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Abstract. We prove sufficient conditions for the monotonicity and the strong monotonicity of
fixed point and normal maps associated with variational inequality problems over a general closed
convex set. Sufficient conditions for the strong monotonicity of their perturbed versions are also
shown. These results include some well known in the literature as particular instances. Inspired
by these results, we propose a modified Solodov and Svaiter iterative algorithm for the variational
inequality problem whose fixed point map or normal map is monotone.
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1. Introduction. Given a continuous function f : Rn → Rn and a closed convex
set K in Rn, the well-known finite-dimensional variational inequality, denoted by
VI(K, f), is to find an element x∗ ∈ K such that

(x− x∗)T f(x∗) ≥ 0 for all x ∈ K.

It is well known that the above problem can be reformulated as nonsmooth equations
such as the fixed point and normal equations (see, e.g., [9, 18]). The fixed point
equation is defined by

πα(x) = x−ΠK(x− αf(x)) = 0,(1)

and the normal equation is defined by

Φα(x) = f(ΠK(x)) + α(x−ΠK(x)) = 0,(2)

where α > 0 is a positive scalar and ΠK(·) denotes the projection operator on the
convex set K, i.e.,

ΠK(x) = argmin{‖z − x‖ : z ∈ K}.

Throughout the paper, ‖ ·‖ denotes the 2-norm (Euclidean norm) of the vector in Rn.
It turns out that x∗ solves VI(K, f) if and only if πα(x

∗) = 0 and that if x∗ solves
VI(K, f), then x∗− 1

αf(x
∗) is a solution to Φα(x) = 0; conversely, if Φα(u

∗) = 0, then
ΠK(u∗) is a solution to VI(K, f).

Recently, several authors studied the P0 property of fixed point and normal maps
when K is a rectangular box in Rn, i.e., the Cartesian product of n one-dimensional
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MONOTONICITY OF FIXED POINT AND NORMAL MAPPINGS 963

intervals. For such a K, Ravindran and Gowda [17] (respectively, Gowda and Tawhid
[8]) showed that πα(x) (respectively, Φα(x)) is a P0-function if f is. Notice that the
monotone maps are very important special cases of the class of P0-functions. It is
worth considering the problem:

(P) When are the mappings πα(x) and Φα(x) monotone if K is a general closed
convex set?

Intuitively, we may conjecture that the fixed point map and the normal map
are monotone if f is. However, this conjecture is not true. The following example
shows that for a given α > 0 the monotonicity of f , in general, does not imply the
monotonicity of the fixed point map πα(x) and the normal map Φα(x).

Example 1.1. Let K be a closed convex set given by

K = {x ∈ R2 : x1 ≥ 0, x2 = 0}

and

f(x) =

(
0 −1
1 0

)(
x1

x2

)
=

( −x2

x1

)
.

For any x, y ∈ R2, we have that (x − y)T (f(x) − f(y)) = 0. Hence the function f is
monotone on R2. We now show that for an arbitrary scalar α > 0 the fixed point
mapping πα(x) = x−ΠK(x−αf(x)) is not monotone inR2. Indeed, let u = (0, 0)T and
y = (1, α/2)T . It is easy to verify that πα(u) = (0, 0)T and πα(y) = (−α2/2, α/2)T .
Thus, we have

(u− y)T (πα(u)− πα(y)) = −α2/2 < 0,

which implies that πα(·) is not monotone on Rn.
Example 1.2. Let K be a closed convex set given by

K = {x ∈ R2 : x1 ≤ 0, x2 = 0}

and f(x) : R2 → R2 be given as in Example 1.1. We now show that for an arbitrary
α > 0 the normal mapping Φα(x) = f(ΠK(x)) + α(x − ΠK(x)) is not monotone in
R2. Indeed, let u = (0, 0)T and y = (−2α2, α)T . We have that Φα(u) = (0, 0)T and
Φα(y) = (0,−α2)T . Thus, we have

(u− y)T (Φα(u)− Φα(y)) = −α3 < 0,

which implies that Φα(·) is not monotone on Rn.
From the above examples, we conclude that a certain condition stronger than the

monotonicity of f is required to guarantee the monotonicity of πα(x) and Φα(x). One
such condition is the so-called cocoercivity condition. We recall that f is said to be
cocoercive with modulus β > 0 on a set S ⊂ Rn if there exists a constant β > 0 such
that

(x− y)T (f(x)− f(y)) ≥ β‖f(x)− f(y)‖2 for all x, y ∈ S.

