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THE LEGENDRE-FENCHEL CONJUGATE OF THE PRODUCT OF
TWO POSITIVE-DEFINITE QUADRATIC FORMS

YUN-BIN ZHAO ∗

Abstract. It is well-known that the Legendre-Fenchel conjugate of a positive-definite quadratic
form can be explicitly expressed as another positive-definite quadratic form, and that the conjugate
of the sum of several positive-definite quadratic forms can be expressed via inf-convolution. However,
the Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms is not clear at
present. Jean-Baptiste Hiriart-Urruty posted it as an open question in the field of nonlinear analysis
and optimization [‘Question 11’ in SIAM Review 49 (2007), 255-273]. From convex analysis point
of view, it is interesting and important to address such a question. The purpose of this paper is to
answer this question and to provide a formula for the conjugate of the product of two positive-definite
quadratic forms. We prove that the computation of the conjugate can be implemented via finding
a root to certain univariate polynomial equation. Furthermore, we show that the conjugate can be
explicitly expressed as a single function in some situations. Our analysis shows that the relationship
between the matrices of quadratic forms plays a vital role in determining whether or not the conjugate
can be expressed explicitly, and our analysis also sheds some light on the computational complexity
of the Legendre-Fenchel conjugate for the product of quadratic forms.
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1. Introduction. Given a function h : Rn → R, its Legendre-Fenchel conjugate
is defined as

h∗(x) = sup
y∈Rn

xT y − h(y),

which is also widely referred to as the Legendre-Fenchel transformation of h(y) in the
literature (e.g. [1, 2, 3, 5, 10, 12, 13, 14, 25, 26, 27]). Like the familiar Fourier and
Laplace transforms, the Legendre-Fenchel transformation takes in a function h and
creates another function denoted by h∗. Lasserre [19] pointed out that the Legendre-
Fenchel transformation is the analogue in the “min-plus” algebra of the Laplace trans-
formation in the “plus-prod” algebra (see e.g. [4]).

Throughout this paper, we use the term ‘conjugate’ as a short for ‘Legendre-
Fenchel conjugate (transformation)’. The conjugate has a significant impact in many
areas. It plays an essential role in developing the convex optimization theory and
methods (e.g. [3, 5, 6, 14, 25]). It is widely used in matrix analysis and eigenvalue
optimization [20, 21, 22]. For example, in [20, 21], the conjugate was employed to
establish a Fenchel-dual type theorem of a spectral function that can be viewed as
an analogous result to von Neumann’s Theorem on unitarily invariant matrix norms.
The conjugate is also commonly used in thermodynamics and in the theory of non-
linear differential equations of first order, e.g. in solving a class of Hamilton-Jacobi
equation with explicit formulas [10, 16, 18, 23]. In addition, the conjugate of so-called
‘log-exp’ function is the well-known Shannon’s entropy function [28] which has been
widely used in the field of information science, and in so many fields ranging from
image enhancement to economics and from statistical mechanics to nuclear physics
[8]. Recently, conjugate functions have been used to establish the smooth-convex-dual
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problems of the L1 spline models which in their original forms are non-differential (see
[9, 29] for example). Also, a broad class of robust optimization problems with general
uncertainty sets can be represented as finite mathematical programming problems via
conjugate functions (see [30]).

Although various properties of the conjugate function are presented (e.g. [3, 6, 25,
26]), given a function the expression of its conjugate is not always straightforward.
In fact, the question of whether or not the conjugate of a given function can be
(explicitly) expressed remains open in many situations. This stimulates many recent
investigations on the expression or computation of the conjugate (see for example,
[7, 9, 12, 13, 15, 19, 24, 29, 30]).

Let us consider the functions generated by quadratic forms. Let qA(y) and qB(y)
be the quadratic forms:

qA(y) = (1/2)yTAy, qB(y) = (1/2)yTBy(1.1)

where A,B are two n× n positive definite matrices (in this case qA(y) and qB(y) are
called positive-definite quadratic forms). For a single quadratic form, it is well-known
(see e.g. [25, 26]) that its conjugate is also a quadratic form:

q∗A(x) = (1/2)xTA−1x, q∗B(x) = (1/2)xTB−1x.(1.2)

It is also well-known that the conjugate of the sum of quadratic forms (or more gener-
ally, the sum of convex functions) can be expressed via inf-convolution of conjugates
of its individual components (e.g. [25, 26])). However, for the product of two positive-
definite quadratic forms

f(y) = qA(y)qB(y) = (1/4)(yTAy)(yTBy),(1.3)

the formula for its conjugate is not clear at present. So a natural question is: What
is the expression or formula of the conjugate of the product function f(y)? From fast
computation and practical application point of view, it is interesting and important
to answer the above question. Jean-Baptiste Hiriart-Urruty posted it as an open
question in the field of nonlinear analysis and optimization ([11], ‘Problem 11’).

In this paper, we will address this question and provide a formula for the conjugate
of the function (1.3). We will show that if f(y) is convex, its conjugate is finite at
any point in Rn and the formula for the conjugate can be obtained. It should be
stressed that the convexity of f(y) is the only assumption required here. Since the
product function loses convexity in general, we first establish a sufficient condition for
the convexity of the product function in the next section. However, the main purpose
of this paper is to derive an expression or formula for the conjugate. To achieve this
goal, we will develop a series of technical results on the existence and representation
of the solution to some nonlinear system of equations. These results will eventually
lead to a formula of the conjugate (see Theorem 3.6 for details), based on which some
other equivalent expressions will be obtained as well. In addition, we prove that a
completely explicit expression of the conjugate can be obtained in some situations.

It should be mentioned that in one-dimensional case, Hiriart-Urruty et al [13]
proved that the conjugate of the product of two both increasing or both decreasing
positive convex functions can be expressed. Their formulas show that even for one-
dimension functions, the conjugate of the product cannot be expressed in a simple
way (see ‘Theorem 15’ in [13]). Their results dependent on monotonicity seen difficult
to be generalized to the product of two general quadratic forms due to the loss of such
monotonicity in higher dimensional spaces.
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This paper is organized as follows. In Section 2, a sufficient convexity condition
for the product of two positive-definite quadratic forms is developed. In Section 3,
we establish a series of technical results and derive some formulas for the conjugate
of the function (1.3). These formulas show that evaluating the conjugate amounts
to finding a root to a univariate polynomial equation to which the root is shown, in
Section 4, to be unique under some conditions. The completely explicit expression of
the conjugate is discussed in Section 5. Conclusions are given in the last section.

Notation: Throughout this paper, M ≻ 0(≽ 0) denotes a positive definite (pos-
itive semi-definite) matrix. κ(M) denotes the condition number of M , i.e., the ra-
tio of its largest and smallest eigenvalues: λmax(M)/λmin(M). Let qA(y), qB(y) and
f(y) be defined as (1.1) and (1.3) respectively, and their conjugates are denoted by
q∗A(x), q

∗
B(x) and f∗(x) respectively. q∗A(x) and q∗B(x) are given as (1.2).

2. Convexity conditions for the product f(y) . To ensure that the conjugate
is well-defined, a natural assumption is that f is convex. However, the product of two
convex functions is not convex in general. Therefore, before we start to express the
conjugate of f(y), let us first develop some convexity conditions for f(y). Notice that
the gradient and Hessian matrix of f are given respectively as

∇f(y) = qA(y)By + qB(y)Ay,(2.1)

∇2f(y) = qA(y)B + qB(y)A+AyyTB +ByyTA.(2.2)

When A and B are positive definite, a simple observation can be made immediately
from (2.2): If there exists a positive number γ > 0 such that A = γB (in which case
A and B are called positively linearly dependant), the matrix AyyTB + ByyTA is
positive semi-definite at any point y ∈ Rn. Hence, the function f(y) is convex. But
the condition “A = γB” is too restrictive, which basically implies that f(y) is the
square of a quadratic form. In what follows, we develop a general sufficient condition
for the convexity of f(y).

