g
(i)
j (j = 1, . . . , �(i), i = 1, . . . ,m) in (9) belong to

the set of convex functions f that satisfy the condition

(17) dom(f∗) = �D(f).

In fact, by the definition of subdifferential, the following relation always holds for
any proper convex function: dom(f∗) ⊇ �D(f). Condition (17) requires the converse
also to be true. Indeed, condition (17) holds for many functions. It is evident that all
convex functions defined on a subset of Rn with �D(f) = Rn satisfy condition (17).
For example, when the function f is differentiable and strongly convex on Rn, the
gradient ∇f(x) is a strongly monotone function from Rn to Rn. This implies that
∇f(x) is a bijective mapping [34, Theorem 6.4.4], and hence we have �D(f) = Rn. A
simple example is the quadratic function f = 1

2x
TQx + bx + c, where Q is a positive

definite matrix; then �D(f) = {Qx + b : x ∈ Rn} = Rn. When �D(f) �= Rn, (17)
can still be satisfied in many cases. Later, we will show that all convex homogeneous
of 1-degree functions satisfy (17) trivially, and �D(f) of any function of this class
is a closed bounded region including the origin. Notice that for any (u, x) such that
u ∈ ∂f(x), we have f∗(u) = uTx − f(x). The importance of condition (17) is that
under (17), for any u ∈ dom(f∗) there is x ∈ dom(f) such that u ∈ ∂f(x) and there-
fore f∗(u) = uTx− f(x). Therefore, under Assumption 4.1, the robust counterpart

D
ow

nl
oa

de
d 

12
/1

3/
16

 to
 1

47
.1

88
.5

5.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1448 IGOR AVERBAKH AND YUN-BIN ZHAO

(12) can be represented explicitly. However, we omit the statement of this general re-
sult. We are now interested in functions that have more properties leading to further
simplification of the robust counterpart.

We recall that a function h : Rn → R is said to be positively homogeneous if there
exists a constant p > 0 such that h(λx) = λph(x) for all λ ≥ 0 and x ∈ dom(h). If
such a p exists, we simply say that the function h is homogeneous of p-degree. Notice
that the definition implies 0 ∈ dom(h) and h(0) = 0. We consider the linear space LH

generated by homogeneous functions; i.e., LH is the collection of all functions that are
finite linear combinations of homogeneous functions. Notice that for any real number
α, (αh)(x) is also a homogeneous function if h is homogeneous. Therefore, LH is the
set of all finite sums of homogeneous functions. Clearly, a function f which is the sum
of several homogeneous functions fi is not necessarily homogeneous, unless all fi have
the same homogeneous degree. Linear space LH includes many important classes of
functions. Needless to say, all homogeneous functions (in particular, all norms ‖ · ‖)
are in LH and all polynomial functions are in LH .

The classical Euler homogeneous function theorem claims that if f is continuously
differentiable and homogeneous of p-degree, then pf(x) = xT∇f(x), where ∇f(x) is
the gradient of f. Below we establish a somewhat different version of the Euler ho-
mogeneous function theorem. This version allows the function to be nondifferentiable
and nonhomogeneous but to belong to LH and be convex.

Lemma 4.1. Let f : Rn → R be a convex function in LH . Thus, f can be
represented as f(x) = f1(x) + · · ·+ fN (x) for some N, where each fi is homogeneous
of pi-degree, respectively.

(i) For any x ∈ dom (f), we have

N∑
i=1

pifi(x) = inf
y∈∂f(x)

yTx = sup
y∈∂f(x)

yTx;

i.e., for any y ∈ ∂f(x), we have
∑N

i=1 pifi(x) = yTx.
(ii) Suppose that f : Rn → R is a convex function and is homogeneous of p-degree.

Then for any x ∈ dom(f) and for any y ∈ ∂f(x), we have pf(x) = yTx.
Proof. For any given x ∈ dom(f) and y ∈ ∂f(x), by definition of subdifferential

we have f(u) ≥ f(x) + yT (u − x) for all u ∈ dom(f). Notice that x ∈ dom(f) if
and only if x ∈ dom(fi) for all i = 1, . . . , N. Since all fi’s are homogeneous, for any
t > 0, we have u = tx ∈ dom(fi) for all i = 1, . . . , N. This in turn implies that
u = tx ∈ dom (f) for any t > 0. Setting u = tx in the above inequality and by using
homogeneity, we have

f(tx ) =

N∑
i=1

fi(tx ) =

N∑
i=1

tpifi(x) ≥ f(x) + yT (tx − x) ∀ t > 0,

i.e.,

(18)
N∑
i=1

(tpi − 1)fi(x) ≥ (t− 1)yTx ∀ t > 0.

For t > 1, dividing both sides by t−1 and noting that y is any given element in ∂f(x),
we see from the above inequality that

lim
t→1+

N∑
i=1

tpi − 1

t− 1
fi(x) ≥ sup

y∈∂f(x)

yTx.
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Thus, we have
∑N

i=1 pifi(x) ≥ supy∈∂f(x) y
Tx. Similarly, when t < 1, dividing both

sides of (18) by t− 1, we can prove that

N∑
i=1

pifi(x) = lim
t→1−

N∑
i=1

tpi − 1

t− 1
fi(x) ≤ inf

y∈∂f(x)
yTx.

Combining the last two inequalities yields the desired result (i). Setting N = 1, we
obtain the result (ii) from (i).

Notice that when N > 1, Lemma 4.1 requires convexity of f but does not require
convexity of individual functions fi, which can be nonconvex. The next theorem
is the main result of this section, which states that the robust counterpart can be
represented explicitly by using only the nominal data and the constraint functions gi
together with their subdifferentials.

Theorem 4.1. Let Ki (i = 1, . . . ,m) be given by (9), where each g
(i)
j (j =

1, . . . , �(i), i = 1, . . . ,m) is a closed proper convex function and belongs to the lin-
ear space LH , and is represented as

(19) g
(i)
j (x) =

m(ij)∑
k=1

h
(ij)
k (x),

where each h
(ij)
k (x) is homogeneous of p

(ij)
k -degree, and each m(ij) ≥ 1 is a given

integer number. Let g
(i)
j satisfy Assumption 4.1 and Slater’s condition for each i.

