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Abstract. It is well known that the so-called first-order predictor-corrector methods working
in a large neighborhood of the central path are among the most efficient interior-point methods
(IPMs) for linear optimization (LO) problems. However, the best known iteration complexity of

this type of method is O(n log
(x0)T s0

ε
). It is of interest to investigate whether the complexity of

first-order predictor-corrector type methods can be further improved. In this paper, based on a
specific self-regular proximity function, we define a new large neighborhood of the central path. In
particular, we show that the new neighborhood matches the standard large neighborhood that is
defined by the infinity norm and widely used in the IPM literature. A new first-order predictor-
corrector method for LO that uses a search direction induced by self-regularity in corrector steps is
proposed. We prove that our predictor-corrector algorithm, working in a large neighborhood, has

an O(
√
n logn log

(x0)T s0

ε
) iteration bound. Local superlinear convergence of the algorithm is also

established.
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1. Introduction. To begin, we first clarify the notation used in this paper.
Let �n denote the n-dimensional Euclidean space and e denote the vector with all
components equal to 1. Further, x ≥ 0 (x > 0) means that all components of x are
nonnegative (positive). For any x > 0, s > 0, and real number r, the symbols xs,√
x, and xr denote vectors whose components are xisi,

√
xi, and xr

i (i = 1, . . . , n),
respectively. In particular, we have x−1 = ( 1

x1
, . . . , 1

xn
)T .

Since Karmarkar’s seminal paper [8], a large body of research has been done in
the field of IPMs for LO problems. Several recent books on this subject [19, 26, 27]
contain substantial materials about various aspects of interior-point methods (IPMs)
for linear optimization (LO). In the present paper, we consider the standard LO
problem that takes the following form:

min{cTx : Ax = b, x ≥ 0}.
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Here x ∈ �n, c ∈ �n, b ∈ �m, and A is an m × n matrix satisfying Rank(A) = m.
Throughout the paper, we also assume [19] that there exists a strictly feasible primal-
dual pair (x0, y0, s0) such that

Ax0 = b, AT y0 + s0 = c, (x0, s0) > 0.

In the present paper, we focus on so-called first-order predictor-corrector IPMs that
work in a large neighborhood of the central path.

We start with a brief review of predictor-corrector type methods. The idea of
predictor-corrector type algorithms is very natural and elegant. These algorithms
follow the central path by alternatively taking predictor steps and corrector steps.
A predictor step aims at reducing the duality gap as much as possible, thus the
resulting iterate might move close to the boundary of the feasible set, deviating from
the central path, while a corrector step tries to bring the iterate back to a certain
neighborhood of the central path. The best known representative of this class of
methods is the Mizuno–Todd–Ye (MTY) algorithm for LO [11], which works in a
small neighborhood of the central path. Quadratic convergence of the duality gap was
proved in [29], and convergence of the iterates generated by the algorithm was proved
in [4]. The MTY method was later extended to complementarity problems by Ye
and Anstreicher [28] and to semidefinite optimization by Luo, Sturm, and Zhang [10].
According to numerical experiments, IPMs working in a large neighborhood of the
central path perform much better than their counterparts in small neighborhoods [1].
Several authors have investigated IPMs that work in certain large neighborhoods of
the central path [2, 3, 5, 9, 15, 16, 17, 24, 25, 31]. It should be noted that the so-far
best known worst-case complexity for the first-order predictor-corrector algorithms

with large neighborhoods is O(n log (x0)T s0

ε ), which is higher than that of those small
neighborhood based algorithms. As remarked by Renegar [18], this becomes one of
the ironies of the interior-point literature that algorithms which are more efficient in
practice often have somewhat-worse complexity bounds.

Several strategies have already been proposed for improving the theoretical com-
plexity of IPMs in large neighborhoods. For example, by using higher-order approxi-
mation of the central path, the iteration complexity of IPMs can become arbitrarily

close to O(
√
n log (x0)T s0

n ) [5, 7, 12, 17, 19, 20, 21, 30, 31]. In IPMs based on high-
order approximation, we usually need to solve multiple linear systems and thus the
computational cost per iteration increases as the order of the method increases. Re-
cently, Peng, Roos, and Terlaky [13] proposed a class of IPMs in large neighborhoods

and proved that some members of that family of IPMs have an O(
√
n log n log (x0)T s0

ε )
iteration bound. The approach in [13] is based on the notion of self-regular functions.
Different from high-order approximation-type methods, IPMs based on self-regular
functions solve only one linear system at each step. Inspired by the results in [13],
we consider in the present paper the issue whether the iteration bound of first-order
predictor-corrector type IPMs within a large neighborhood can be improved. This is
far from being an easy task. As pointed out in [17], MTY-type predictor-corrector
methods are much more difficult to develop and analyze in a wide neighborhood of
the central path. The difficulty for developing MTY-type methods in large neigh-
borhoods comes from two points. First, theoretically, corrector steps based on the
classical first-order centering direction (first-order correctors) are rather inefficient in
a large neighborhood.

A remedy for this point is to employ a corrector search direction based on self-
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regular proximity functions introduced in [13]. However, this gives rise to another
issue, namely whether the neighborhood defined by a self-regular proximity function
matches the large neighborhoods used in the context of predictor-corrector methods.
Second, once we use a new search direction in the corrector step, it is not clear if we
can still obtain superlinear or quadratic convergence for the new algorithm.

The purpose of this paper is to address the above-mentioned questions and present
a new first-order predictor-corrector method that works in a large neighborhood and

has an O(
√
n log n log (x0)T s0

ε ) iteration bound. To this end, a proximity measure
function, induced by a specific self-regular function introduced in [13], will be explored.
We then use this proximity function to define a new neighborhood of the central path
and show that this new neighborhood matches the neighborhood N−

∞ that has been
widely used in most practical implementations of IPMs. Correspondingly, we also
use the self-regularity induced search direction in the corrector steps. It is worth
mentioning that we use the usual primal-dual affine scaling direction in the predictor
step.

We note that in [23], the authors proposed a family of so-called generic central
region IPMs that work in a large neighborhood of the central path and proved that

the proposed algorithms enjoy an O(
√
n log (x0)T s0

ε ) complexity. This approach was
later extended to semidefinite optimization in [22], where a predictor-corrector version
of the algorithm was also discussed. It should be noted that the predictor-corrector
method of [22, 23] uses the second-order correction in the corrector step and thus it
does not follow the same procedure as our algorithm.

The algorithm presented in this paper follows the prototype of MTY IPMs in
a large neighborhood. In the predictor step, we take a step along the affine scaling
search direction to reduce the duality gap, while in the corrector step we try to bring
the iterate back to a certain neighborhood (might be a small neighborhood) of the
central path.