Let ℑ denote the following class of positive definite matrices:

ℑ =
{
M ≻ 0 : κ(M) = λmax(M)/λmin(M) ≤ (

√
5 + 1)/(

√
5− 1)

}
.(2.3)

The condition κ(M) ≤ (
√
5 + 1)/(

√
5− 1) can be equivalently written as

(λmax(M)− λmin(M))/ (λmax(M) + λmin(M)) ≤
√
5/5.(2.4)

Notice that if M ∈ ℑ then γM ∈ ℑ for any γ > 0. So ℑ is cone. This implies that if
M ∈ ℑ, so are all matrices which are positively linearly dependant with M. Moreover,
by Weyl Theorem (Theorem 4.3.1 in [17]), it is easy to show that ℑ is also convex.

Clearly, 2.5 < (
√
5 + 1)/(

√
5 − 1). Thus, {M ≻ 0 : κ(M) ≤ 2.5} ⊂ ℑ. This fact

will be used at the end of Section 4. The following lemma is used to prove Theorem
2.2 which is the main result of this section.

Lemma 2.1 ([17], Theorem 7.4.34). Let M be a given n×n positive definite
matrix with eigenvalues 0 < λmin(M) ≤ · · · ≤ λmax(M). Then

(
xTMy

)2 ≤
(
λmax(M)− λmin(M)

λmax(M) + λmin(M)

)2

(xTMx)(yTMy)

for every pair of orthogonal vectors x, y ∈ Rn.
The following result claims that the product of two quadratic forms is convex if

the matrices A and B fall into the category ℑ defined by (2.3).
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Theorem 2.2. For any n× n matrices A,B ∈ ℑ, the following inequality holds

4(xTAy)(xTBy) + xTAxyTBy + yTAyxTBx ≥ 0, for all x, y ∈ Rn,(2.5)

and hence the function f(y), defined by (1.3), is convex.
Proof. Denote

ϑ(x, y) = 4(xTAy)(xTBy) + xTAxyTBy + yTAyxTBx.

To prove (2.5), it is sufficient to show that for every given x ∈ Rn, the inequality
ϑ(x, y) ≥ 0 holds for any y ∈ Rn. There is nothing to prove when x = 0. Thus, in
the remainder of this proof, let 0 ̸= x ∈ Rn be an arbitrarily given point, and denote
by Lx the (one-dimensional) subspace generated by {x} and by L⊥

x the orthogonal
subspace of Lx, i.e.

Lx = {tx : t ∈ R}, L⊥
x = {y : xT y = 0, y ∈ Rn}.

For any vector y ∈ Rn, either y ∈ L⊥
x or y /∈ L⊥

x . We now prove that each of these
cases implies that ϑ(x, y) ≥ 0 when A,B ∈ ℑ.

Case 1: y ∈ L⊥
x . Denote by

χ(A) =
λmax(A)− λmin(A)

λmax(A) + λmin(A)
, χ(B) =

λmax(B)− λmin(B)

λmax(B) + λmin(B)
.

In this case, since y is orthogonal with x, by Lemma 2.1 we have

(χ(A))
2
xTAxyTAy ≥ (xTAy)2, (χ(B))

2
xTBxyTBy ≥ (xTBy)2.

Therefore, we have

χ(A)χ(B)
(
xTAxyTBy + yTAyxTBx

)
≥ χ(A)χ(B)

(
2
√
(xTAxyTBy)(yTAyxTBx)

)
= 2

√
(χ(A))

2
(xTAxyTAy) (χ(B))

2
(xTBxyTBy)

≥ 2
√
(xTAy)2(xTBy)2 = 2|xTAyxTBy)|.(2.6)

Since A,B ∈ ℑ, by (2.4) we have χ(A) ≤
√
5/5 and χ(B) ≤

√
5/5. It follows from

(2.6) that

(1/5)(xTAxyTBy + yTAyxTBx) ≥ 2|xTAyxTBy|,

and hence

ϑ(x, y)

=
3

5
(xTAxyTBy + yTAyxTBx) +

[
2

3
(xTAxyTBy + yTAyxTBx) + 4xTAyxTBy

]
≥ 3

5
(xTAxyTBy + yTAyxTBx) + 4(|xTAyxTAy|+ (xTAy)(xTAy)) ≥ 0.

Case 2: y /∈ L⊥
x . In this case, y can be represented as y = x̃+ ỹ for some x̃ ∈ Lx

and ỹ ∈ L⊥
x . By the definition Lx, x̃ = tx for some t ∈ R. Clearly t ̸= 0 (since

otherwise y = ỹ ∈ L⊥
x ). Therefore, by the definition of ϑ(x, y), we have

ϑ(x, y) = ϑ(x, tx+ ỹ) = ϑ(x, t (x+ ỹ/t)) = t2ϑ (x, x+ ỹ/t) .
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Thus, to prove that ϑ(x, y) ≥ 0, it is sufficient to show that ϑ(x, x+ ỹ/t) ≥ 0. Notice
that ỹ/t ∈ L⊥

x . It is sufficient to prove that

ϑ(x, x+ z) ≥ 0, for all z ∈ L⊥
x .(2.7)

In fact, from the proof of ‘Case 1 ’, we have actually proved the following inequality:

(1/5)
(
xTAxzTBz + zTAzxTBx

)
≥ 2|xTAzxTBz|, for any z ∈ L⊥

x .

Thus, for any z ∈ L⊥
x , it follows from the above inequality that

ϑ(x, x+ z)

= 4(xTA(x+ z))xTB(x+ z) + (xTAx)(x+ z)TB(x+ z) + (x+ z)TA(x+ z)(xTBx)

= 6(xTAx)(xTBx) + 6(xTAx)(xTBz) + 6(xTAz)(xTBx)

+ 4(xTAz)(xTBz) + (xTAx)(zTBz) + (zTAz)(xTBx)

≥ 6(xTAx)(xTBx) + 6(xTAx)(xTBz) + 6(xTAz)(xTBx)

+
3

5
(xTAxzTBz + zTAzxTBx) +

[
2

5
(xTAxzTBz + zTAzxTBx) + 4xTAzxTAz

]
≥ 6(xTAx)(xTBx) + 6(xTAx)(xTBz) + 6(xTAz)(xTBx)

+ (3/5)(xTAxzTBz + zTAzxTBx)

= 6(xTAx)(xTBx)η(x, z)

where η(x, z) is denoted by

η(x, z) = 1 +
xTAz

xTAx
+

xTBz

xTBx
+

1

10

(
zTBz

xTBx
+

zTAz

xTAx

)
.

Thus, it suffices to prove that η(x, z) is nonnegative under our assumption. Since
xT z = 0, by Lemma 2.1, we see that

|xTAz|
xTAx

≤
(
λmax(A)− λmin(A)

λmax(A) + λmin(A)

)√
zTAz

xTAx
≤

√
5

5

√
zTAz

xTAx
.

Similarly, we have

|xTBz|
xTBx

≤
√
5

5

√
zTBz

xTBx
.