The cocoercivity condition was used in several works, such as Bruck [1], Gabay [7] (in
which this condition is used implicitly), Tseng [25], Marcotte and Wu [15], Magnanti
and Perakis [13, 14], and Zhu and Marcotte [29, 30]. It is also used to study the
strict feasibility of complementarity problems [27]. It is interesting to note that in an
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964 YUN-BIN ZHAO AND DUAN LI

affine case the cocoercivity has a close relation to the property of positive semidefinite
(psd)-plus matrices [12, 30]. A special case of the cocoercive map is the strongly
monotone and Lipschitzian map. We recall that a mapping f is said to be strongly
monotone with modulus c > 0 on the set S if there is a scalar c > 0 such that

(x− y)T (f(x)− f(y)) ≥ c‖x− y‖2 for all x, y ∈ S.

It is evident that any cocoercive map on the set S must be monotone and Lipschitz
continuous (with constant L = 1/β), but not necessarily strongly monotone (for
instance, the constant mapping) on the same set.

In fact, the aforementioned problem (P) is not completely unknown. By using the
cocoercivity condition implicitly and using properties of nonexpansive maps, Gabay
[7] actually showed (but did not explicitly state) that πα(x) and Φ1/α(x) are monotone
if the scalar α is chosen such that the map I − αf is nonexpansive. Furthermore, for
strongly monotone and Lipschitzian map f , Gabay [7] and Sibony [20] actually showed
that πα(x) and Φ1/α(x) are strongly monotone if the scalar α is chosen such that the
map I − αf is contractive. Throughout this paper, we use the standard concept
“nonexpansive” map and “contractive” map in the literature to mean a Lipschitzian
map with constant L = 1 and L < 1, respectively.

However, it is easy to give an example to show that πα(x) and Φα(x) are still
monotone (strongly monotone) even when α is chosen such that I − αf is not non-
expansive (contractive). For instance, let K = Rn

+ and f(x) = x. We see that the
function f is cocoercive with modulus β = 1. While I − αf is not nonexpansive for
α > 2, the map πα(x) remains monotone. As a result, the main purpose of this paper
is to expand the results of Sibony [20] and Gabay [7]. We show that if f is cocoercive
(strongly monotone and Lipschitz continuous, respectively), the monotonicity (strong
monotonicity, respectively) of the maps πα(x) and Φα(x) can be ensured when α lies
in a larger interval in which the map I − αf may not be nonexpansive (contractive,
respectively). The results derived in this paper are not obtainable by the proof based
on the nonexpansiveness and contractiveness of maps.

The other purpose of the paper is to introduce an application of the monotonicity
of πα(x) and Φα(x). This application (see section 3) is motivated by the globally
convergent inexact Newton method for the system of monotone equations proposed
by Solodov and Svaiter [21]. See also [22, 23, 24]. We propose a modified Solodov
and Svaiter method to solve the monotone equations πα(x) = 0 or Φα(x) = 0. This
modified algorithm requires no projection operations in the line-search step.

2. Monotonicity of πα(x) and Φα(x). It is known (see Sibony [20] and Gabay
[7]) that if f is strongly monotone with modulus c > 0 and Lipschitz continuous
with constant L > 0, then I − αf is contractive when 0 < α < 2c/L2. Since ΠK is
nonexpansive, this in turn implies that πα(x) and Φ1/α(x) are both strongly monotone
for 0 < α < 2c/L2. Similarly, it follows from Gabay [7] (see Theorem 6.1 therein) that
if f is cocoercive with modulus β > 0, then I − αf is nonexpansive for 0 < α ≤ 2β,
and thus we can easily verify that πα(x) and Φ1/α(x) are monotone for 0 < α ≤ 2β.