This paper is organized as follows. In section 2, we introduce the new neigh-
borhood of the central path induced by a self-regular proximity function and discuss
some useful properties of the proximity function. In section 3, we describe our new

algorithm and establish its O(
√
n log n log (x0)T s0

ε ) complexity. Asymptotic superlin-
ear convergence of the algorithm is proved in section 4. Finally, we close the paper
by a few concluding remarks.

2. Proximity functions and neighborhoods. This section consists of two
parts. In the first subsection, we discuss a specific self-regular proximity function and
show that the neighborhood induced by this proximity function matches the large
neighborhood defined by infinity norm and used in many practical implementations
of IPMs. In the second subsection, we explore some properties of the proximity
function.

2.1. Large neighborhoods and proximity functions. We note that under
the interior-point assumption, for every given parameter μ > 0 the system

Ax = b, x > 0,

AT y + s = c, s > 0,(2.1)

xs = μe,

has a unique solution denoted by (x(μ), y(μ), s(μ)). The union of solutions {x(μ) :
μ > 0} forms the so-called primal central path, while {(y(μ), s(μ)) : μ > 0} is called
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the central path of the dual problem in the dual space. The iterates, generated by
IPMs, are confined to be in certain neighborhoods of the central path, which are
defined by certain proximity functions.

To describe these proximity functions, we need to introduce some notation. For
any strictly feasible primal-dual pair (x, s) and any positive number μ,1 we define

v :=

√
xs

μ
and v−1 :=

√
μe

xs
(2.2)

to be the vectors whose ith components are
√

xisi
μ and

√
μ

xisi
, respectively. Let us

denote the parameter μ associated with the present duality gap by

μ(x, s) =
xT s

n
.

A neighborhood of the central path is usually defined by

N := {(x, s) > 0 : Ax = b, AT y + s = c, Φ(x, s, μ(x, s)) ≤ η(τ, n)},(2.3)

where η(τ, n) is a function of a parameter τ and the dimension n of the underlying
problem, and Φ(x, s, μ(x, s)) is some measurement to measure the distance from the
current iterate to the targeted center.

There are many choices for the measurement function Φ(x, s, μ) and the function
η(τ, n) in (2.3). For instance, if we choose Φ(x, s, μ) = ‖ xs

μ(x,s) − e‖ and η(τ, n) = ρ

with ρ ∈ (0, 1) (e.g., η(τ, n) = 0.25), then we obtain a so-called small neighbor-
hood. If we choose Φ(x, s, μ) = ‖ xs

μ(x,s) − e‖∞ (or Φ(x, s, μ) = ‖( xs
μ(x,s) − e)−‖∞

with w− = min(w, 0)) and η(τ, n) = ρ with ρ ∈ (0, 1), then we get a so-called large
neighborhood. Let us denote the neighborhoods generated via using the proximity
functions ‖ xs

μ(x,s) − e‖∞ and ‖( xs
μ(x,s) − e)−‖∞ by N∞(ρ) and N−

∞(ρ), respectively. It

is worth pointing out that the neighborhood N−
∞(ρ) is frequently used in practical

implementations of IPMs, although the corresponding proximity function does not
have a barrier property. On the other hand, as observed by many researchers, various
IPMs are tightly associated with some proximity functions that have some barrier and
coercive properties to prevent the iterate from moving to infinity and the boundary of
the feasible set. For instance, Peng, Roos, and Terlaky [13] introduced the so-called
self-regular proximity functions, which takes the form

Φ(x, s, μ) := Ψ(v) =
n∑

i=1

ψ(vi),(2.4)

where ψ(t) is a so-called self-regular kernel function. For self-regular proximity func-
tions, if we still choose η(τ, n) as a small constant, then the region defined by (2.3)
becomes a small neighborhood. If η(τ, n) = τn = O(n), then we obtain a large
neighborhood.

However, as observed in [14], it is possible that the neighborhood N defined
by (2.3) with some self-regular proximity function is too large and significantly differ-

1We alert the reader that throughout this paper μ is cast as an independent parameter, while
the duality gap is associated with μ(x, s).
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ent from the neighborhood N−
∞(ρ). To select an appropriate kernel function such that

the resulting neighborhood defined by (2.3) can really match N−
∞(ρ), we consider the

self-regular kernel function

ψ(t) =
t2 − 1

2
+

t− logn − 1

log n
,(2.5)

which is a self-regular function with ν1 = 1, ν2 = log n + 1, p = 1, and q = 1 + logn.
The corresponding proximity function becomes

Φ(x, s, μ) = Ψ(v) =
1

2
‖v‖2 − n

2
+

n∑
i=1

v− logn
i − 1

log n
.(2.6)

One particular reason why we consider this specific proximity function is that, as
shown in [13], among various large-update IPMs based on self-regular proximity func-
tions, the algorithm with q = O(log n) has the best worst-case complexity result.
Since q = 1+logn and the case for small q has been well studied in [13], in this paper
we focus only on the case where q is sufficiently large, e.g., q ≥ 3, which implies n ≥ 8.
Therefore, throughout this paper we assume n ≥ 8.

Because the proximity function Ψ(v) has an extremely strong barrier property,
we need to choose correspondingly an appropriate function η(τ, n) in (2.3) so that the
neighborhood given by (2.3) can match the neighborhood N−

∞(ρ) with ρ ∈ (0, 1). Let
us define

η(τ, n) :=
nτ − n

log n
.(2.7)

Note that if (x, s) ∈ N−
∞(ρ) and μ = μ(x, s), then we have v2

i ≥ 1 − ρ, which implies
− log vi ≤ − 1

2 log(1 − ρ) for every i ∈ {1, . . . , n}. From (2.6) we immediately obtain

Φ(x, s, μ(x, s)) = Ψ(v) =

n∑
i=1

v− logn
i − 1

log n
=

n∑
i=1

n− log vi − 1

log n
≤ n1− 1

2 log (1−ρ) − n

log n
.

Our above discussion indicates that if we choose τ = 1 − 1
2 log(1 − ρ) in (2.7), then

the neighborhood N defined by (2.3) contains the neighborhood N−
∞(ρ). It is worth

mentioning that η(τ, n) is an increasing function of τ . In the rest of this paper,
η(τ, n) is defined by (2.7) for some τ > 1 and thus our algorithm will operate in a
large neighborhood.