Therefore,

η(x, z) ≥ 1−
√
5

5

√
zTAz

xTAx
−

√
5

5

√
zTBz

xTBx
+

1

10

(
zTBz

xTBx
+

zTAz

xTAx

)
=

(
1

2
−

√
5

5

√
zTAz

xTAx
+

1

10

zTAz

xTAx

)
+

(
1

2
−

√
5

5

√
zTBz

xTBx
+

1

10

zTBz

xTBx

)
≥ 0,

where the last inequality follows from the fact that the quadratic function 1
2 −

√
5
5 β+

1
10β

2 ≥ 0 for any β ∈ R. Therefore, the inequality (2.7) holds as desired.
It follows from (2.2) that for any x, y ∈ Rn, xT∇2f(y)x = 1

2ϑ(x, y). Under our
condition, ϑ(x, y) is nonnegative for any x, y ∈ Rn. Thus the Hessian ∇2f(y) is
positive semi-definite at any point y ∈ Rn, and hence f(y) is convex.
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Remark 2.3: We have given an affirmative answer to the question: Can we
develop certain convexity condition for the product function f(y)? We believe that
the condition in Theorem 2.2 can be relaxed in certain directions, and thus the convex
cone ℑ may be enlarged without damaging the conclusion of the theorem. Such an
extension is worthwhile in the sense that the developed condition can ensure the alge-
braic inequality (2.5) which may find some applications in optimization and numerical
analysis. However, we are not intending to make such an extension here, since our
major goal is to derive the formula for the conjugate.

3. Expression of the conjugate. In this section, we derive the formula for the
conjugate f∗(x). First, let us develop some useful technical results. Most of them cope
with such issues as existence and representation of the solution to certain nonlinear
system of equations associated with the pair of matrices (A,B). Through these results
the final expression of the conjugate will be obtained (see Theorem 3.6 in this section).

Lemma 3.1. Let A,B be positive definite. For any given 0 ̸= x ∈ Rn, let
g : (0,∞) → R be a function defined as

g(α) = α− xT (A+ αB)−1A(A+ αB)−1x

xT (A+ αB)−1B(A+ αB)−1x
, α > 0.(3.1)

Then the equation g(α) = 0 always has a (solution) root α in (0,∞), and every root
to g(α) = 0 is located in the interval[

λmin

(
B−1/2AB−1/2

)
, λmax

(
B−1/2AB−1/2

)]
.(3.2)

Proof. Clearly, g(α) is continuous (in fact, continuously differentiable, see Section
4 for detail). Notice that

lim
α→0+

g(α) = −
(
xTA−1x

)
/
(
xTA−1BA−1x

)
< 0,

and

lim
α→∞

xT (A+ αB)−1A(A+ αB)−1x

xT (A+ αB)−1B(A+ αB)−1x
= lim

α→∞

xT ( 1
αA+B)−1A( 1

αA+B)−1x

xT ( 1
αA+B)−1B( 1

αA+B)−1x

=
(
xTB−1AB−1x

)
/(xTB−1x)

which implies that g(α) → ∞ as α → ∞. Thus, by continuity the equation g(α) = 0
must admit a root in (0,∞).

Denote by z = B1/2(A+ αB)−1x. Then for any root α of g(α) = 0, we have

α =
xT (A+ αB)−1A(A+ αB)−1x

xT (A+ αB)−1B(A+ αB)−1x

=
xT (A+ αB)−1B1/2(B−1/2AB−1/2)B1/2(A+ αB)−1x

xT (A+ αB)−1B1/2B1/2(A+ αB)−1x

=
zT (B−1/2AB−1/2)zT

zT z

which indicates that any root α must be located in between the largest and smallest
eigenvalues of the matrix B−1/2AB−1/2, and thus in the interval (3.2).

The next result plays a vital role in expressing the conjugate of f(y).
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Lemma 3.2. Let A,B be positive definite, and let 0 ̸= x ∈ Rn be an arbitrarily
given vector. Then there exist two vectors 0 ̸= x(1), 0 ̸= x(2) in Rn such that (x(1), x(2))
is a solution to the following nonlinear system of equations:

x = x(1) + x(2),(3.3) [
2

(x(1))TB−1AB−1x(1)

]1/3
B−1x(1) =

[
2

(x(2))TA−1BA−1x(2)

]1/3
A−1x(2).(3.4)

Moveover, any solution (x(1) ̸= 0, x(2) ̸= 0) of the above system can be represented as

x(1) =

(
I +

1

α
AB−1

)−1

x, x(2) =
1

α
AB−1

(
I +

1

α
AB−1

)−1

x(3.5)

where α > 0 is a positive scalar such that g(α) = 0, i.e.,

α =
xT (A+ αB)−1A(A+ αB)−1x

xT (A+ αB)−1B(A+ αB)−1x
.(3.6)

Proof. Let x ̸= 0 be given. First, by Lemma 3.1 there exists some scalar α > 0
such that it satisfies (3.6). Let α∗ > 0 be such a scalar. Define

x̄(1) =

(
I +

1

α∗AB
−1

)−1

x, x̄(2) =
1

α∗AB
−1

(
I +

1

α∗AB−1

)−1

x.(3.7)

Clearly, x̄(1) ̸= 0, x̄(2) ̸= 0 since x ̸= 0. We now verify that (x̄(1), x̄(2)) is a solu-

tion to the system of (3.3) and (3.4). Notice that the matrix

[
I I

AB−1 −α∗I

]
is

nonsingular, and its inverse is given by[
I I

AB−1 −α∗I

]−1

=

[ (
I + 1

α∗AB−1
)−1 1

α∗

(
I + 1

α∗AB−1
)−1

1
α∗AB−1

[
I + 1

α∗AB−1
]−1

( 1
α∗ )

2AB−1
[
I + 1

α∗AB−1
]−1 − 1

α∗ I

]
.

(3.8)

It is evident that (x̄(1), x̄(2)) given by (3.7) can be rewritten as(
x̄(1)

x̄(2)

)
=

[
I I

AB−1 −α∗I

]−1(
x
0

)
,

i.e., [
I I

AB−1 −α∗I

](
x̄(1)

x̄(2)

)
=

(
x
0

)
,

which simply is {
x̄(1) + x̄(2) = x,
B−1x̄(1) = α∗A−1x̄(2).

(3.9)

By (3.7), we have

(x̄(1))TB−1AB−1x̄(1) = xT

(
I +

1

α∗AB
−1

)−T

(B−1AB−1)

(
I +

1

α∗AB−1

)−1

x

= xT

(
B +

1

α∗A

)−1

A

(
B +

1

α∗A

)−1

x

= (α∗)2xT (A+ α∗B)−1A(A+ α∗B)−1x,(3.10)
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and

(x̄(2))TA−1BA−1x̄(2)

= xT

[
1

α∗AB
−1

[
I +

1

α∗AB
−1

]−1
]T

A−1BA−1

[
1

α∗AB
−1

[
I +

1

α∗AB−1

]−1
]
x

= xT (A+ α∗B)−1B(A+ α∗B)−1x.

(3.11)

Thus, by the definition of α∗ we have[
(x̄(1))TB−1AB−1x̄(1)

(x̄(2))TA−1BA−1x̄(2)

] 1
3

=

[
(α∗)2xT (A+ α∗B)−1A(A+ α∗B)−1x

xT (A+ α∗B)−1B(A+ α∗B)−1x

] 1
3

= [(α∗)3]
1
3 = α∗.

This together with (3.9) implies that (x̄(1), x̄(2)) is a solution to the nonlinear system
(3.3) and (3.4). Thus, the system (3.3) and (3.4) does have a solution given as (3.7).