Then the robust programming problem (7) is equivalent to

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j + Υ(i) ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise,
i = 1, . . . ,m,(20)

λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

F (x) ≤ 0,

where χi = W (i)(x) ⊗ V (i)(x) and Ji = {j : λ
(i)
j > 0, j = 1, . . . , �(i)}, and

Υ(i) =

{ ∑
j∈Ji

λ
(i)
j

(∑m(ij)

k=1 (p
(ij)
k − 1)h

(ij)
k (w

(i)
j )

)
if Ji �= ∅,

0 otherwise,

where w
(i)
j satisfies that u

(i)
j /λ

(i)
j ∈ ∂g

(i)
j (w

(i)
j ) for j ∈ Ji �= ∅.

Proof. Let f ∈ LH be any convex function such that f(x) = f1(x) + · · ·+ fN (x),
where fi is homogeneous of pi-degree, and let f satisfy condition (17). Let y∗ be any
element in dom(f∗) = �D(f). This implies that there exists some point x∗ ∈ dom (f)
such that y∗ ∈ ∂f(x∗). Then, for any x ∈ dom(f), we have f(x) ≥ f(x∗) + (y∗)T
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1450 IGOR AVERBAKH AND YUN-BIN ZHAO

(x−x∗), which can be written as (y∗)Tx−f(x) ≤ (y∗)Tx∗−f(x∗) for all x ∈ dom(f).
This, together with Lemma 4.1, implies that

(21) f∗(y∗) = (y∗)Tx∗ − f(x∗) =

N∑
i=1

pifi(x
∗) − f(x∗) =

N∑
i=1

(pi − 1)fi(x
∗).

Setting f = g
(i)
j and y∗ = u

(i)
j /λ

(i)
j , where g

(i)
j is given by (19), it follows from (21)

that

(
g
(i)
j

)∗
(u

(i)
j /λ

(i)
j ) =

m(ij)∑
k=1

(p
(ij)
k − 1)h

(ij)
k (w

(i)
j ),

where w
(i)
j can be any point such that u

(i)
j /λ

(i)
j ∈ ∂g

(i)
j (w

(i)
j ). Substituting the above

into Theorem 3.2, we have the desired result.

We now consider the case in which all the functions g
(i)
j (j = 1, . . . , �(i)) are ho-

mogeneous. This is a special case of (19) with m(ij) = 1 (for all j = 1, . . . , �(i), i =
1, . . . ,m). We have the following result.

Corollary 4.1. Let Ki be given by (9), where each g
(i)
j (j = 1, . . . , �(i)) is

convex and homogeneous of p
(i)
j -degree, and g

(i)
j satisfy Assumption 4.1. Then the

robust programming problem (7) is equivalent to (20), but Υ(i) is given as follows:

Υ(i) =

{ ∑
j∈Ji

(p
(i)
j − 1)λ

(i)
j g

(i)
j (w

(i)
j ) if Ji �= ∅,

0 otherwise,

where w
(i)
j satisfies that u

(i)
j /λ

(i)
j ∈ ∂g

(i)
j (w

(i)
j ) for j ∈ Ji �= ∅.

It is worth mentioning that Υ(i) can be written as

Υ(i) =

{ ∑
j∈Ji

(
1 − 1/p

(i)
j

)
(u

(i)
j )Tw

(i)
j if Ji �= ∅,

0 otherwise.

This follows from (ii) of Lemma 4.1. Actually, for any function f satisfying Assump-
tion 4.1, (21) can also be written as f∗(y∗) = (y∗)Tx∗ − f(x∗) = (1 − 1/p)(y∗)Tx∗.
Therefore, (

g
(i)
j

)∗
(u

(i)
j /λ

(i)
j ) = (1 − 1/p

(i)
j )(u

(i)
j )Tw

(i)
j /λ

(i)
j

for some w
(i)
j such that u

(i)
j /λ

(i)
j ∈ ∂g

(i)
j (w

(i)
j ).

Remark 4.1. (i) Notice that in Corollary 4.1 we do not require Slater’s condition,
since it was shown in [32] that for homogeneous convex optimization, Lagrangian
duality results hold without Slater’s condition.

(ii) It should be mentioned that Slater’s condition in Theorem 4.1 is not essential,
and can be removed in many situations, or enforced by slightly changing the constants

Δ
(i)
j in (9). Any function g in the linear space LH is the sum of some homogeneous

functions whose value is zero at the origin. Thus 0 ∈ Ki implies that 0 = g
(i)
j (0) ≤ Δ

(i)
j

for j = 1, . . . , �(i); i.e., all constants Δ
(i)
j must be nonnegative in (9) when g

(i)
j ∈ LH .

If all Δ
(i)
j are positive, Slater’s condition holds trivially (this is the situation in most
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practical applications; for example, when g
(i)
j is a norm, Δ

(i)
j is positive since otherwise

the uncertainty set contains at most one point). If not all Δ
(i)
j are positive, replacing

Δ
(i)
j in (9) by Δ̂

(i)
j , where Δ̂

(i)
j = Δ

(i)
j if Δ

(i)
j > 0, and Δ̂

(i)
j = ε otherwise, for some

small ε > 0, allows us to satisfy Slater’s condition.
In the next section, we show that in homogeneous cases the above results can be

further improved without making Assumption 4.1.

5. Homogeneous cases. We now show that for homogeneous of 1-degree func-
tions, Assumption 4.1 holds trivially, and for a degree p �= 1, a simple transformation
will make the resulting functions satisfy Assumption 4.1. We also further simplify the
reformulation. We first prove some basic properties of homogeneous functions. Part
(i) of the following lemma in fact follows from [30], but for completeness we provide a
simple proof. It appears that the result of part (ii) of the following lemma should be
valid for nondifferentiable functions as well, but for simplicity of the proof we state it
for twice differentiable functions.

Lemma 5.1. Let f : dom(f) ⊆ Rn → R be convex and homogeneous of p-degree.
(i) If the degree p > 1, then f(x) ≥ 0 over its domain, and if p < 1, then f(x) ≤ 0

over its domain.
(ii) Let f be twice differentiable over its domain. Then for p > 1, the function

(f(x))1/p is convex and homogeneous of 1-degree; for p < 1, the function −(−f(x))1/p

is convex and homogeneous of 1-degree.
Proof. Let x be any point in dom (f). By homogeneity and convexity of f, we

have

(1/2)
p
f(x) = f(x/2) ≤ f(x)/2 + f(0)/2 = f(x)/2.