2.2. Properties of the proximity function. In this section we investigate
various properties of the proximity function Φ(x, s, μ). We first consider the case that
μ = μ(x, s). Recall that the value of Φ(x, s, μ(x, s)) is essentially determined by the

sum
∑n

i=1 v
− logn
i . To estimate this sum, we first observe that

u ≥ 2 =⇒ |t|u − 1

u
≥ t2 − 1

2
∀t ∈ �.

Since log n > 2 if n ≥ 8, we have

t− logn = (t−1)
logn ≥ log n

2
(t−2 − 1) + 1 ∀t > 0, n ≥ 8.
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This relation and the fact that ‖v‖2
= n when μ = μ(x, s) imply2

n∑
i=1

v− logn
i ≥ log n

2
(‖v−1‖2 − n) + n =

log n

2
‖v − v−1‖2 + n ≥ n ∀n ≥ 8,(2.8)

and equality holds if and only if v = e.
We proceed to explore more properties of the proximity function Φ(x, s, μ). For

fixed (x, s) > 0, there exists τ ≥ 1 such that

Φ(x, s, μ(x, s)) =

n∑
i=1

v− log n
i − 1

log n
= η(τ, n),

which equals

τ =
log(

∑n
i=1 v

− logn
i )

log n
.

The above relation indicates that τ provides another way to measure the proximity
function. Let us define

f(θ) := Φ(x, s, θμ(x, s)).

It is easy to see that f(θ) is convex for θ > 0. Denote

θ∗ = arg min
θ>0

f(θ).

It follows from the optimality condition of f(θ) that

n

2(θ∗)2
− (θ∗)

1
2 logn

2θ∗

n∑
i=1

v− logn
i = 0.(2.9)

From this equality and (2.7) we obtain

n1−τ = (θ∗)1+
1
2 logn,

which yields

(1 − τ) log n =

(
1 +

1

2
log n

)
log θ∗.

Thus we have

θ∗ = exp− (2τ−2) log n
2+log n .(2.10)

For a given primal-dual pair (x, s), we next consider the behavior of the proxim-
ity function Φ(x, s, μ) as a function of μ. First, we mention that it is trivial to

2One can easily derive that Φ(x, s, μ(x, s)) ≥ 1
2
‖v − v−1‖2, and the right-hand side is a well-

known proximity measure in the literature, which is also a self-regular proximity with p = 1 and
q = 3; see, e.g., [13].
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verify that Φ is convex in μ. From the choice (2.10) of θ∗, we immediately have the
following lemma.

Lemma 2.1. Given a primal-dual pair (x, s), suppose that Φ(x, s, μ(x, s)) =
η(τ, n) for some τ > 1 where η(τ, n) is given by (2.7), and θ∗ is given by (2.10).
Then the proximity function Φ(x, s, μ) is convex with respect to μ and attains its
global minimum at

μ∗ = θ∗μ(x, s).

In particular, we have

n∑
i=1

(
xisi
μ

)− 1
2 logn

− 1

μ

n∑
i=1

xisi ≤ 0, ⇐⇒ 0 < μ ≤ μ∗,

and the equality holds if and only if μ = μ∗.
By using (2.10) one can easily show that

exp2−2τ ≤ θ∗.(2.11)

Further, we have

θ∗ ≤ exp1−τ ∀n ≥ 8.(2.12)

The above two bounds indicate that if n ≥ 8, θ∗ is uniformly bounded above and
below and these bounds depend only on τ . Let us cast θ∗ as a function of τ and n,
i.e.,

θ∗ := θ(τ, n) = exp− (2τ−2) log n
2+log n .(2.13)

We point out that we use μ = θ∗μ(x, s) in the update of the parameter μ in our
algorithm. Lemma 2.1 indicates that if Φ(x, s, μ(x, s)) = η(τ, n) with n ≥ 8 and
we use μ = θ(τ, n)μ(x, s) (which is indeed a large update) as our targeted μ in the
algorithm, then the proximity function Φ(x, s, μ) will not increase after the update.
It is straightforward to verify that θ(τ, n) is a decreasing function of τ .

For fixed (x, s) > 0 and θ(τ, n) given by (2.13), let us define

η1(τ, n) :=

(
n

2
+

n

log n

)(
1

θ(τ, n)
− 1

)
.(2.14)

If Φ(x, s, μ(x, s)) = η(τ, n), then from (2.9) we can conclude

Φ(x, s, θ(τ, n)μ(x, s)) = η1(τ, n).

It is trivial to verify that η1(τ, n) is strictly increasing with respect to τ . This gives
the following corollary.

Corollary 2.2. Let (x, s) > 0, n ≥ 8, and τ ≥ 2, and suppose that the proximity
function Φ(x, s, μ) attains its minimum at μ∗. Then Φ(x, s, μ(x, s)) ≤ η(τ, n) if and
only if Φ(x, s, μ∗) ≤ η1(τ, n).

We also point out here that when n ≥ 8, η1(n,τ)
n is uniformly bounded below and

above by some constants independent of n.
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It should be mentioned that in the above discussion, we sometimes implicitly
assume that the parameter τ is dependent on the present iterate (x, s). However, in
most IPMs, we usually fix the parameter in the definition of the neighborhood (such as
ρ in N−

∞(ρ)) and only require the iterate to be in a certain neighborhood. Therefore,
in the remaining part of this paper, we only assume that τ ≥ 2 is fixed. If the present
iterate is in a certain neighborhood (say Φ(x, s, μ(x, s)) ≤ η(τ, n)), then we update
the parameter μ and compute a search direction w.r.t. the targeted μ. In this case,
we need to investigate the change of the proximity function. Our following result
provides an upper bound for Φ(x, s, θ(τ, n)μ(x, s)) whenever Φ(x, s, μ(x, s)) < η(τ, n).

Lemma 2.3. If Φ(x, s, μ(x, s)) ≤ η(τ, n), then one has

Φ(x, s, θ(τ, n)μ(x, s)) ≤ η1(τ, n).

Proof. From the assumption in the lemma, without loss of generality, we can
assume

Φ(x, s, μ(x, s)) = η(τ0, n) ≤ η(τ, n)

for some τ0 ≤ τ . Since θ(τ, n) is decreasing in τ , we therefore have θ(τ0, n) ≥ θ(τ, n).
Now recall the definition of θ(τ0, n). From the optimality condition (2.9) we have

xT s

θ(τ0, n)μ(x, s)
=

n∑
i=1

(
xisi

θ(τ0, n)μ(x, s)

)− 1
2 logn

.