We now prove that any nonzero solution (x(1) ̸= 0, x(2) ̸= 0) of the system (3.3)
and (3.4) can be represented as the form of (3.5) with α > 0 satisfying (3.6). The
argument is basically the reverse of the above proof. Suppose that (x(1) ̸= 0, x(2) ̸= 0)
is a solution to the system (3.3) and (3.4). Set

α̃ =

(
(x(1))TB−1AB−1x(1)

(x(2))TA−1BA−1x(2)

)1/3

> 0.(3.12)

Since (3.4) is equivalent to B−1x(1) = α̃A−1x(2), i.e., AB−1x(1) = α̃x(2), the system
(3.3) and (3.4) can be rewritten as[

I I
AB−1 −α̃I

](
x(1)

x(2)

)
=

(
x
0

)
.

The coefficient matrix of the left-hand side is non-singular, and its inverse is given by
(3.8) provided that α∗ in (3.8) is replaced by α̃. Therefore,

[
x(1)

x(2)

]
=

[
I I

AB−1 −α̃I

]−1 [
x
0

]
=


(
I + 1

α̃
AB−1

)−1

x

1

α̃
AB−1

(
I + 1

α̃
AB−1

)−1

x

(3.13)

which is exactly the form of (3.5). We now prove that α̃ given by (3.12) satisfies (3.6).
In fact, by (3.13), we have the following equalities which can be verified by the same
way as (3.10) and (3.11):

(x(1))TB−1AB−1x(1) = α̃2xT (A+ α̃B)−1A(A+ α̃B)−1x,

(x(2))TA−1BA−1x(2) = xT (A+ α̃B)−1B(A+ α̃B)−1x.

Combining (3.12) and the above two equalities, we have

α̃ =

(
(x(1))TB−1AB−1x(1)

(x(2))TA−1BA−1x(2)

)1/3

=

(
α̃2xT (A+ α̃B)−1A(A+ α̃B)−1x

xT (A+ α̃B)−1B(A+ α̃B)−1x

)1/3

which implies that α̃ satisfies (3.6).
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The next result gives some equivalent descriptions for the solution to g(α) = 0.
Lemma 3.3. Let A,B be positive definite. For any given 0 ̸= x ∈ Rn, each of

the following univariate equations in α is equivalent to (3.6):

2α =
xT (A+ αB)−1x

xT (A+ αB)−1B(A+ αB)−1x
,(3.14)

2 =
xT (A+ αB)−1x

xT (A+ αB)−1A(A+ αB)−1x
.(3.15)

Proof. Note that for any α > 0 we have

xT (A+ αB)−1A(A+ αB)−1x

= xT (A+ αB)−1(A+ αB − αB)(A+ αB)−1x

= xT (A+ αB)−1x− αxT (A+ αB)−1B(A+ αB)−1x.(3.16)

Dividing both sides of the above by xT (A+ αB)−1B(A+ αB)−1x, we get

xT (A+ αB)−1A(A+ αB)−1x

xT (A+ αB)−1B(A+ αB)−1x
=

xT (A+ αB)−1x

xT (A+ αB)−1B(A+ αB)−1x
− α

which implies that α satisfies (3.6) if and only if it satisfies (3.14). Thus, (3.6) and
(3.14) are equivalent. Similarly, dividing both sides of (3.16) by xT (A+αB)−1A(A+
αB)−1x, we have

1 =
xT (A+ αB)−1x

xT (A+ αB)−1A(A+ αB)−1x
− α

xT (A+ αB)−1B(A+ αB)−1x

xT (A+ αB)−1A(A+ αB)−1x

which implies that α satisfies (3.6) if and only if it satisfies (3.15).
Lemma 3.4. (i) For any given x(1) ̸= 0 in Rn, the nonlinear equation

qA(y)By = x(1)(3.17)

has a unique solution which is given by

y(1) =

(
2

(x(1))TB−1AB−1x(1)

)1/3

B−1x(1).(3.18)

(ii) Similarly, for any given x(2) ̸= 0 in Rn, the nonlinear equation

qB(y)Ay = x(2)(3.19)

has a unique solution which is given by

y(2) =

(
2

(x(2))TA−1BA−1x(2)

)1/3

A−1x(2).(3.20)

Proof. (i) It is easy to verify that (3.18) is a solution to the equation (3.17). We
now prove that it is unique to (3.17). Let ỹ be the unique solution to By = x(1), i.e.,
ỹ = B−1x(1) ̸= 0 since x(1) ̸= 0. Assume that y is an arbitrary solution to (3.17).
Thus, B(qA(y)y) = x(1) and thus qA(y)y = ỹ ̸= 0, which indicates that y ̸= 0. Denote
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by β = 1/qA(y). Then y = βỹ. Since y is a solution to (3.17), substituting y = βỹ
into (3.17) yields x(1) = qA(βỹ)B(βỹ) = β3qA(ỹ)Bỹ. Since Bỹ = x(1) ̸= 0, it follows

that β3qA(ỹ) = 1, i.e., β = 1/ (qA(ỹ))
1/3

. Therefore,

y =
1

(qA(ỹ))
1/3

ỹ =

(
2

ỹTAỹ

)1/3

ỹ =

(
2

(x(1))TB−1AB−1x(1)

)1/3

B−1x(1) = y(1).

Therefore, the solution to (3.17) is unique and given by (3.18).
Similarly, we can prove (ii) by exchanging the role of A and B.
The vectors y(1), y(2) given as (3.18) and (3.20) can be equal if x(1) and x(2) satisfy

certain conditions. In fact, notice that (3.4) is nothing but y(1) = y(2). Lemma 3.2
claims that there exist vectors x(1), x(2) such that y(1) = y(2) in which case by Lemma
3.4 the system (3.17) and (3.19) have a common unique solution. Clearly, we have
the following result:

Corollary 3.5. Given x(1) ̸= 0 and x(2) ̸= 0 in Rn, the system{
qA(y)By = x(1)

qB(y)Ay = x(2)

has a solution if and only if y(1) = y(2), where y(1), y(2) are defined by (3.18) and
(3.20) respectively. If this system has a solution, it must have a unique solution
y = y(1) = y(2).

We now prove the main result of this section.
Theorem 3.6. Let A,B be positive definite and the function f(y) be convex.

Then at any point x ∈ Rn the value of the conjugate f∗(x) is finite, and f∗(x) = 0 if
x = 0, otherwise if x ̸= 0,

f∗(x) = 3α1/3

(
xT (A+ αB)−1x

4

)2/3

(3.21)

where α is a root of the univariate equation g(α) = 0 at x, i.e., α satisfies (3.6).
Proof. Clearly, f∗(0) = 0. We only need to prove the case x ̸= 0. In fact, for any

given 0 ̸= x ∈ Rn, by Lemma 3.2 there exist two vectors x(1) ̸= 0, x(2) ̸= 0 such that
(x(1), x(2)) is a solution to the system (3.3) and (3.4), and x(1), x(2) can be represented
by (3.5) where α is a roof of g(α) = 0. Notice that the equality (3.4) simply means
y(1) = y(2) (defined by (3.18) and (3.20)). Thus, by Lemma 3.4 or Corollary 3.5, there
exists a unique vector denoted by y∗ such that

qA(y
∗)By∗ = x(1), qB(y

∗)Ay∗ = x(2).(3.22)

The unique vector is equal to y(1) and y(2), i.e.,

y∗ =

(
2

(x(1))TB−1AB−1x(1)

)1/3

B−1x(1) =

(
2

(x(2))TA−1BA−1x(2)

)1/3

A−1x(2).