Thus, [(1/2)
p − 1/2] f(x) ≤ 0, and hence the result (i) follows.

We now prove the result of part (ii). Consider the case of p > 1. By (i), p > 1
implies that f(x) ≥ 0 over its domain. Let ε > 0 be any given positive number. Denote
gε(x) := (f(x) + ε)1/p. Notice that dom(gε) = dom (f), and gε is twice differentiable.
We prove first that gε is a convex function for any given ε > 0. It suffices to show
that ∇2gε(x) � 0 (positive semidefinite). Since

∇2gε(x) =
1

p
(f(x) + ε)

1
p−2

[(
1

p
− 1

)
∇f(x)∇f(x)T + (f(x) + ε)∇2f(x)

]
,

it is sufficient to prove that(
1

p
− 1

)
∇f(x)∇f(x)T + (f(x) + ε)∇2f(x) � 0.

By Schur complementarity property, this is equivalent to showing that[
p

p−1 (f(x) + ε) ∇f(x)T

∇f(x) ∇2f(x)

]
� 0.

Thus, we need to show for all (t, u) ∈ Rn+1 that

ϕ(t, u) = (t, uT )

[
p

p−1 (f(x) + ε) ∇f(x)T

∇f(x) ∇2f(x)

](
t
u

)

=
p

p− 1
t2(f(x) + ε) + 2t∇f(x)Tu + uT∇2f(x)u ≥ 0.
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1452 IGOR AVERBAKH AND YUN-BIN ZHAO

Case 1. t = 0. By convexity of f , uT∇2f(x)u ≥ 0 for any u ∈ Rn; thus we have
ϕ(t, u) ≥ 0.

Case 2. t �= 0. In this case, it suffices to show that for any u ∈ Rn

ϕ(1, u) =
p

p− 1
(f(x) + ε) + 2∇f(x)Tu + uT∇2f(x)u ≥ 0.

Since ∇2f(x) � 0, the function ϕ(1, u) is convex with respect to u, and its minimum
is attained if there exists some u∗ such that

(22) ∇f(x) = −∇2f(x)u∗,

and the minimum value is

ϕ(1, u∗) =
p

p− 1
(f(x) + ε) + ∇f(x)Tu∗.

By Euler’s formula, we have xT∇f(x) = pf(x). Differentiating both sides of this
equation, we have (p−1)∇f(x) = ∇2f(x)x, which shows that the vector u∗ = − 1

p−1x

satisfies (22); thus the minimum value is

ϕ(1, u∗) =
p

p− 1
(f(x) + ε) − 1

p− 1
∇f(x)Tx =

p

p− 1
ε > 0.

The last equation follows from Euler’s formula again. Therefore ϕ(t, u) ≥ 0 for any
(t, u) ∈ Rn+1. Convexity of gε(x) follows. Since ε > 0 is arbitrary and (f(x))1/p =
limε→0 gε(x), we conclude that (f(x))1/p is convex.

The case of p < 1 is considered analogously.
According to our definition of a homogeneous function, its domain includes the

origin. The next lemma shows that Assumption 4.1 is satisfied for any homogeneous
of 1-degree convex function, and its subdifferential at the origin defines the domain
of the conjugate function.

Lemma 5.2. Let h : dom(h) ⊆ RN → R be a closed proper convex function and
be homogeneous of 1-degree. Then

�D(h) =
⋃

x∈dom(h)

∂h(x) = ∂h(0).

Moreover, dom(h∗) = �D(h) = ∂h(0).
Proof. Let z be any subgradient of h at x; then for any given y and any positive

number λ we have h(λy) ≥ h(x) + zT (λy− x). Since λ is positive, dividing both sides
of the inequality by λ and using homogeneity of h, we have

h(y) ≥ h(x) − zTx

λ
+ zT y.

Let λ → ∞. We have h(y) ≥ zT y, which holds for any y. Consider the set

S := {z : zT y ≤ h(y) for any y ∈ dom(h)}.

From the above proof, we have seen that ∂h(x) ⊆ S for any x, i.e., �D(h) ⊆ S. In
particular, we have ∂h(0) ⊆ S. Conversely, since h(0) = 0, we see that any z ∈ S is a
subgradient of h at x = 0. Thus, we have S ⊆ ∂h(0). We conclude that �D(h) = S =
∂h(0). The first part of the lemma has been proved.
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We now prove the second part of the lemma. For any y∗ ∈ �D(h), there exists
an x∗ such that y∗ ∈ ∂f(x∗), and by definition of subgradient, we have that (y∗)Tx−
h(x) ≤ (y∗)Tx∗ − h(x∗) for any x ∈ dom(h), which implies that h∗(y∗) < ∞, i.e.,
y∗ ∈ dom(h∗). Thus, the inclusion �D(h) ⊆ dom(h∗) holds trivially (we mentioned
this observation at the beginning of section 4).

Now we show that converse inclusion is also valid. Suppose that y∗ ∈ dom(h∗).
We show that y∗ ∈ S. Notice that for homogeneous of 1-degree function h, dom(h) is
a cone. Thus, for any given positive number λ, we have

λh∗(y∗) = sup
x∈dom(h)

(y∗)T (λx) − λh(x) = sup
x∈dom(h)

(y∗)T (λx) − h(λx) = h∗(y∗).

Since λ > 0 can be any positive number, we have h∗(y∗) = 0, which in turn implies
that (y∗)Tx − h(x) ≤ h∗(y∗) = 0 for any x ∈ dom(h), and therefore y∗ ∈ S. The
desired result follows.

We can now simplify the robust counterpart for the homogeneous 1-degree case.