It follows that

n∑
i=1

(
xisi

θ(τ, n)μ(x, s)

)− 1
2 logn

=

(
θ(τ, n)

θ(τ0, n)

) 1
2 logn n∑

i=1

(
xisi

θ(τ0, n)μ(x, s)

)− 1
2 logn

≤
n∑

i=1

(
xisi

θ(τ0, n)μ(x, s)

)− 1
2 logn

=
xT s

θ(τ0, n)μ(x, s)
(2.15)

≤ xT s

θ(τ, n)μ(x, s)
=

n

θ(τ, n)
.

Applying this inequality to the proximity function Φ(x, s, μ), we have

Φ(x, s, θ(τ, n)μ(x, s)) =
n

2

(
1

θ(τ, n)
− 1

)
+

1

log n

(
n∑

i=1

(
xisi

θ(τ, n)μ(x, s)

)− 1
2 logn

− n

)

≤ n

2

(
1

θ(τ, n)
− 1

)
+

1

log n

(
n

θ(τ, n)
− n

)
= η1(τ, n),

which finishes the proof of the lemma.
We present another lemma that characterizes the behavior of the proximity func-

tion Φ(x, s, μ).
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Lemma 2.4. Let (x, s) > 0, n ≥ 8, and τ ≥ 2. Then the relation Φ(x, s, μ(x, s)) ≤
η(τ, n) holds if and only if there exists a parameter μ > 0 such that Φ(x, s, μ) ≤
η1(τ, n).

Proof. The necessary part follows directly from Lemma 2.3, thus it remains to
consider the sufficient part. Suppose that the proximity function Φ(x, s, μ) has a
global minimum at μ∗. The assumption in the lemma implies

Φ(x, s, μ∗) ≤ η1(τ, n).

It follows immediately from Corollary 2.2

Φ(x, s, μ(x, s)) ≤ η(τ, n).

This completes the proof of the lemma.
We close this section with the following corollary, which gives an estimation of

μ∗ whenever Φ(x, s, μ(x, s) ≤ η(τ, n)). The corollary follows from Lemma 2.4 and the
fact that θ(τ, n) is decreasing with respect to τ .

Corollary 2.5. Let (x, s) > 0, n ≥ 8, and τ ≥ 2, and suppose that the proximity
function Φ(x, s, μ) attains its minimum at μ∗. Then Φ(x, s, μ(x, s)) ≤ η(τ, n) if and
only if

μ∗ ≥ θ(τ, n)μ(x, s).

3. A pseudo predictor-corrector method. In this section, we describe our
algorithm and establish its complexity result. The section is divided into three parts.
In the first subsection, we describe our new algorithm. The second subsection is
devoted to investigating the behavior of the proximity function in the corrector step.
In the last part, we estimate the step size used in the predictor step and summarize
the complexity result.

3.1. The algorithm. We start with a brief description of standard IPMs. Sup-
pose that the present iterate (x, s) is strictly feasible. For any given duality gap
parameter μ, we can apply Newton method to system (2.1) and obtain a search di-
rection via solving the following linear system of equations:

AΔx = 0,

ATΔy + Δs = 0,(3.1)

xΔs + sΔx = μe− xs.

Let us consider the case that v is defined by (2.2) with μ = θ(τ, n)μ(x, s). Therefore
the relation Φ(x, s, θ(τ, n)μ(x, s)) = Ψ(v) holds. We denote the search direction in
the scaled v-space as

dx :=
vΔx

x
and ds :=

vΔs

s
.(3.2)

Using this notation and (2.2), we can write system (3.1) in the scaled v-space as

Ādx = 0,

ĀTΔy + ds = 0,(3.3)

dx + ds = v−1 − v,
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where Ā = 1
μAV −1X, V = diag (v), and X = diag (x). Recall that the so-called

primal-dual affine scaling search direction is the solution of the system

Ādx = 0,

ĀTΔy + ds = 0,(3.4)

dx + ds = −v,

while the search direction induced by the self-regular proximity function Ψ(v) can be
computed by solving [13]

Ādx = 0,

ĀTΔy + ds = 0,(3.5)

dx + ds = v−1−logn − v = −∇Ψ(v).

The following technical result shows that if the present iterate is in the neighborhood
N defined by (2.3), then the duality gap will not increase along the search direction
obtained by solving (3.5).

Proposition 3.1. Let (x, s) be a strictly feasible pair and Ψ(v) ≤ η1(τ, n), where
μ = θ(τ, n)μ(x, s) and η1(τ, n) is defined by (2.14). Then the solution (dx, ds) of
system (3.5) satisfies

vT (dx + ds) ≤ 0,

and the equality holds if and only if Ψ(v) = η1(τ, n).
Proof. Since Ψ(v) ≤ η1(τ, n), from Lemma 2.4 we obtain

Φ(x, s, μ(x, s)) ≤ η(n, τ).

Let μ∗ be the global minimizer of Φ(x, s, μ) with respect to μ. From Corollary 2.5 we
conclude

μ∗ ≥ θ(τ, n)μ(x, s).

The proposition follows immediately from the last conclusion of Lemma 2.1 and
(3.5).

The above proposition indicates that if we take a step along the search direc-
tion obtained from (3.5) with μ = μ∗, then the duality gap remains constant and it
decreases if and only if the target value μ ≤ μ∗.

Now we are ready to describe our algorithm. To start the algorithm, we assume
that a strictly feasible starting point is available and the starting point is in the
neighborhood N where η(τ, n) is defined by (2.7). Then we use a corrector-type step
to reduce the value of the proximity function and thus bring the iterate into a smaller
neighborhood of the central path. We would like to alert the reader to the distinction
between our corrector step and the standard corrector step in the IPM literature. In
a standard corrector step, the search direction is always computed by solving (3.1)
with μ = μ(x, s) and thus the duality gap remains invariant. However, as stated in
Proposition 3.1, the duality gap in a corrector step of Algorithm 3.1 will never increase
but might decrease. Each corrector step is followed by a predictor step that aims at
reducing the duality gap while keeping the iterate in the large neighborhood N . This
process is repeated until the duality gap is small enough.