In this section, we prove an improved version of the above-mentioned results. We
prove that (i) when α lies outside of the interval (0, 2c/L2), for instance, 2c/L2 ≤ α ≤
4c/L2, πα(x) and Φ1/α(x) are still strongly monotone although I−αf , in this case, is
not contractive, and (ii) when α lies outside of the interval (0, 2β], for instance, 2β <
α ≤ 4β, πα(x) and Φ1/α(x) remain monotone although I − αf is not nonexpansive.
This new result on monotonicity (strong monotonicity) of πα(x) and Φ1/α(x) for α >
2β (α ≥ 2c/L2) is not obtainable by using the nonexpansive (contractive) property
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MONOTONICITY OF FIXED POINT AND NORMAL MAPPINGS 965

of I − αf. The reason is as follows: Let f be cocoercive with modulus β > 0 on the
set S ⊆ Rn, where

β = sup{γ > 0 : (x− y)T (f(x)− f(y)) ≥ γ‖f(x)− f(y)‖2 for all x, y ∈ S}.
Clearly, such a scalar β is unique and 0 < β < ∞ provided that f is not a constant
mapping. We now verify that I − αf is nonexpansive on S if and only if 0 < α ≤ 2β.
It is sufficient to show that if α > 0 is chosen such that I − αf is nonexpansive on S,
then we must have α ≤ 2β. In fact, if I − αf is nonexpansive, then for any x, y in S
we have

‖x− y‖2 ≥ ‖(I − αf)(x)− (I − αf)(y)‖2

= ‖x− y‖2 − 2α(x− y)T (f(x)− f(y)) + α2‖f(x)− f(y)‖2,

which implies that

(x− y)T (f(x)− f(y)) ≥ (α/2)‖f(x)− f(y)‖2.

By the definition of β, we deduce that α/2 ≤ β, the desired consequence. Similarly, let
f be strongly monotone with modulus c > 0 and Lipschitz continuous with constant
L > 0 on the set S, where

c = sup{γ > 0 : (x− y)T (f(x)− f(y)) ≥ γ‖x− y‖2 for all x, y ∈ S}
and

L = inf{γ > 0 : ‖f(x)− f(y)‖ ≤ γ‖x− y‖ for all x, y ∈ S}.
We can easily see that 0 < c < ∞ and L > 0 provided that S is not a single point set.
It is also easy to show that I − αf is contractive if and only if 0 < α < 2c/L2.

Since the map I−αf is not contractive (nonexpansive, respectively) for α ≥ 2c/L2

( α > 2β, respectively), our result established in this section cannot follow directly
from the proof of Sibony [20] and Gabay [7].

We also study the strong monotonicity of the perturbed fixed point and normal
maps defined by

πα,ε(x) := x−ΠK(x− α(f(x) + εx)),

and

Φα,ε(x) := f(ΠK(x)) + εΠK(x) + α(x−ΠK(x)),

respectively. This is motivated by the well-known Tikhonov regularization method for
complementarity problems and variational inequalities. See, for example, Isac [10, 11],
Venkateswaran [26], Facchinei [3], Facchinei and Kanzow [4], Facchinei and Pang [5],
Gowda and Tawhid [8], Qi [16], Ravindran and Gowda [17], Zhao and Li [28], etc. It is
worth mentioning that Gowda and Tawhid [8] showed that when α = 1 the perturbed
mapping Φ1,ε(x) is a P-function if f is a P0-function and K is a rectangular set. We
show in this paper a sufficient condition for the strong monotonicity of πα,ε(x) and
Φα,ε(x). The following lemma is helpful.

Lemma 2.1. (i) Denote

uz = z −ΠK(z) for all z ∈ Rn.(3)
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966 YUN-BIN ZHAO AND DUAN LI

Then

(z − w)T (uz − uw) ≥ ‖uz − uw‖2.

(ii) For any α > 0 and vector b ∈ Rn, the following inequality holds for all v ∈ Rn:

α‖v‖2 + vT b ≥ −‖b‖2

4α
.

Proof. By the property of projection operator, we have

(ΠK(z)−ΠK(w))T (ΠK(w))− w) ≥ 0 for all z, w ∈ Rn,

(ΠK(w)−ΠK(z))T (ΠK(z))− z) ≥ 0 for all z, w ∈ Rn.