Theorem 5.1. Let Ki be defined by (9), where all the functions g
(i)
j , i =

1, . . . , �(i), are closed proper convex functions and are homogeneous of 1-degree. Then
the robust counterpart (7) is equivalent to

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise,
i = 1, . . . ,m,(23)

λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

F (x) ≤ 0,

where χi and Ji are the same as in Theorem 4.1, and u
(i)
j /λ

(i)
j ∈ ∂g

(i)
j (0) for j ∈ Ji �=

∅, i = 1, . . . ,m.
Proof. Under the conditions of the theorem, Lemma 5.2 claims that Assump-

tion 4.1 holds, and, moreover, �D(g
(i)
j ) = ∂g

(i)
j (0) for all i = 1, . . . , �(i). From the proof

of Theorem 4.1, when Ji �= ∅, we can set w
(i)
j = 0, and hence Υ(i) = (g

(i)
j )∗(u

(i)
j /λ

(i)
j ) =

0. Thus, in this case, Υ(i) ≡ 0 no matter what Ji is. Therefore, the robust counterpart
(7) eventually reduces to (23). As mentioned in Remark 4.1, we do not need Slater’s
condition for homogeneous cases.

When g
(i)
j is homogeneous of p

(i)
j -degree, where p

(i)
j �= 1 and is twice differentiable,

by (ii) of Lemma 5.1, we may transform it into a homogeneous of 1-degree function.

Then we can use Theorem 5.1. When p
(i)
j < 1, by Lemma 5.1, the value of g

(i)
j is

nonpositive; thus the constraint g
(i)
j ≤ Δ

(i)
j becomes redundant (since Δ

(i)
j ≥ 0) and

thus can be removed from the list of constraints defining Ki. Therefore, without loss

of generality, we assume that all p
(i)
j ≥ 1. We now have the following result.

Theorem 5.2. Let Ki be defined by (9), where the functions g
(i)
j , j = 1, . . . , �(i),

are twice differentiable, convex, and homogeneous of p
(i)
j -degree (p

(i)
j ≥ 1), respectively.
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Then the robust programming problem (7) is equivalent to

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ̃

(i)
j ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise,
i = 1, . . . ,m,

λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

F (x) ≤ 0,

where χi and Ji are the same as in Theorem 4.1, u
(i)
j ∈ λ

(i)
j ∂G(i)

j (0) for j ∈ Ji �=
∅, i = 1, . . . ,m, and

(24) G(i)
j =

{
(g

(i)
j )1/p

(i)
j , p

(i)
j > 1,

g
(i)
j , p

(i)
j = 1,

Δ̃
(i)
j =

{
(Δ

(i)
j )1/p

(i)
j , p

(i)
j > 1,

Δ
(i)
j , p

(i)
j = 1.

Proof. We note that for p
(i)
j > 1, since g

(i)
j and Δ

(i)
j are nonnegative by Lemma 5.1,

the constraint g
(i)
j ≤ Δ

(i)
j in (9) is equivalent to (g

(i)
j )1/p

(i)
j ≤ (Δ

(i)
j )1/p

(i)
j . Define G(i)

j

and Δ̃
(i)
j as in (24). Then this result is an immediate consequence of Theorem 5.1

and Lemma 5.1.

From Theorems 5.1 and 5.2, the structure of robust counterparts of uncertain

optimization problems mainly depends on the subdifferentials of g
(i)
j or G(i)

j at the

origin when functions g
(i)
j are homogeneous.

Notice that any norm is convex and homogeneous of 1-degree and can be defined
on the whole space. (But the converse is not true; for example, consider f(t) : R → R
given by f(t) = t if t ≥ 0 and f(t) = 2|t| if t < 0. Clearly, f is convex and homogeneous
of 1-degree, but it is not a norm, because f(−1) �= f(1).) Theorem 5.1 can be
immediately applied to the case of an uncertainty set defined by a finite system of
norm inequalities. For this case, however, in addition to the above formulation of the
robust counterpart via subgradients at the origin, we can further simplify it using

dual norms and eliminating all variables λ
(i)
j . For any norm ‖ · ‖, we denote its dual

norm by ‖ ·‖∗, i.e., ‖u‖∗ = sup‖x‖≤1 u
Tx. When g

(i)
j is a norm, we denote it by ‖ ·‖(ij)

and its dual norm by ‖ · ‖(ij)
∗ .

Corollary 5.1. Let Ki be defined by (9), where all g
(i)
j (j = 1, . . . , �(i), i =

1, . . . ,m) are norms, denoted, respectively, by ‖ · ‖(ij)(j = 1, . . . , �(i), i = 1, . . . ,m);
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then the robust counterpart (7) is equivalent to

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

Δ
(i)
j

∥∥∥u(i)
j

∥∥∥(ij)

∗
≤ bi, i = 1, . . . ,m,

χi =

�(i)∑
j=1

u
(i)
j , i = 1, . . . ,m,

F (x) ≤ 0,

where χi = W (i)(x) ⊗ V (i)(x).

Proof. Notice that u ∈ ∂‖0‖ if and only if uTx ≤ ‖x‖ for any x which can be

written as uT (x/‖x‖) ≤ 1, i.e., ‖u‖∗ ≤ 1. Therefore, for j ∈ Ji �= ∅, u(i)
j /λ

(i)
j ∈ ∂g

(i)
j (0)

is equivalent to ‖u
(i)
j

λ
(i)
j

‖(ij)
∗ ≤ 1, or just ‖u(i)

j ‖(ij)
∗ ≤ λ

(i)
j . Therefore, the constraints of

(23) can be further written as

(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise
, i = 1, . . . ,m,

λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

‖u(i)
j ‖(ij)

∗ ≤ λ
(i)
j ∀j ∈ Ji �= ∅, i = 1, . . . ,m,

F (x) ≤ 0.

It is evident that the above system is equivalent to

(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j ≤ bi, i = 1, . . . ,m,

‖u(i)
j ‖(ij)

∗ ≤ λ
(i)
j , j = 1, . . . , �(i), i = 1, . . . ,m,

χi =

�(i)∑
j=1

u
(i)
j , i = 1, . . . ,m,

λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

F (x) ≤ 0.
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Eliminating the variables λ
(i)
j , the above system becomes

(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

Δ
(i)
j

∥∥∥u(i)
j

∥∥∥(ij)

∗
≤ bi, i = 1, . . . ,m,

χi =

�(i)∑
j=1

u
(i)
j , i = 1, . . . ,m,

F (x) ≤ 0.