The procedure of our algorithm is outlined as follows. In the procedure, we use
the notation x(α) = x + αΔx, y(α) = y + αΔy, and s(α) = s + αΔs.
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Algorithm 3.1

Input:
Proximity parameters τ ≥ 2, θ(τ, n) given by (2.13),
and η(τ, n) given by (2.7);
an accuracy parameter ε > 0;
(x, s) = (x0, s0) such that Φ(x, s, μ(x, s)) ≤ η(τ, n).

begin
while xT s ≥ ε do
begin

corrector step
Compute μ(x, s) and update μ to μ := θ(τ, n)μ(x, s);
Solve the system (3.5) for (Δx,Δy,Δs);
Find a feasible step size α that reduces
the proximity function sufficiently;a

Update the iterate by x = x(α), y = y(α), s = s(α);
Predictor step

Solve the system (3.4) for (Δx,Δy,Δs),
Find a sufficiently large step size α ∈ (0, 1]
such thatb Φ(x(α), s(α), μ(x, s)(α)) ≤ η(τ, n);
Update the iterate by x = x(α), y = y(α), s = s(α);

end
end

aIn Theorem 3.5, we shall specify a step size α that can reduce the proximity function
sufficiently.

bIn Theorem 3.7, we shall specify a step size α that keeps the iterate in the neighborhood.

3.2. The corrector step. In this subsection we estimate the change of the
proximity function in the corrector step. For this we first discuss how to choose a
suitable step size to reduce the proximity function Φ in the corrector step. Suppose
that the current point (x, s) is in the neighborhood N (given by (2.3)) where η(τ, n)
is given by (2.7), and let

σ = ‖∇Ψ(v)‖ .

Note that when log n ≥ 1, we have

σ ≥
∥∥v − v−1

∥∥ .(3.6)

In what follows we estimate the magnitudes of σ and vmin. In particular, we will
derive a lower bound of vmin, from which we can further get an estimate of the
maximal feasible step size.

Lemma 3.2. Suppose that the present iterate (x, s) is in the neighborhood N
defined by (2.3) and v is defined by (2.2) with μ = θ(τ, n)μ(x, s). If n ≥ 8 and τ ≥ 2,
then one has

vmin ≥ exp− (2τ−2) log n
2+log n ≥ exp−τ ,(3.7)

σ ≥ 5

6
v−1−logn
min .(3.8)
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Proof. Using the notation v, we can write Φ(x, s, θ(τ, n)μ(x, s)) = Ψ(v). When
(x, s) ∈ N , from Lemma 2.3 we obtain Ψ(v) ≤ η1(τ, n), where η1(τ, n) is given
by (2.14). It follows from (2.15) that

v− logn
min <

n∑
i=1

v− logn
i ≤

n∑
i=1

(vi)
2 =

xT s

θ(τ, n)μ(x, s)
= n exp

(2τ−2) log n
2+log n .

Therefore, one has

log v−1
min < 1 +

2τ − 2

2 + log n
≤ τ,

which further yields (3.7).
To prove (3.8), it suffices to consider the case where vmin ≤ 1. Observe that if

n ≥ 8 and τ ≥ 2, then from (3.6) and (2.12) we obtain

σ2 ≥
∥∥v − v−1

∥∥2
> ‖v‖2 − 2n=

(
1

θ(τ, n)
− 2

)
n≥

(
expτ−1 −2

)
n≥ 6 ∀n≥ 8, τ ≥ 2.

This gives (3.8) when

v1+log n
min >

1

6
.

If

v1+log n
min ≤ 1

6
,

then we have

v1+log n
min σ ≥ v1+log n

min (v−1−logn
min − vmin)

= 1 − v2+log n
min ≥ 1 − v1+log n

min

≥ 5

6
.

The proof of the lemma is finished.
Lemma 3.3. Given t, w ∈ [0, 1). If − log(1 − t) ≥ w, then one has t ≥ w

1+w .
Proof. Since t ∈ [0, 1), one has

w ≤ − log(1 − t) = log

(
1 +

t

1 − t

)
≤ t

1 − t
,

which further gives the desired relation in the lemma.
The following technical lemma from [13] will be used in our later analysis. For

self-completeness, we include it here without proof.
Lemma 3.4. Suppose that h(t) is a twice differentiable convex function with

h(0) = 0, h′(0) < 0 and that h(t) attains its global minimum at its stationary point
t∗ > 0. If h′′(t) is increasing with respect to t, then for any t ∈ [0, t∗] we have

h(t) ≤ h′(0)t

2
.

We proceed to specify a step size that reduces the proximity function sufficiently
in the corrector step of Algorithm 3.1. We mention that by using Theorem 1 in [13],
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we can get a step size α that reduces the proximity function value. However, the
estimation in [13] focuses on the relation of the reduction and the proximity function
itself, while our following theorem tries to estimate the reduction of the proximity
function by using the information of the new updated iterate. For self-completeness,
we also present a detailed proof here.

Theorem 3.5. Suppose that the present iterate (x, s) is in the neighborhood N
defined by (2.3) and v is defined by (2.2) with μ = θ(τ, n)μ(x, s). Let (dx, ds) be the
solution of system (3.5) with n ≥ 8 and τ ≥ 2. Then the step size α = vmin

3σ logn is
strictly feasible. Moreover, for this step size, we have

Φ(x(α), s(α), μ) ≤ Φ(x(0), s(0), μ) − 5

66 log n
max{vminσ, v

− logn
min (α)}.

Proof. To prove the theorem, we need to estimate the maximal feasible step size
αmax. By using the orthogonality of dx and ds, we have

max{‖dx‖2
, ‖ds‖2} ≤ ‖dx‖2

+ ‖ds‖2
= ‖dx + ds‖2

= σ2.(3.9)

From (3.2) we conclude that the strict feasibility of (x+αΔx, s+αΔs) can be retained
if and only if (v+αdx, v+αds) is strictly positive. This is certainly true if vmin−ασ > 0.
This gives

αmax ≥ vminσ
−1 ≥ σ−1 exp−τ .

We progress to investigate the behavior of the function Φ(x(α), s(α), θ(τ, n)μ(x, s))
along the search direction (Δx,Δs) obtained by solving (3.5). Let us define

v(α) =
√

(v + αdx)(v + αds).

Using this, we can write the proximity function Φ(x(α), s(α), θ(τ, n)μ(x, s)) in the
scaled v-space as

Φ(x(α), s(α), θ(τ, n)μ(x, s)) = Ψ(v(α)).

Note that from the choice of Ψ(v(α)), we have

Ψ(v(α)) =
(v + αdx)T (v + αds)

2
− n

2
+

1

log n

n∑
i=1

(
vi(α)− logn − 1

)

≤ 1

2
‖v‖2

+ αvT (dx + ds) −
n

2

+
1

2 log n

n∑
i=1

((v + αdx)− logn
i + (v + αds)

− logn
i − 2),

where the inequality follows from the orthogonality of dx and ds as well as the self-
regularity of the function ψ(t). Let us cast the difference between the proximity
functions before and after a step as a function of the step size α; then from (3.5) we
obtain

g(α) := Ψ(v(α)) − Ψ(v(0))

≤ −α

n∑
i=1

(v2
i − v− logn

i )

+
1

2 log n

n∑
i=1

((v + αdx)− logn
i + (v + αds)

− logn
i − 2v− logn

i ).
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One can easily verify that g(α) is convex. Furthermore, by simple calculus one gets

g(0) = 0 and g′(0) = −σ2.