Since (x(1), x(2)) is the solution to (3.3) and (3.4), substituting (3.22) into (3.3) yields
x = qA(y

∗)By∗ + qB(y
∗)Ay∗, which by (2.1) implies that,

x = ∇f(y∗).(3.23)

Since f is convex, the function xT y−f(y) is concave with respect to y, and its gradient
with respect to y is given by x−∇f(y). Thus, (3.23) implies that the gradient of this
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concave function at y∗ is equal to zero, and hence its maximum value (over Rn) attains
at y∗. Therefore, by the definition of the conjugate

f∗(x) = sup
y∈Rn

(xT y − f(y)) = xT y∗ − f(y∗).(3.24)

Since f(y) is positively homogenuous of degree 4, i.e., f(λy) = λ4f(y) for any λ >
0. Thus, by Euler’s formula, it follows form (3.23) that xT y∗ = (∇f(y∗))T y∗ =
4f(y∗) (where the second equality above can be directly verified without using Euler’s
formula). Therefore, (3.24) implies that

f∗(x) = xT y∗ − 1

4
xT y∗ =

3

4
xT y∗

=
3

4

(
2

(x(1))TB−1AB−1x(1)

)1/3

xTB−1x(1)(3.25)

=
3

4

(
2

(x(2))TA−1BA−1x(2)

)1/3

xTA−1x(2).(3.26)

Since x(1) and x(2) are represented as (3.5), we can eliminate x(1) from (3.25) to get
the formula (3.21). Similarly, eliminating x(2) from (3.26) yields the same result. Let
us eliminate x(1) from (3.25). By simply substituting (3.5) into (3.25), we have

f∗(x) =
3

4

[
2

xT
(
I + 1

α
AB−1

)−T
B−1AB−1

(
I + 1

α
AB−1

)−1
x

] 1
3

xTB−1
[
I +

1

α
AB−1

]−1

x

=
3

4

(
2

xT
(
B + 1

α
A
)−1

A
(
B + 1

α
A
)−1

x

) 1
3

xT
(
B +

1

α
A
)−1

x

=
3

4

(
2

α2(xT (αB +A)−1 A (αB +A)−1 x

) 1
3

αxT (αB +A)−1 x

=
3

4

(
2α

xT (αB +A)−1 A (αB +A)−1 x

) 1
3

xT (αB +A)−1 x.

Note that α is a solution to g(α) = 0. By Lemma 3.3, α satisfies (3.15), and hence
the above formula can be further simplified as

f∗(x) =
3

4

(
4α

xT (αB +A)−1 x

)1/3

xT (αB +A)−1 x = 3α1/3

(
xT (αB +A)−1 x

4

)2/3

.

If we eliminate x(2) from (3.26), then (3.14) will be used instead of (3.15).
From Theorem 3.6, the conjugate of f(y) is, roughly speaking, determined by

a positive linear combination of their matrices. This is not surprising since both
quadratic forms contribute equally and interrelatedly to the product function. How-
ever, in order to see what role the individual quadratic form plays in the conjugate of
the product, we may rewrite the formula of f∗(x) as follows.

Theorem 3.7. Let A,B be positive definite and f be convex. Then f∗(x) = 0 if
x = 0; otherwise for x ̸= 0,

f∗(x) = 3α
1
3

[
2q∗A(x)− αxT (AB−1A+ αA)−1x

4

] 2
3

= 3α
1
3

[
2q∗B(x)− xT (αBA−1B +B)−1x

4α

] 2
3
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where α > 0 is a root to g(α) = 0 at x.
Proof. Notice that for any α > 0 the inverse of A + αB can be given as the

following two forms:

(A+ αB)−1 = A−1 − αA−1(B−1 + αA−1)−1A−1,(3.27)

(A+ αB)−1 = (1/α)B−1 − (1/α2)B−1
(
A−1 + (1/α)B−1

)−1
B−1.(3.28)

Therefore, by (3.27), we have

xT (A+ αB)−1x = xTA−1x− αxTA−1(B−1 + αA−1)−1A−1x

= xTA−1x− αxT (AB−1A+ αA)−1x

= 2q∗A(x)− αxT (AB−1A+ αA)−1x.(3.29)

On the other hand, by (3.28) we have

xT (A+ αB)−1x = (1/α)xTB−1x− (1/α2)xT (BA−1B + (1/α)B)−1x

= (1/α)
(
2q∗B(x)− xT (αBA−1B +B)−1x

)
.(3.30)

Substituting (3.29) and (3.30) into (3.21) yields the desired formula.
From the above result, f∗ has two equal expressions in which either q∗A or q∗B

is involved. An immediate consequence from this result is the following expression
which is symmetric in the sense that both q∗A and q∗B are involved.

Corollary 3.8. Under the same condition of Theorem 3.7, the conjugate f∗(x) =
0 if x = 0, otherwise for x ̸= 0,

f∗(x) =
3

2
α

1
3

{[
2q∗A(x)− αxT (AB−1A+ αA)−1x

4

] 2
3

+

[
2q∗B(x)− xT (B + αBA−1B)−1x

4α

] 2
3

}
where α is a solution to g(α) = 0 at x.

Remark 3.9. For any function h(y) which is positive homogeneous of p-degree,
its conjugate function h∗ must be homogeneous of q-degree such that (1/p)+(1/q) = 1
(See Lasserre [19]). Since the product of two quadratic forms is positive homogeneous
of 4-degree, i.e., p = 4, its conjugate f∗ must be homogeneous of

(
4
3

)
-degree. This

can be easily verified from (3.21) by noting that for any positive number λ > 0, the
value of α does not change if x is replaced by λx.

Basically, at every x ∈ Rn the conjugate f∗ can be expressed in terms of the
conjugate of the individual quadratic form, and the conjugate of certain combination
of these two quadratic forms. The computation of f∗(x) can be implemented via
finding a root for the univariate equation g(α) = 0 at x. It should be stressed that the
aforementioned analysis does not rely on the uniqueness of the root of g(α) = 0 at
x. This implies that the conjugate f∗ can be evaluated by any real root of g(α) = 0.
When the real root to g(α) = 0 is not unique, all these roots yield the same value
of f∗(x). While the uniqueness of α is not required in the computation of the value
of f∗, the question about whether the real root α is unique or not is interesting and
worthy of further consideration. In the next section, we will prove that if the condition
number of matrices involved are not too large, the root of g(α) = 0 is always unique.

4. Uniqueness of the root to g(α) =0. In this section, we prove that the real
root of g(α) = 0 is unique under certain condition. We will see that all matrices in
the convex cone ℑ defined in Section 2 satisfy this condition. First, let us calculate
the derivative of g(α).



Legendre-Fenchel conjugate 13

Lemma 4.1. Let A,B be positive definite. For any given 0 ̸= x ∈ Rn, the
function g(α), defined as (3.1), is continuously differentiable and its first derivative

is given by g′(α) = 3− w(α)w′′(α)

(w′(α))2
where α ∈ (0,∞) and w(α) := xT (A+ αB)−1x.

Proof. For simplicity, denote

g1(α) = xT (A+ αB)−1A(A+ αB)−1x, g2(α) = xT (A+ αB)−1B(A+ αB)−1x.