The desired result is obtained.

6. Special cases. Complexity of robust counterparts depends both on the struc-
ture of the original optimization problems and on the structure of the uncertainty
set. The harder the original optimization problem is and/or the more complex the
uncertainty set is, the more difficult the robust counterpart is. In this section, we
demonstrate how the general results developed above can be simplified by consider-
ing special optimization problems and/or special uncertainty sets. We take the LP
problem as an example of a special optimization problem and take the widely used
uncertainty set (10) as an example of a special uncertainty set. Thus we obtain new
results for problem (1) with uncertainty set defined by (10) and for robust LP with
general uncertainty sets. For this simplest of the considered cases (robust LP with
uncertainty set (10)), we show that our results contain a number of related results in
the literature, but they are under less restrictive assumptions, thus generalizing and
strengthening these results.

6.1. Problem (1) with uncertainty set U defined by (10). Now we consider
the uncertainty set (10), i.e.,

U =:

⎧⎨⎩D

∣∣∣∣∣∣∃z ∈ R|N | : D = D0 +
∑
j∈N

ΔDjzj , ‖z‖ ≤ Ω

⎫⎬⎭ .

Since this model has been widely used in the literature (see, e.g., [5, 6, 7, 8, 9, 10,
11, 12, 13, 14]), it is interesting to see how our general results can be simplified when
reduced to the above uncertainty set. Let H denote the matrix whose columns are
ΔDj , j = 1, . . . , |N |, i.e.,

H = [ΔD1, . . . ,ΔD|N |].

Define the function

(25) g(u) = inf{‖z‖ : Hz = u}.

Then g(u) is convex and homogeneous of 1-degree (convexity is proven in [36], and
homogeneity can be checked directly). Now we show that the uncertainty set (10) can
be represented equivalently in the form (9).

Lemma 6.1. Consider the uncertainty set U given by (10). Let K = {u| g(u) ≤
Ω}, where g is given by (25). Then we have K = U − {D0}.

Proof. Let u be any point in K. By the definition of g(u), there exists a point
z∗ such that g(u) = ‖z∗‖ and Hz∗ = u. Since u ∈ K implies g(u) ≤ Ω, we have
‖z∗‖ ≤ Ω. By the definition of U , we see that u ∈ U − {D0}.
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Conversely, suppose that u ∈ U − {D0}. Then there exists a point D ∈ U such
that u = D−D0. By the definition of U , there exists a point z such that u = Hz and
‖z‖ ≤ Ω. By the definition of g, this implies g(u) ≤ Ω, and hence u ∈ K.

If the vectors {ΔDj : j = 1, . . . , N} are linearly independent, from Hz = u we
have z = (HTH)−1HTu. Thus, we have

U − {D0} = K =
{
u
∣∣g(u) = ‖(HTH)−1HTu‖ ≤ Ω

}
.

Since in general |N | is less than the number of data of the problem, the term HTu
can be zero even when u �= 0. Thus, g(u) is not a norm in this case, unless {ΔDj : j =
1, . . . , N} are linearly independent and |N | equals the number of data of the problem,
in which case H is an |N | × |N | invertible matrix.

Notice that K here has only one constraint which corresponds to the case �(i) = 1
for all i = 1, . . . ,m, and by Theorem 16.3 in [36] the conjugate function of g(u) is
given by

(26) g∗(w) =

{
0 ‖HTw‖∗ ≤ 1,

∞ otherwise,

where ‖ · ‖∗ denotes the dual norm of ‖ · ‖.
We now consider our problem (1), where data M (i)’s are subject to uncertainty

of the type (10); i.e., for each i, the data M (i) belong to the set

(27)

⎧⎨⎩M (i)

∣∣∣∣∣∣∃z ∈ R|N(i)| : M (i) = M
(i)

0 +
∑

j∈N(i)

ΔM
(i)
j zj , ‖z‖(i) ≤ Ω(i)

⎫⎬⎭ .

This can be written equivalently as

Ui =

⎧⎨⎩vec(M(i))

∣∣∣∣∣∣∃z ∈ R|N(i)| : vec(M(i)) = vec(M
(i)
0 ) +

∑
j∈N(i)

vec
(
ΔM

(i)
j

)
zj , ‖z‖(i) ≤ Ω(i)

⎫⎬⎭ ,

(28)

i = 1, . . . ,m, where N (i) is the corresponding index set (not to be confused with
Ni—the dimension of matrix M (i)), and Ω(i) is a given number. Note that we add
the index (i) to the norm (i.e., ‖ · ‖(i)), which allows us to use different norms for
different constraints. Accordingly, we have the function

g(i)(u) = inf{‖z‖(i) : H(i)z = u},

where H(i) = [vec(ΔM
(i)
1 ), vec(ΔM

(i)
2 ), . . . , vec(ΔM

(i)

|N(i)|)], and thus by Lemma 6.1

we have

Ui − {vec(M (i)
)} = Ki = {u|g(i)(u) ≤ Ω(i)}.

Using (26), we have

(29) (g(i))∗(w) =

{
0, ‖(H(i))Tw‖(i)

∗ ≤ 1,

∞ otherwise.

Now we have all the necessary ingredients to develop our result. We first note that
in this case, �(i) = 1 for all i = 1, . . . ,m since the uncertainty set Ui has only one
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constraint g(i)(u) ≤ Ω(i). So, λ(i) is reduced to a scalar. Therefore, the constraints of
the robust counterpart (12) that correspond to index i reduce to(

W (i)(x)
)T

M
(i)
V (i)(x) + λ(i)Ω(i) + Υ(i) ≤ bi,(30)

χi =

{
u(i), λ(i) > 0,

0, λ(i) = 0,
(31)

where

(32) Υ(i) =

{
λ(i)(g(i))∗(u(i)/λ(i)), λ(i) > 0,

0, λ(i) = 0.

When λ(i) > 0, the system (30)–(32) becomes(
W (i)(x)

)T
M

(i)
V (i)(x) + λ(i)Ω(i) + λ(i)(g(i))∗(u(i)/λ(i)) ≤ bi,

χi = u(i).

Eliminating u(i) and using (29), the above system is equivalent to(
W (i)(x)

)T
M

(i)
V (i)(x) + λ(i)Ω(i) ≤ bi,

‖(H(i))T (χi)‖(i)
∗ ≤ λ(i).