For any α ≤ αmax, we have

g′′(α) = (1 + logn)

n∑
i=1

((dix)2(v + αdx)i
−2−logn

+ (dis)
2(v + αds)i

−2−logn
)

≤ (1 + log n)

n∑
i=1

((dix)2(vi − ασ)
−2−logn

+ (dis)
2(vi − ασ)

−2−logn
)

≤ (1 + log n)σ2(vmin − ασ)
−2−logn

,

where the inequalities follow from the fact σ = ‖dx + ds‖ and

min
i=1,...,n

{vi + αdix, vi + αdis} ≥ min
i=1,...,n

vi − ασ ≥ vmin − ασ.

Let

g1(α) = −ασ2 +

∫ α

0

∫ ζ

0

(1 + log n)σ2(vmin − tσ)
−2−logn

dtdζ.

It is easy to see that g1(α) is also convex in the feasible region with

g1(0) = 0 and g′1(0) = −σ2.

Moreover, since g′′1 (α) ≥ g′′(α), one has

g(α) ≤ g1(α).

In what follows we estimate the step size α∗ at which g1(α) has a global minimum.
From the convexity of g1(α) it follows that α∗ must satisfy g′1(α) = 0, which gives

−σ2 + σ((vmin − α∗σ)−1−logn − vmin
−1−logn) = 0,(3.10)

or equivalently

−σv1+log n
min + ((1 − α∗v−1

minσ)−1−logn − 1) = 0.

Using (3.8), we derive

11

6
≤

(
1 − α∗v−1

minσ
)−1−logn

,(3.11)

which is equal to

−(1 + log n) log(1 − α∗v−1
minσ) ≥ log

11

6
>

3

5
.

Since log n ≥ 2, the above relation gives

− log(1 − α∗v−1
minσ) ≥ 3

5 + 5 log n
≥ 2

5 log n
.
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Using Lemma 3.3 and the fact that logn ≥ 2, we derive

α∗v−1
minσ ≥ 2

5 log n + 2
≥ 1

3 log n
.

Now let us focus on the case where the step size

α =
vmin

3σ log n
.(3.12)

By using Lemma 3.4, we have

Ψ(v(α)) ≤ Ψ(v) + g1(α) ≤ Ψ(v) − ασ2

2
≤ Ψ(v) − vminσ

6 log n
.(3.13)

On the other hand, because α ≤ α∗, it must hold g′1(α) ≤ 0, i.e.,

−σ2 + σ((vmin − ασ)−1−logn − v−1−logn
min ) ≤ 0.(3.14)

It follows that

(vmin − ασ)
−1−logn ≤ σ + v−1−logn

min ≤ 11

5
σ,

where the last inequality is given by (3.8). From (3.13) we immediately obtain

Ψ(v(α)) − Ψ(v) ≤ − vminσ

6 log n
≤ − 5vmin

66 log n
(vmin − ασ)

−1−logn ≤ −5(vmin − ασ)
− log n

66 log n
.

Notice that for all feasible step size α, we have

vmin(α) = min
1≤i≤n

√
(v + αdx)(v + αds) ≥ vmin − ασ.

It follows from the above two relations that

Ψ(v(α)) ≤ Ψ(v) − 5v− logn
min (α)

66 log n
.

Combining the above inequality with (3.13), we obtain the desired inequality in the
theorem.

3.3. The predictor step and complexity of the algorithm. In this subsec-
tion we estimate the step size used in the predictor step that keeps the new iterate in
the neighborhood N defined by (2.3). To guarantee the resulting iterate in a certain
neighborhood, it suffices to show that the value of the proximity function for a strictly
feasible step size is bounded above by η(τ, n) or η1(τ, n), depending on the duality
parameter μ used in the definition of the proximity function. In order to distinguish
the iterates before and after a corrector step, let (x+, s+) denote the primal-dual pair
after the corrector step. It should be mentioned that in the predictor step, we have
the freedom to choose the reference duality gap parameter μ because in the predic-
tor step, the resulting search directions Δx and Δs in the original x- and s-spaces
are completely independent of the parameter μ. Let μ+ be the reference duality gap
parameter used in the predictor step. Correspondingly, the scaled vector v+ can be
defined as

v+ =

√
x+s+

μ+
and (v+)−1 =

√
μ+e

x+s+
.(3.15)
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In what follows we will discuss how to choose an appropriate duality gap parameter
μ+ such that the resulting scaled vector v+ satisfies the following inequalities:

‖v+‖2 ≤ n

θ(τ, n)
,(3.16)

n∑
i=1

(v+
i )

− logn − ‖v+‖2 ≤ 0,(3.17)

Ψ(v+) ≤ Φ(x, s, θ(τ, n)μ(x, s)) − 5

66 log n
(v+

min)
− logn

.(3.18)

The following lemma proves the existence of such a parameter μ+.
Lemma 3.6. Let n ≥ 8, τ ≥ 2, and (x+, s+) be the iterate after the corrector step

and μ(x, s)+ = (x+)T s+/n. Then there exists a duality gap parameter μ+ such that
the vector v+ given by (3.15) satisfies inequalities (3.16)–(3.18).

Proof. To prove the lemma, we first observe that if

n∑
i=1

(
x+
i s

+
i

θ(τ, n)μ(x, s)

)− 1
2 logn

− (x+)T s+

θ(τ, n)μ(x, s)
≤ 0,(3.19)

then we can set μ+ = θ(τ, n)μ(x, s), the same as in the corrector step. In this
case, (3.19) gives (3.17) and (3.18) follows from Theorem 3.5. Moreover, as indicated
by Proposition 3.1, the duality gap will not increase in the corrector step; this implies
μ+ ≥ θ(τ, n)μ(x, s)+, and thus inequality (3.16) holds as well.

Thus it remains to consider the case where

n∑
i=1

(
x+
i s

+
i

θ(τ, n)μ(x, s)

)− 1
2 logn

− (x+)T s+

θ(τ, n)μ(x, s)
> 0(3.20)

after the corrector step. Now let us cast Φ(x+, s+, μ) as a function of μ. Since
Φ(x+, s+, μ) is a convex function of μ, it must attain its global minimum at some
point μ∗ satisfying

n∑
i=1

(
x+
i s

+
i

μ∗

)− 1
2 logn

− (x+)T s+

μ∗ = 0.