For any given α > 0 and letting t be sufficiently small, by (3.27) it is easy to see that

w(α+ t) = xT [A+ (α+ t)B]−1x

= xT [(A+ αB) + tB]−1xT

= xT
{
(A+ αB)−1 − t(A+ αB)−1

[
(B−1 + t(A+ αB)−1

]−1
(A+ αB)−1

}
x

= w(α)− txT
{
(A+ αB)−1

[
(B−1 + t(A+ αB)−1

]−1
(A+ αB)−1

}
x

which implies that for any α > 0,

w′(α) = −xT (A+ αB)−1B(A+ αB)−1x = −g2(α).(4.1)

Let Q = AB−1A+ 2αA+ α2B. Since for any α > 0 we have

(A+ αB)−1B(A+ αB)−1 =
(
AB−1A+ 2αA+ α2B

)−1
= Q−1.

Thus, g2(α) = xTQ−1x. At any α > 0, by (3.27) we have for any sufficiently small t,

g2(α+ t) = xT (A+ (α+ t)B)−1B(A+ (α+ t)B)−1x

= xT [AB−1A+ 2(α+ t)A+ (α+ t)2B]−1x

= xT [Q+ t(2A+ (2α+ t)B)]−1x

= xT
{
Q−1 − tQ−1[(2A+ (2α+ t)B)−1 + tQ−1]−1Q−1

}
x

= g2(α)− txTQ−1[(2A+ (2α+ t)B)−1 + tQ−1]−1Q−1x,

which implies that

g′2(α) = −xTQ−1(2A+ 2αB)Q−1x

= −2xT (A+ αB)−1B(A+ αB)−1B(A+ αB)−1x.

This together with (4.1) implies that w(α) is twice continuously differentiable, and
its second derivative is given as

w′′(α) = −g′2(α) = 2xT (A+ αB)−1B(A+ αB)−1B(A+ αB)−1x.(4.2)

We now consider the derivative of g1(α). By (3.16) and (4.1), we have

g1(α) = w(α)− αg2(α) = w(α) + αw′(α)(4.3)

which implies that

g′1(α) = 2w′(α) + αw′′(α).(4.4)

Therefore, by (4.1), (4.2), (4.3) and (4.4), the derivative of g(α) is given by

g′(α) = (α− g1(α)/g2(α))
′
= 3− w(α)w′′(α)/(w′(α))2.
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The proof is completed.
Theorem 4.2. Let A,B be positive definite. If the condition number

κ(B−1/2AB−1/2) < 3 + 2
√
3,(4.5)

then for any given 0 ̸= x ∈ Rn, there exists a unique α ∈ (0,∞) such that g(α) = 0.
Proof. By Lemma 3.1, all solutions of g(α) = 0 on (0,∞) are in the interval (3.2).

To prove the uniqueness of the solution, it suffices to show that the function g(α) is

strictly increasing over the interval (3.2). Denote by z = B
1
2 (A+ αB)−1x. Let w(α)

be defined as in Lemma 4.1. By (4.1) and (4.2), we have

w(α)

w′(α)
= − xT (A+ αB)−1x

xT (A+ αB)−1B(A+ αB)−1x

= −
xT (A+ αB)−1B

1
2

(
B− 1

2 (A+ αB)B− 1
2

)
B

1
2 (A+ αB)−1x

xT (A+ αB)−1B(A+ αB)−1x

= −
zT
(
B− 1

2 (A+ αB)B− 1
2

)
z

zT z

and

w′′(α))

w′(α)
= −2xT (A+ αB)−1B(A+ αB)−1B(A+ αB)−1x

xT (A+ αB)−1B(A+ αB)−1x

= −2zTB
1
2 (A+ αB)−1B

1
2 z

zT z
= −

2zT
(
B− 1

2 (A+ αB)B− 1
2

)−1

z

zT z
.

Denote by P = B− 1
2AB− 1

2 . By Lemma 4.1 and Kantorovich’s inequality (See Theo-
rem 7.4.41 in [17]), we have

g′(α) = 3− w(α)w′′(α)/(w′(α))2

= 3− 2

zT
(
B− 1

2 (A+ αB)B− 1
2

)
z

zT z


zT

(
B− 1

2 (A+ αB)B− 1
2

)−1

z

zT z


≥ 3− 2


(
λmax(B

− 1
2 (A+ αB)B− 1

2 ) + λmin(B
− 1

2 (A+ αB)B− 1
2 )
)2

4λmax(B− 1
2 (A+ αB)B− 1

2 )λmin(B− 1
2 (A+ αB)B− 1

2 )


= 3− [(λmax(P ) + α) + (λmin(P ) + α)]

2

2(λmax(P ) + α)(λmin(P ) + α)

=
2α2 + 2(λmax(P ) + λmin(P ))α+ 4λmax(P )λmin(P )− λmax(P )2 − λmin(P )2

2(λmax(P ) + α)(λmin(P ) + α)
.

To show that g′(α) > 0 on the interval (3.2), it is sufficient to show the following
quadratic function in α is positive over the interval (3.2):

δ(α) = 2α2 + 2(λmax(P ) + λmin(P ))α+ 4λmax(P )λmin(P ))− λmax(P )2 − λmin(P )2.

In fact, it is easy to verify that the quadratic equation δ(α) = 0 has at least one root,
the largest one is given as

r =
−(λmax(P ) + λmin(P )) +

√
3(λmax(P )− λmin(P ))

2
.
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It is easy to see that r < λmin(P ) if and only if κ(P ) = λmax(P )/λmin(P ) < 3 + 2
√
3.

Thus, the condition of the theorem implies that r < λmin(P ). Hence δ(α) is positive
on the interval (3.2) since the interval is on the right of the largest root of δ(α).

We now consider the set {M ≻ 0 : κ(M) ≤ 2.5} which is a subset of ℑ (see
Section 2). It is not difficult to show that for any A,B ∈ {M ≻ 0 : κ(M) ≤ 2.5} the

condition (4.5) is satisfied. In fact, let 0 ̸= z ∈ Rn be an eigenvector of B− 1
2AB− 1

2

associated with λmax(B
− 1

2AB− 1
2 ). Then

λmax(B
− 1

2AB− 1
2 ) =

(
zTB− 1

2AB− 1
2 z

zTB− 1
2B− 1

2 z

)(
zTB−1z

zT z

)
≤ λmax(A)

λmin(B)
.

Let u ∈ Rn be an eigenvector of B− 1
2AB− 1

2 associated with λmin(B
− 1

2AB− 1
2 ). Then

λmin(B
− 1

2AB− 1
2 ) =

(
uTB− 1

2AB− 1
2u

uTB− 1
2B− 1

2u

)(
uTB−1u

uTu

)
≥ λmin(A)

λmax(B)
.

Therefore,

κ(B−1/2AB−1/2) =
λmax

(
B−1/2AB−1/2

)
λmin

(
B−1/2AB−1/2

) ≤
(
λmax(A)

λmin(B)

)(
λmax(B)

λmin(A)

)
= κ(A)κ(B).

IfA,B ∈ {M ≻ 0 : κ(M) ≤ 2.5}, the above inequality implies that κ(B−1/2AB−1/2) ≤
(2.5)2 < 3 + 2

√
3. By Theorem 4.2, the solution to g(α) = 0 is unique. Moveover,

since {M ≻ 0 : κ(M) ≤ 2.5} ⊂ ℑ, by Theorem 2.2 the function f(y) is also convex.
Hence, combining Theorems 2.2, 3.6 and 4.2 leads to the following result:

Theorem 4.3. Let A ≻ 0, B ≻ 0, κ(A) ≤ 2.5 and κ(B) ≤ 2.5. Then f∗(0) = 0,
and for any x ̸= 0

f∗(x) = 3α1/3
(
xT (A+ αB)−1x/4

)2/3
,

where α > 0 is the unique root to g(α) = 0 at x.
From Theorems 3.6-3.8 and 4.3, we see that if the root of g(α) = 0 can be given

explicitly in terms of x, a completely explicit expression of f∗ can be available by
eliminating α from the formula of f∗. The next section is devoted to this discussion.