This can be written as

(33)
(
W (i)(x)

)T
M

(i)
V (i)(x) + Ω(i)‖(H(i))Tχi‖(i)

∗ ≤ bi.

When λ(i) = 0, the system (30)–(32) is written as(
W (i)(x)

)T
M

(i)
V (i)(x) ≤ bi,

χi = 0.

Clearly, this system can be written as (33), too. Hence, by Theorem 3.2, we have the
following result.

Theorem 6.1. Under the uncertainty set (27) (or equally, (28)), the robust
counterpart (7) is equivalent to

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) + Ω(i)

∥∥∥(H(i))Tχi

∥∥∥(i)

∗
≤ bi, i = 1, . . . ,m,

F (x) ≤ 0,

where χi = W (i)(x)⊗V (i)(x) and H(i) = [vec(ΔM
(i)
1 ), vec(ΔM

(i)
2 ), . . . ,Δvec(M

(i)

N(i))].
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6.2. LP with general uncertainty sets. Consider the LP problem discussed
in section 2: min{cTx : Ax ≤ b, x ≥ 0}, where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. As
discussed in section 2, without loss of generality, we assume that only the coefficients
of A are subject to uncertainty.

There are two widely used ways to characterize the uncertain data of LP problems.
One is the “row-wise” uncertainty model (a separate uncertainty set is specified for
each row of A), and the other is what we may call the “global” uncertainty model (one
uncertainty set for the whole matrix A is specified). We first consider the situation
of “global” uncertainty.

Suppose that A is allowed to vary in such a way that its deviations from a given
nominal A fall in a bounded convex set K of Rmn that contains the origin (zero).
That is, the uncertainty set is defined as

(34) U = {Ã|vec(Ã) − vec(A) ∈ K},

where K is defined by convex inequalities:

(35) K = {u| gj(u) ≤ Δj , j = 1, . . . , �}.

Here Δj ’s are constants, and all gj are closed proper convex functions. Then the
robust counterpart of the LP problem with uncertainty set U is

(36) min{cTx : Ãx ≤ b, x ≥ 0 ∀Ã ∈ U}.

First, from section 2 we know that for LP we can drop indexes i for g
(i)
j and Δ

(i)
j

in the previous discussion, since in the reformulation of LP as a special case of (1) and
(2), the data matrix for each constraint (2) is the same; i.e., M (i) = [A0 ]n×n for all i
(see section 2). Second, we note that for LP, the vector χi = W (i) ⊗ V (i) = ei ⊗ x is
linear in x. Therefore, the results in previous sections can be further simplified for LP.
For example, Theorems 3.1, 3.2, and 5.2 and Corollary 5.1 can be stated as follows
(Theorems 6.2 through 6.4 and Corollary 6.1, respectively).

Theorem 6.2. The robust LP problem (36) is equivalent to the convex program-
ming problem

min cTx

s.t. āTi x + δ∗(χi|cl(co(K))) ≤ bi, i = 1, . . . ,m,

x ≥ 0,

where cl(co(K)) is the closed convex hull of the set K, and χi = ei ⊗ x.

Since δ∗(·|cl(coK)) is a closed convex function, the robust counterpart of any LP
problem with the uncertainty set denoted by (34) and (35) is a convex programming
problem.

Theorem 6.3. Let K be given by (35), where gj(j = 1 . . . , �), are arbitrary closed
proper convex functions. Suppose that Slater’s condition holds; i.e., there exists a
point u0 such that gj(u0) < Δj for all j = 1, . . . , �. Then the robust LP problem (36)
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is equivalent to

min cTx

s.t. āTi x +

�∑
j=1

λ
(i)
j Δj +

⎛⎝ �∑
j=1

λ
(i)
j gj

⎞⎠∗

(χi) ≤ bi, i = 1, . . . ,m,

λ
(i)
j ≥ 0, j = 1, . . . , �, i = 1, . . . ,m,

x ≥ 0,

or equivalently,

min cTx

s.t. āTi x +

�∑
j=1

λ
(i)
j Δj + Υ(i) ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise,
i = 1, . . . ,m,(37)

λ
(i)
j ≥ 0, j = 1, . . . , �, i = 1, . . . ,m,

x ≥ 0,

where χi = ei ⊗ x, Ji = {j : λ
(i)
j > 0, j = 1, . . . , �}, and

Υ(i) =

{ ∑
j∈Ji

λ
(i)
j g∗j (u

(i)
j /λ

(i)
j ) if Ji �= ∅,

0 otherwise.

Remark 6.1. (i) For LP, the constraint “χi =
∑

j∈Ji
u

(i)
j ” is a linear constraint.

(ii) It is well known that for any convex function f , the function f̂(x, t) = tf(x/t),
where t > 0, is also convex in (x, t), and is positive homogeneous of 1-degree, that is,

f̂(αx, αt) = αf̂(x, t), for any α > 0. Problem (37) shows that all functions involved are
homogeneous of 1-degree with respect to the variables (x, λ(i), u(i)). Thus, the robust
LP problem (36) is not only a convex programming problem but also a homogeneous
programming problem, i.e., an optimization problem where all functions involved are
homogeneous.

Theorem 6.4. Let K be defined by (35), where the functions gj , j = 1, . . . , �,
are twice differentiable, convex, and homogeneous of pj-degree (pj ≥ 1), respectively.
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Then the robust LP problem (36) is equivalent to

min cTx

s.t. āTi x +

�∑
j=1

λ
(i)
j Δ̃j ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise,
i = 1, . . . ,m,

λ
(i)
j ≥ 0, j = 1, . . . , �, i = 1, . . . ,m,

x ≥ 0,

where χi and Ji are the same as in Theorem 6.3, u
(i)
j ∈ λ

(i)
j ∂Gj(0) for j ∈ Ji �= ∅, i =

1, . . . ,m, and

Gj =

{
(gj)

1/pj , pj > 1,

gj , pj = 1,
Δ̃j =

{
(Δj)

1/pj , pj > 1,

Δj , pj = 1.