Because log n ≥ 2, (3.20) implies

μ∗ < θ(τ, n)μ(x, s).

On the other hand, if we choose μ+ = μ∗ and define v+ by (3.15), then from Theo-
rem 3.5 we obtain

Ψ(v+) ≤ Φ(x+, s+, θ(τ, n)μ(x, s))

≤ Φ(x, s, θ(τ, n)μ(x, s)) − 5

66 log n
max

i=1,...,n

⎧⎪⎨
⎪⎩
⎛
⎝
√

x+
i s

+
i

θ(τ, n)μ(x, s)

⎞
⎠

− log n
⎫⎪⎬
⎪⎭

≤ Φ(x, s, θ(τ, n)μ(x, s)) − 5

66 log n
max

i=1,...,n

⎧⎪⎨
⎪⎩
⎛
⎝
√

x+
i s

+
i

μ∗

⎞
⎠

− logn
⎫⎪⎬
⎪⎭

= Φ(x, s, θ(τ, n)μ(x, s)) − 5

66 log n

(
v+
min

)− log n
.
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It remains to verify that (3.16) holds for this special choice. Note that because

Φ(x+, s+, μ+) < η1(τ, n),

by Lemma 2.4, Φ(x+, s+, (x+)T s+/n) = η(τ0, n) < η(τ, n) for some τ0 < τ . By the
definition of θ(·, ·), we have μ+ = θ(τ0, n)(x+)T s+/n. Since θ(·, n) is a decreasing
function of τ , we have θ(τ0, n) > θ(τ, n) and μ+ ≥ θ(τ, n)(x+)T s+/n. Moreover, one
has

(x+)T s+

μ+
=

n

θ(τ0, n)
<

n

θ(τ, n)
,

which implies (3.16). This completes the proof of the lemma.
Now we can progress to estimate the increase of the proximity function in the

predictor step. To release the notational load, we drop the subscript + used in our
previous discussion and simply denote the present iterate by (x, s) and correspondingly
the scaled vector by v. We emphasize here again that the scaled vector v satisfies all
the inequalities (3.16), (3.17), and (3.18). We start by estimating vmin for the scaled
vector v. Since v satisfies all the inequalities from (3.16)–(3.18), by following an
analogue chain of reasoning as in the proof of the inequality (3.7) in Lemma 3.2, we
obtain

vmin ≥ exp−τ .(3.21)

Now we can state the main result of this section.
Theorem 3.7.

Let (dx, ds) be the solution of system (3.4) with the vector v satisfying properties
(3.16), (3.17), and (3.18). If n ≥ 8 and τ ≥ 2, then the step size

α =
exp1−2τ

15
√
n log n

is strictly feasible. Moreover, the new iterate updated with this step size is still in the
neighborhood defined by (2.3).

Proof. We start our discussion on the value of the function Ψ(v(α)) for a strictly
feasible step size α. Note that in the predictor step, all the inequalities (3.16), (3.17),
and (3.18) hold. Therefore, we have

max{‖dx‖ , ‖ds‖} ≤ ‖dx + ds‖ = ‖v‖ ≤
√

n

θ(τ, n)
≤ expτ−1

√
n,(3.22)

where the last inequality follows from (2.11). It follows immediately that

αmax ≥ vmin

√
θ(τ, n)

n
≥ exp1−τ vmin√

n
.

By following a similar reasoning chain as in our discussion in the corrector step,
we can show that

Ψ(v(α)) − Ψ(v(0))

≤ −α ‖v‖2
+

1

2 log n

n∑
i=1

((v + αdx)
− logn
i + (v + αds)

− logn
i − 2v− logn

i ).
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Let

h(α) := −α ‖v‖2
+

1

2 log n

n∑
i=1

((v + αdx)
− logn
i + (v + αds)

− logn
i − 2v− logn

i ).

It is easy to verify that h(α) is a convex function of α. Furthermore, by simple calculus
one gets

h(0) = 0 and h′(0) =

n∑
i=1

vi
− logn − ‖v‖2

.

From (3.17), we can claim that h′(0) ≤ 0. Moreover, for any 0 < α ≤ αmax, one has

h′′(α) = (1 + logn)

n∑
i=1

((dix)2(v + αdx)−2−logn
i + (dis)

2(v + αds)i
−2−logn

)

≤ (1 + log n)
n∑

i=1

(vi − α ‖v‖)−2−logn
(
(dix)2 + (dis)

2
)

≤ (1 + log n) ‖v‖2
(vmin − α ‖v‖)−2−logn.

It follows that for any α ∈ (0, αmax],

Ψ(v(α)) ≤ Ψ(v) +

∫ α

0

∫ ζ

0

(1 + log n) ‖v‖2
(vmin − t ‖v‖)−2−logndtdζ

< Ψ(v) +

∫ α

0

‖v‖
(
(vmin − ζ ‖v‖)−1−logn

)
dζ

= Ψ(v) +
(vmin − α ‖v‖)− logn − v− logn

min

log n
.

By using (3.18) we obtain

Ψ(v) ≤ η1(τ, n) − 5

66 log n
v− logn
min .

Therefore, for any step size α satisfying

(vmin − α ‖v‖)− logn ≤ 5v− log n
min

66
+ v− logn

min ,(3.23)

one has

Ψ(v(α)) ≤ η1(τ, n),

which, by Lemma 2.4, further implies that

Φ(x(α), s(α), μ(x, s)(α)) ≤ η(τ, n).

Thus for any step size α satisfying (3.23), the new iterate (x(α), s(α)) is still in the
neighborhood defined by (2.3). Now we are going to estimate the maximal step size
α∗ that satisfies (3.23), which is the unique solution of the following equation:

(1 − αv−1
min ‖v‖)− logn =

71

66
.(3.24)



PREDICTOR-CORRECTOR ALGORITHM FOR LINEAR OPTIMIZATION 1123

The above relation implies that

− log (1 − α∗v−1
min ‖v‖) =

log 71
66

log n
(3.25)

≥ 1

14 log n
.

Using Lemma 3.3 and the fact that logn ≥ 1, we have

α∗v−1
min ‖v‖ ≥ 1

1 + 14 log n
>

1

15 log n
.

It follows immediately that

α∗ ≥ vmin

15 ‖v‖ log n
≥ exp1−τ vmin

15
√
n log n

≥ exp1−2τ

15
√
n log n

,

where the second inequality follows from (3.22) and the last inequality from (3.21).
The proof of the theorem is finished.