5. Completely explicit expression of the conjugate. In this section, we
take a further step to prove that in some special cases a completely explicit rep-
resentation of the conjugate can be available. Our analysis shows that whether a
completely explicit expression of f∗ can be obtained or not depends how close the
connection between the two quadratic forms is. Let A be an n × n positive definite
matrix and let k = 0, 1, ..., n − 1. Consider the following cones of positive definite
matrices:

C
(k)
A :={
γA+

k∑
j=1

τju
j(uj)T : γ > 0, τj > 0, uj ∈ Rn, ∥uj∥ = 1, j = 1, ..., k, (ui)Tuj = 0 for i ̸= j

}
.

For example, when k = 0, 1, 2, we have C
(0)
A = {γA : γ > 0} and

C
(1)
A = {γA+ τuuT : γ > 0, τ > 0, u ∈ Rn, ∥u∥ = 1},

C
(2)
A = {γA+ τ1uu

T + τ2vv
T : γ, τ1, τ2 > 0, u, v ∈ Rn, ∥u∥ = ∥v∥ = 1, uT v = 0}.
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Thus, given a set of mutually orthogonal unit vectors u1, ..., uk and positive numbers

γ > 0 and τj > 0(j = 1, ..., k), we may generate an element M ∈ C
(k)
A by setting

M = γA +
∑k

j=1 τju
j(uj)T which is a positive definite matrix. Clearly, each set

C
(k)
A (k = 0, 1, ..., n − 1) is a cone. The next lemma shows that the union of these

cones is exactly the whole positive-definite cone denoted by Sn
++ = {M : M ≻ 0}.

Lemma 5.1. Let A be an n×n positive definite matrix. Then any n×n positive

definite matrix M must belong to some C
(k)
A , thus Sn

++ =
∪n−1

k=0 C
(k)
A .

Proof. Clearly, any element of C
(k)
A is positive definite, and thus the right-hand

side of the above is contained in Sn
++. It is sufficient to prove that any n× n positive

definite matrix M must belong to a C
(k)
A . In fact, for any matrix M ≻ 0, set γ =

1
λmax(M−1/2AM−1/2)

. Then

M − γA = M1/2

(
I − 1

λmax(M−1/2AM−1/2)
(M−1/2AM−1/2)

)
M1/2 ≽ 0

and at least one of the eigenvalues ofM−γA is zero. If all its eigenvalues are zero, then

M = γA, i.e., M ∈ C
(0)
A . Otherwise, let τ1 > 0, ..., τk > 0 be all its nonzero eigenvalues

(k ≤ n− 1), and let u1, ..., uk be the eigenvectors corresponding to these eigenvalues
respectively. These vectors can be chosen such that they are mutually orthogonal unit
vectors. Therefore, M − γA can be represented as M − γA =

∑k
k=1 τju

j(uj)T , and

hence M ∈ C
(k)
A where k ≤ n− 1.

The next result claims that if B ∈ Ck
A where k = 0, 1 then a completely explicit

expression of the conjugate is available.

Theorem 5.2. Let A ≻ 0, B ≻ 0 and f be convex. Then

(i) If B ∈ C
(0)
A , then f∗(x) = 3

(
λmax(B

− 1
2 AB− 1

2

16

)1/3 (
xTA−1x

2

)2/3
.

(ii) If B ∈ C
(1)
A , then f∗(0) = 0 and at every x ̸= 0, f∗(x) can be completely

and explicitly expressed, i.e., f∗(x) = 3(α(x))1/3
(

xT (A+α(x)B)−1x
4

)2/3
, where α(x) is

the real root (which can be explicitly given in terms of x) of the the cubic polynomial
equation in α: α3+c1(x)α

2+c2(x)α+c3(x) = 0, where c1(x), c2(x), c3(x) are explicitly
given in terms of x and some known data determined by A and B.

Proof. (i) Notice that B ∈ C
(0)
A if and only if there exists a γ > 0 such that

B = γA, and hence B−1/2AB−1/2 = (1/γ)I. Thus,

1/γ = λmax(B
−1/2AB− 1

2 ) = λmin(B
− 1

2AB−1/2)

in which case the interval (3.2) in Lemma 3.1 is reduced to a single point, and thus
the solution to g(α) = 0 is α = λmax(B

−1/2AB−1/2) = 1/γ, which can be verified
also by subtituting B = γA into (3.6). Thus, by Theorem 3.6, the conjugate function
is given

f∗(x) = 3

(
1

γ

) 1
3

(
xT (A+ 1

γ (γA))−1x

4

) 2
3

= 3

(
λmax(B

− 1
2AB− 1

2 )

16

) 1
3 (

xTA−1x

2

) 2
3

.

(ii) Let B ∈ C1
A. We now prove that the equation g(α) = 0 can be written as a

cubic polynomial equation. Thus its real solution can be expressed explicitly. Since
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B ∈ C1
A, the matrix B can be represented as B = γA+ τuuT where γ > 0, τ > 0 and

∥u∥ = 1. This implies that

I − γB−1/2AB−1/2 = τ(B−1/2u)(B−1/2u)T

which is a rank-one and positive semi-definite matrix. Therefore, it is easy to see that

γ = 1/λmax

(
B− 1

2AB− 1
2

)
. Since B− γA = τuuT and ∥u∥ = 1, τ must be the unique

nonzero eigenvalue of B − γA. Therefore, we have

τ = λmax(B − γA) = λmax

B − 1

λmax

(
B− 1

2AB− 1
2

)A
 ,

and the vector u with ∥u∥ = 1 is an eigenvector of B − γA associated with the

eigenvalue τ. Thus, when B ∈ C
(1)
A , the data (γ, τ, u) can be completely given.

By Sherman-Morrison formula, we have

(A+ αB)−1 =
(
A+ α(γA+ τuuT )

)−1
=
(
(1 + αγ)A+ ατuuT

)−1

= [(1 + αγ)A]−1 − [(1 + αγ)A]−1(ατuuT )[(1 + αγ)A]−1

1 + ατuT [(1 + αγ)A]−1u

=
1

1 + αγ

(
A−1 − ατA−1uuTA−1

(1 + αγ) + ατuTA−1u

)
.(5.1)

Therefore, if α is the root to g(α) = 0, it must satisfy that

xT (A+ αB)−1A(A+ αB)−1x

= αxT (A+ αB)−1B(A+ αB)−1x

= αxT (A+ αB)−1(γA+ τuuT )(A+ αB)−1x

= αγxT (A+ αB)−1A(A+ αB)−1x+ ατxT (A+ αB)−1uuT (A+ αB)−1x.

Thus,

(1− γα)xT (A+ αB)−1A(A+ αB)−1x = ατ(xT (A+ αB)−1u)2.

By (3.15), the above equality implies that

(1− αγ)xT (A+ αB)−1x = 2ατ(x(A+ αB)−1u)2.(5.2)

By (5.1) we have

xT (A+ αB)−1x =
1

1 + αγ

(
xTA−1x− ατ(xTA−1u)2

(1 + αγ) + ατuTA−1u

)
and

xT (A+ αB)−1u =
1

1 + αγ

(
xTA−1u− ατ(xTA−1u)(uTA−1u)

(1 + αγ) + ατuTA−1u

)
=

xTA−1u

(1 + αγ) + ατuTA−1u
.
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Substituting the last two equalities into (5.2) yields

1− αγ

1 + αγ

(
xTA−1x− ατ(xTA−1u)2

1 + α(γ + τuTA−1u)

)
=

2ατ(xTA−1u)2

(1 + α(γ + τuTA−1u))2
.