Corollary 6.1. Let K be defined by (35), where all gj (j = 1, . . . , �) are norms,
denoted, respectively, by ‖ · ‖(j), j = 1, . . . , �; then the robust counterpart (36) is equiv-
alent to

min cTx

s.t. āTi x +

�∑
j=1

Δj‖u(i)
j ‖(j)

∗ ≤ bi, i = 1, . . . ,m,

ei ⊗ x =

�∑
j=1

u
(i)
j , i = 1, . . . ,m,

x ≥ 0.

Now we briefly discuss the situation of “row-wise” uncertainty sets. In this case,
in order to apply our general results, we reformulate LP in the form (1) in a different
way than in section 2. Consider functions fi(x) of the form (2), where W (i)(x) = ei ∈
Rn, V (i)(x) = x ∈ Rn (same as in section 2). Throughout the rest of the paper, we
denote by Ai(i = 1, . . . ,m) the ith row of A. Thus, Ai is an n-dimensional row vector.
The n× n matrix M (i) is the matrix having Ai as its ith row and 0 elsewhere, i.e.,

(38) M (i) =

⎡⎢⎣ 0

Ai

0

⎤⎥⎦
n×n

, i = 1, . . . ,m.

Then the ith constraint of Ax ≤ b can be written as

(39) fi = (W (i))TM (i)V (i) ≤ bi

for i = 1, . . . ,m. Then applying the results of sections 3, 4, and 5 to the optimization
problem (1) with the above inequality constraints and F (x) = −x ≤ 0, we can obtain
a formulation for robust LP with “row-wise” uncertainty sets. We omit these results.

The formulation for other special cases such as the LCP and QP can be derived
similarly; we leave these derivations to interested readers.
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6.3. LP with uncertainty set of type (10). In this section, we consider the
LP problem min{cTx : Ax ≤ b, x ≥ 0} under uncertainty of type (10). We will show
that our results in this section include a number of recent results on robust LP in the
literature as special cases. From Theorems 6.1 and 6.3, we have the following result.

Theorem 6.5. (i) Under the “row-wise” uncertainty set

(40) Ui =

⎧⎨⎩Ai

∣∣∣∣∣∣∃u ∈ RN(i)

: Ai = Ai +
∑

j∈N(i)

ΔA
(i)
j uj , ‖u‖(i) ≤ Ω(i)

⎫⎬⎭ ,

the robust counterpart of LP is equivalent to

min cTx

s.t. āTi x + Ω(i)

∥∥∥∥(H(i)
)T

x

∥∥∥∥(i)

∗
≤ bi, i = 1, . . . ,m,(41)

x ≥ 0,

where the matrix H(i) = [(ΔA
(i)
1 )T , (ΔA

(i)
2 )T , . . . , (ΔA

(i)

|N(i)|)
T ].

(ii) Under the “global” uncertainty set

(42) U =

⎧⎨⎩A

∣∣∣∣∣∣∃u ∈ R|N | : A = A +
∑
j∈N

ΔAjuj , ‖u‖ ≤ Ω

⎫⎬⎭ ,

where A is an m× n matrix, the robust counterpart of LP is equivalent to

min cTx

s.t. āTi x + Ω
∥∥∥H̃T χ̃i

∥∥∥
∗
≤ bi, i = 1, . . . ,m,(43)

x ≥ 0,

where the matrix H̃ = [vec(ΔA1), vec(ΔA2), . . . , vec(ΔA|N |)] and χ̃i = e
(m)
i ⊗ x,

where e
(m)
i denotes the ith column of the m × m identity matrix. Equivalently, the

inequality (43) can be written as

āTi x + Ω

∥∥∥∥(H̃(i)
)T

x

∥∥∥∥
∗
≤ bi, i = 1, . . . ,m,

where the matrix H̃(i) = [(ΔA1)
T e

(m)
i , (ΔA2)

T e
(m)
i , . . . , (ΔA|N |)

T e
(m)
i ].

Proof. To prove the result (i), we show that it is an immediate corollary of
Theorem 6.1. To apply Theorem 6.1, we first reformulate the LP problem in the form
(1) as we did at the end of section 6.2. The ith constraint of Ax ≤ b, i.e., Aix ≤ bi,
can be written as (39), where M (i) is given by (38). Clearly, we have

vec(M (i)) = ei ⊗AT
i , vec(M

(i)
) = ei ⊗A

T

i .

Notice that when Ai belongs to the uncertainty set (40), then the vec(M (i)) belongs
to the following uncertainty set:⎧⎨⎩vec(M(i))

∣∣∣∣∣∣∃u ∈ R|N(i)| : vec(M(i)) = ei ⊗A
T
i +

∑
j∈N(i)

(
ei ⊗ (ΔA

(i)
j )T

)
uj , ‖u‖(i) ≤ Ω(i)

⎫⎬⎭ .
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By Theorem 6.1, robust LP is equivalent to

min cTx

s.t. āTi x + Ω(i)

∥∥∥∥(P (i)
)T

χi

∥∥∥∥(i)

∗
≤ bi, i = 1, . . . ,m,

x ≥ 0,

where χi = ei ⊗ x and the matrix

P (i) =
[
ei ⊗ (ΔA

(i)
1 )T , ei ⊗ (ΔA

(i)
2 )T , . . . , ei ⊗ (ΔA

(i)

|N(i)|)
T
]
.

Notice that (
P (i)

)T
χi =

[
(ΔA

(i)
1 )T , (ΔA

(i)
2 )T , . . . , (ΔA

(i)

|N(i)|)
T
]T

x.

Therefore, the result (i) holds.
Using the uncertainty set (42), item (ii) can also be proved by applying Theo-

rem 6.1. In fact, we can reformulate the LP problem in the form of (1) as in section 2,
where all the data matrix M (i) are equal to [A0 ]n×n. Notice that the uncertainty set
(42) can be written as⎧⎨⎩vec

([
A
0

]) ∣∣∣∣∣∣∃u ∈ R|N| : vec

([
A
0

])
= vec

([
A
0

])
+
∑
j∈N

vec

([
ΔAj

0

])
uj , ‖u‖ ≤ Ω

⎫⎬⎭ .