We close this section by giving an upper bound for the number of iterations of
Algorithm 3.1. As indicated in Proposition 3.1, the duality gap will not increase in
the corrector step. Theorem 3.7 shows that the duality gap will decrease at least at
a rate of

1 − exp1−2τ

15
√
n log n

in each predictor step. As a direct consequence of these two results, we have the
following theorem.

Theorem 3.8. If n ≥ 8 and τ ≥ 2, then after at most⌈
15 exp2τ−1

√
n log n log

(x0)T s0

ε

⌉

iterations, Algorithm 3.1 will find an approximate solution satisfying xT s ≤ ε.

We note that, although Algorithm 3.1 has an O(
√
n log n log (x0)T s0

ε ) complexity,
the upper bound of the number of total iterations given by Theorem 3.8 is exponential
in τ .

4. Local superlinear convergence. In this section we prove the local super-
linear convergence of the algorithm. Let (x−, s−) denote the primal-dual pair before
the corrector step and (x, s) the new pair after a corrector step. Recall that for the
predictor direction, Ye and Anstreicher [28] have proved the following relation for
monotone complementarity problems:

|ΔxiΔsi| = O((μ(x, s))2), i = 1, . . . , n,(4.1)

when the product xT s (or μ(x, s)) is sufficiently small. Since an LO problem can
be cast as a special class of monotone linear complementarity problems, the above
relation remains valid for LO if μ(x, s) is small enough. To simplify the analysis, we
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ignore the hidden constant in the big-O relation. Now let us recall the choice of the
parameter μ in the predictor step in our algorithm. We then have

|dixdis| =
|ΔxiΔsi|

μ
≤ |ΔxiΔsi|

θ(τ, n)μ(x, s)
= O(μ(x, s)),(4.2)

where the inequality follows from Lemma 3.6. We next give a technical result about
the step size used in the predictor step.

Lemma 4.1. Let n ≥ 8, τ ≥ 2, r ∈ (0, 1), and (x, s) be an iterate in Algorithm 3.1.
If the present duality gap xT s is sufficiently small so that the relation (4.1) holds, then
the step size α used in the predictor step satisfies α ≥ 1 −O((μ(x, s))

r
).

Proof. We start with an estimation of the maximal feasible step size. As we
mentioned in section 3, the new iterate is strictly feasible if and only if both v + αdx
and v+αds are strictly feasible. Further, the maximal feasible step size αmax satisfies
the condition

(v + αdx)(v + αds) = v2 − αv2 + α2dxds ≥ 0, α ∈ [0, αmax],

or

e− α + α2v−2dxds ≥ 0 ∀α ∈ [0, αmax].

Since vmin ≥ exp−τ and |dxds| = O(μ(x, s)), we can conclude that αmax ≥ 1 −
O(μ(x, s)).

Now we are going to show that for any fixed 0 < r < 1, the step size α used in
the predictor step also satisfies the relation

α ≥ 1 −O((μ(x, s))
r
).(4.3)

To prove (4.3), we notice that for any strictly feasible step size α ∈ (0, 1], from the
choice of μ and the corresponding scaled vector v we obtain

Φ(x(α), s(α), (1 − α)μ) − Φ(x(0), s(0), μ)

≤ 1

log n

n∑
i=1

((
vi(α)√
1 − α

)− logn

− vi
− logn

)

=

n∑
i=1

v− logn
i

log n

((
vi(α)√
1 − αvi

)− logn

− 1

)

=

n∑
i=1

v− logn
i

log n

((
v2
i (α)

(1 − α)v2
i

)− 1
2 logn

− 1

)

=

n∑
i=1

v− logn
i

log n

((
1 +

α2

1 − α
v−2
i dixd

i
s

)− 1
2 logn

− 1

)
.

Let I− be the index set

I− = {i ∈ {1, . . . , n} : dixd
i
s < 0}.
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It follows immediately that

Φ(x(α), s(α), (1 − α)μ) − Φ(x(0), s(0), μ)

≤
∑
i∈I−

v− logn
i

log n

((
1 +

α2

1 − α
v−2
i dixd

i
s

)− 1
2 logn

− 1

)

≤ v− logn
min

log n

∑
i∈I−

((
1 +

α2

1 − α
v−2
i dixd

i
s

)− 1
2 logn

− 1

)

≤ v− logn
min

log n

⎛
⎜⎝
⎛
⎝1 +

∑
i∈I−

α2

1 − α
v−2
i dixd

i
s

⎞
⎠

− 1
2 logn

− 1

⎞
⎟⎠

≤ v− logn
min

log n

((
1 − α2

1 − α
O(μ(x, s))

)− 1
2 logn

− 1

)
.

This inequality indicates that, for any fixed r ∈ (0, 1) and sufficiently small μ(x, s),
there exists a step size α ≥ 1 −O((μ(x, s))

r
) such that

Φ(x(α), s(α), (1 − α)μ) − Φ(x(0), s(0), μ) ≤ 5v− logn
min

66 log n
,

as stated in Theorem 3.5. This completes the proof of the lemma.
It is straightforward to verify that if the step size used in the predictor step

satisfies α ≥ 1 −O((μ(x, s))
r
), then after the predictor step we have

μ+
gap = (1 − α)μ(x, s) = O((μ(x, s))

1+r
).

Now we can state the main result of this section.
Theorem 4.2. Let n ≥ 8, τ ≥ 2, and (xk, sk) be generated by Algorithm 3.1.

The algorithm is superlinearly convergent in the sense that μk+1
gap = O((μk

gap)
1+r) for

any fixed r ∈ (0, 1) and every accumulation point of the sequence (xk, sk) is a strictly
complementary solution of the problem.

Proof. The superlinear convergence of the algorithm follows from Lemma 4.1. The
convergence properties of every accumulation point of the iterates can be proved by
using the properties of the central path, which converges to a strictly complementarity
solution of the underlying problem. The details of the proof are omitted here and we
refer the readers to [27] for analogous discussions.

5. Conclusions. A new predictor-corrector algorithm working in a large neigh-
borhood of the central path is proposed for linear optimization. This algorithm main-
tains the simple structure of the MTY method, that is, each iteration consists of one
predictor step and only one corrector step, and uses only first-order information of the
problem. We prove that the algorithm retains local superlinear convergence and has

an O(
√
n log n log (x0)T s0

ε ) iteration bound. This complexity result improves the so-far

best known complexity O(n log (x0)T s0

ε ) for first-order predictor-corrector algorithms
working in large neighborhoods [15].

We mention that it is possible to extend the results in this paper to other cases,
e.g., predictor-corrector methods for complementarity problems. The details for such
an extension are left to the interested reader.
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