Denote by D(x) = (xTA−1u)2/(xTA−1x) and β = γ + τuTA−1u. Then the equation
above can be written as

1− αγ

1 + αγ

(
1− ατD(x)

1 + αβ

)
=

2ατD(x)

(1 + αβ)2
.

Multiplying both sides by (1 + αγ)(1 + αβ)2 and rearranging the terms, we have

[γβ(τD(x)− β)]α3 +
[
β2 − 2βγ − τ(β + γ)D(x)

]
α2 + [2β − γ − 3τD(x)]α+ 1 = 0.

Since (xTA−1u)2 ≤ (xTA−1x)(uTA−1u), it is easy to see that the coefficient of α3 is
nonzero. In fact, γβ(τD(x)− β) < 0. Let

c1(x) =
β2 − 2βγ − τ(β + γ)D(x)

γβ(τD(x)− β)
, c2(x) =

2β − γ − 3τD(x)

γβ(τD(x)− β)
, c3(x) =

1

γβ(τD(x)− β)
,

Then, the equation (3.6) is eventually written as α3 + c1(x)α
2 + c2(x)α+ c3(x) = 0

which is a cubic polynomial. Its real root can be expressed explicitly in terms of its
coefficients c1, c2 and c3. Since α can be explicitly given, the desired explicit formula
of f∗ can be obtained by substituting α(x) into (3.21).

When n ≤ 2, it follows from Lemma 5.1 that Sn
++ is equal to the union of at most

two subcones: C
(0)
A and C

(1)
A . In both case, by Theorem 5.2, f∗ can be completely

and explicitly expressed. Thus, the following result is an immediate consequence of
Theorem 5.2.

Corollary 5.3. (i) If n = 1 in which case f(t) =
(
1
2γ1t

2
) (

1
2γ2t

2
)
where γ1 > 0

and γ2 > 0 are two constants, then the conjugate is given by f∗(t) = 3
4

(
1

γ1γ2

)1/3
t4/3.

(ii) Let A,B be any 2× 2 positive definite matrices and f(y) be convex. Then its
conjugate f∗ can always be completely and explicitly expressed.

Proof. (i) When n = 1, the matrices A ≻ 0, B ≻ 0 reduce to two scalars γ1 > 0
and γ2 > 0 respectively. Clearly, for this case, λmax(B

−1/2AB−1/2) = γ1

γ2
. By Theorem

5.2 (i), we have

f∗(t) = 3

(
γ1
16γ2

)1/3(
t2

2γ1

)2/3

=
3

4

(
1

γ1γ2

)1/3

t4/3.

(ii) For any 2 × 2 matrices A ≻ 0 and B ≻ 0, we must either have B ∈ C
(0)
A or

B ∈ C
(1)
A . Both cases, by Theorem 5.2, imply that the conjugate f∗ can be completely

and explicitly expressed.
We now consider the more general cases: n > 2 and B ∈ Ck

A where 2 ≤ k ≤ n−1.
Notice that in this case, the matrix B can be represented B = γA+ τ1u

1(u1)T + ...+
τku

k(uk)T . By applying several times of Sherman-Morrison-formula, it is not difficult
to see that the equation (3.6) can be represented explicitly. For example, when k = 2,
the matrix B−γA is a rank-two matrix. By applying two times of Sherman-morrison
formula, (A + αB)−1 can be represented explicitly in terms of the inverse of A−1,
and the equation (3.6) can be written explicitly as a quintic polynomial. We have the
following general observation:
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Observation: If B ∈ Ck
A ( k = 0, 1, ..., n− 1), then g(α) = 0 can be equivalently

written as a polynomial equation (in α) with degree 2k + 1.
When k = 2, g(α) = 0 can be written as quintic polynomial equation whose

solution cannot be expressed explicitly by basic arithmetic operations. Thus, when
k ≥ 2, some numerical methods should be employed to find a root to such a polynomial
equation. Clearly, the classification of the positive definite matrices into n subclasses
such as Ck

A(k = 0, ..., n − 1) can actually be regarded as a way for measuring the
connection (or distance) between matrices: B ∈ Ck

A means B−γA is a rank-k matrix.
The larger the number k is, the weaker the relationship between A and B will be, and
the less likely a completely explicit expression of the conjugate will be available.

Before we close this section, let us state one more result concerning the explicit
expression of the conjugate f∗.

Theorem 5.4. Let A ≻ 0, B ≻ 0 be two n × n matrices such that f is con-
vex. If A,B can be simultaneously diagonalizable by congruence, i.e., there exists a
nonsingular matrix U such that

A = UT diag(σ1(A), · · · , σn(A))U, B = UT diag(σ1(B), · · · , σn(B))U,(5.3)

where σi(A) and σi(B) satisfy the following properties:
(a) σ1(A) ̸= σ2(A) = · · · = σn(A),
(b) σ2(B) = · · · = σn(B) and σ1(B) can be any positive number.
Then the conjugate f∗ can be completely and explicitly expressed.
Proof. For any given x ̸= 0, notice that the solution α to g(α) = 0 can be obtained

by solving the equation (3.15), i.e.,

xT (A+ αB)−1x = 2xT (A+ αB)−1A(A+ αB)−1x.

Substituting (5.3) into the above, and using (a) and (b), we have

ρ21
σ1(A) + ασ1(B)

+
(n− 1)ρ22

σ2(A) + ασ2(B)
= 2

(
σ1(A)ρ

2
1

(σ1(A) + ασ1(B))2
+

(n− 1)σ2(A)ρ
2
2

(σ2(A) + ασ2(B))2

)
where ρj =

(
U−Tx

)
j
, the jth component of the vector U−Tx. By multiplying both

sides of the above by (σ1(A) + ασ1(B))2(σ2(A) + ασ2(B))2, the above equation is
reduced to a cubic polynomial equation in α. Its solution α can be explicitly expressed,
and thus by (3.21) f∗ can be completely and explicitly given.

Conclusions. In this paper, we have derived formulas for the Legendre-Fenchel
conjugate of the product of two positive-definite quadratic forms, and thus the open
‘question 11’ in [SIAM Review 49 (2007), 255-273] has been addressed. We start
with developing a sufficient convexity condition for the product function which to our
knowledge is the first sufficient convexity condition for this class of functions. Fol-
lowing that, we develop a series of technical results on the existence and uniqueness
of the solution to certain nonlinear system of equations. These technical results were
employed to prove our main results (Theorems 3.6) concerning the expression of the
conjugate of the product function. We have proved that (i) if the product is convex,
at any point in Rn its conjugate function is finite, and can be given by the formula
(3.21); (ii) the computation of the conjugate can be implemented via solving a uni-
variate polynomial equation with odd-degree to which a root always exists (Lemma
3.1 and discussion in Section 5), and the root is unique if the condition numbers of
the matrices involved are not too large (Theorem 4.2); and (iii) when the connection
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of two positive definite matrices are strong enough (B ∈ C
(k)
A , k = 0, 1), a completely

explicit expression of the conjugate can be obtained (Theorem 5.2). Particularly, in
one- and two-dimensional spaces, a completely explicit expression of the conjugate
of the product function is always available (Corollary 5.3) provided the product is
convex.
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