This is the uncertainty set of the form (28). Thus, by Theorem 6.1, robust LP is
equivalent to

min cTx

s.t. āTi x + Ω‖HTχi‖∗ ≤ bi, i = 1, . . . ,m,

x ≥ 0,

where χi = ei ⊗ x and the matrix

H =

[
vec

([
ΔA1

0

])
, vec

([
ΔA2

0

])
, . . . , vec

([
ΔA|N |

0

])]
.

Denote by χ̃i = e
(m)
i ⊗ x, where e

(m)
i denotes the ith column of the m ×m identity

matrix. It is easy to check that

HTχi = H̃T χ̃i =
(
H̃(i)

)T
x,

where the matrices

H̃ =
[
vec(ΔA1), vec(ΔA2), . . . , vec(ΔA|N |)

]
,

H(i) =
[
(ΔA1)

T e
(m)
i , (ΔA2)

T e
(m)
i , . . . , (ΔA|N |)

T e
(m)
i

]
.

Thus, the desired result (ii) follows.
Notice that dual norms appear in (41) and (43). If the norms used are some

special norms such as �1, �2, �∞, �1 ∩ �∞, �2 ∩ �∞, then their dual norms ‖ · ‖∗ are
explicitly known (see, e.g., [14]).
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In [12], Bertsimas, Pachamanova, and Sim studied the case of robust LP with
uncertainty sets defined by general norms. Their result provides a unified treatment
of the approaches in [23, 24, 6, 7, 11]. However, their result is a special case of
Theorem 6.5. Their uncertainty set is defined by the inequality

‖M(vec(A) − vec(A))‖ ≤ Δ,

where M is an invertible matrix and Δ is a given constant. Clearly, this inequality
can be written as

vec(A) = vec(A) + M−1u, ‖u‖ ≤ Δ.

This is a special case of the uncertainty model (42), corresponding to the case when
|N | is equal to the number of data and the perturbation directions ΔAj ’s are linearly
independent (here ΔAj ’s are the column vectors of M−1). So, when we apply Theo-
rem 6.5(ii) to such a special uncertainty set, we obtain the same result as “Theorem
2” in [12]. But our result in Theorem 6.5(ii) is more general than the result in [12] be-
cause our result can even deal with the cases when the perturbation direction matrix
H is singular and even not a square matrix.

It should be mentioned that “Theorem 2” in [12] can also be obtained from our
Corollary 6.1. Since M is invertible, we can define the function g(D) = ‖MD‖, which
is a norm. The uncertainty set is defined by only one norm inequality, i.e., g(D) ≤ Δ.
So, setting � = 1 in Corollary 6.1, we obtain “Theorem 2” in [12] again.

Now we compare Theorem 6.5 with the corresponding results for robust LP in
Bertsimas and Sim [14]. For LP, Theorem 6.5(i) strengthens (generalizes) the corre-
sponding result in [14] in the sense that we do not impose extra conditions on the
norms, but in [14] a similar result is obtained under the additional assumption that
the norms are absolute norms. Below we elaborate on this in more detail.

As we pointed out in section 2, without loss of generality, it is sufficient to consider
the case when only A is subject to uncertainty. For LP, only “row-wise” uncertainty is
considered in [14]; for the ith linear inequality Aix ≤ bi, Ai belongs to the uncertainty
set (40). Bertsimas and Sim [14] defined f(x,Ai) = −(Aix− bi), and

sj = g(x,ΔA
(i)
j ) =: max{−(ΔA

(i)
j )x, (ΔA

(i)
j )x} =

∣∣∣(ΔA
(i)
j )x

∣∣∣ , j = 1, . . . , N (i).

Bertsimas and Sim [14] proved that for LP, when the norm ‖ · ‖(i) used in (40) is an
absolute norm, the robust LP constraint is equivalent to

f(x,Ai) ≥ Ω(i)‖s‖(i)
∗ (or equally, f(x,Ai) ≥ Ω(i)y, ‖s‖(i)

∗ ≤ y).

That is,

−Aix− bi ≥ Ω(i)

∥∥∥∥[(ΔA
(i)
1 )T , (ΔA

(i)
2 )T , . . . , (ΔA

(i)

|N(i)|)
T
]T

x

∥∥∥∥(i)

∗
,

which is

Aix + Ω(i)

∥∥∥∥[(ΔA
(i)
1 )T , (ΔA

(i)
2 )T , . . . , (ΔA

(i)

|N(i)|)
T
]T

x

∥∥∥∥(i)

∗
≤ bi.

This is the same result as Theorem 6.5(i). So, Bertsimas and Sim [14] proved the result
of Theorem 6.5(i) under the assumption that the norms used are absolute norms. We
obtain this result without additional assumptions on the norms.
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We can also apply our general results to nonlinear problems such as SOCP and
QP. Let us comment on the differences of our approach from the approach of Bert-
simas and Sim [14]. Applying our general results to robust QP would lead to exact
formulations which, in general, would be computationally difficult. Bertsimas and
Sim [14] aim at obtaining computationally tractable approximate formulations. These
are two different ways of approaching nonlinear robust optimization problems. Com-
putationally tractable approximate formulations are important for practical solution
of large-scale problems: approximate solution is the price one has to pay for compu-
tational tractability. Exact formulations are also important. First, from a theoretical
viewpoint, they allow us to gain more insight and to study the structure of the prob-
lems. Second, they can be used in practice to obtain exact solutions to small-scale
problems. Third, they can provide new or strengthened results for important special
cases when restricted to such cases, as demonstrated in this section.

7. Conclusion. One of our main goals was to show how the classic convex anal-
ysis tools can be used to study robust optimization. We showed that some rather
general classes of robust optimization problems can be represented as explicit math-
ematical programming problems. We demonstrated how explicit reformulations of
the robust counterpart of an uncertain optimization problem can be obtained if the
uncertainty set is defined by convex functions that fall in the space LH and satisfy the
condition (17). Our strongest results correspond to the case where the functions defin-
ing the uncertainty set are homogeneous, because in this case the condition (17) holds
trivially, and the robust counterpart can be further simplified. Our results provide
a unified treatment of many situations that have been investigated in the literature.
The analysis of this paper is applicable to much wider situations and more compli-
cated uncertainty sets than those considered before; for example, it is applicable to
cases where fluctuations of data may be asymmetric and not defined by norms.
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