Adding the above two inequalities leads to

(ΠK(z)−ΠK(w))T (z −ΠK(z)− (w −ΠK(w))) ≥ 0 for all z, w ∈ Rn,

i.e.,

[z − uz − (w − uw)]
T (uz − uw) ≥ 0 for all z, w ∈ Rn.

This proves the result (i).
Given α > 0 and b ∈ Rn, it is easy to check that the minimum value of α‖v‖2+vT b

is −‖b‖2/(4α). This proves the result (ii).
We are ready to prove the main result in this section.
Theorem 2.1. Let K be an arbitrary closed convex set in Rn and K ⊆ S ⊆ Rn.

Let f : Rn → Rn be a function.
(i) If f is cocoercive with modulus β > 0 on the set S, then for any fixed scalar α

satisfying 0 < α ≤ 4β, the fixed point map πα(x) defined by (1) is monotone on the
set S.

(ii) If f is strongly monotone with modulus c > 0 on the set S, and f is Lipschitz
continuous with constant L > 0 on S, then for any fixed scalar α satisfying 0 < α <
4c/L2, the fixed point map πα(x) is strongly monotone on the set S.

(iii) If f is cocoercive with modulus β > 0 on the set S, then for any 0 < α < 4β
and 0 < ε ≤ 2( 1

α − 1
4β ) the perturbed map πα,ε(x) is strongly monotone in x on the

set S.
Proof. Let α > 0 and 0 ≤ ε ≤ 2/α be two scalars. For any vector x, y in S, denote

z = x− α(f(x) + εx), w = y − α(f(y) + εy).

By using the notation of (3) and Lemma 2.1, we have

(x− y)T (πα,ε(x)− πα,ε(y))

= (x− y)T [(z −ΠK(z)− (w −ΠK(w)) + α(f(x) + εx)

− α(f(y) + εy))]

= (x− y)T (uz − uw) + αε‖x− y‖2 + α(x− y)T (f(x)− f(y))

= [z + α(f(x) + εx)− (w + α(f(y) + εy))]T (uz − uw)

+ αε‖x− y‖2 + α(x− y)T (f(x)− f(y))

= (z − w)T (uz − uw) + α[f(x) + εx− (f(y) + εy)]T (uz − uw)
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MONOTONICITY OF FIXED POINT AND NORMAL MAPPINGS 967

+ αε‖x− y‖2 + α(x− y)T (f(x)− f(y))

≥ ‖uz − uw‖2 + α[f(x) + εx− (f(y) + εy)]T (uz − uw)

+ αε‖x− y‖2 + α(x− y)T (f(x)− f(y))

≥ −(α2/4)‖f(x) + εx− (f(y) + εy)‖2 + αε‖x− y‖2

+ α(x− y)T (f(x)− f(y))

=
(
αε− α2ε2/4

) ‖x− y‖2 − (α2/4)‖f(x)− f(y)‖2

+ (α− α2ε/2)(x− y)T (f(x)− f(y)).(4)

If f is cocoercive with modulus β > 0, using ε ≤ 2/α we see from the above that

(x− y)T (πα,ε(x)− πα,ε(y))

≥ (
αε− α2ε2/4

) ‖x− y‖2 − (α2/4)‖f(x)− f(y)‖2

+ (α− α2ε/2)β‖f(x)− f(y)‖2

= αε(1− αε/4)‖x− y‖2 + α2β

(
1

α
− 1

4β
− ε

2

)
‖f(x)− f(y)‖2.

Setting ε = 0 in the above inequality, we see that for 0 < α ≤ 4β the right-hand side
is nonnegative, showing that πα is monotone on the set S. This proves the result (i).
Also, if α < 4β and 0 < ε ≤ 2( 1

α − 1
4β ), the right-hand side of the above inequality is

greater than or equal to r‖x− y‖2, where r = αε(1− αε/4) > 0, showing that πα,ε is
strongly monotone on the set S. The proof of the result (iii) is complete.

Assume that f is strongly monotone with modulus c > 0 and Lipschitz continuous
with constant L > 0. We now prove the result (ii). For this case, setting ε = 0 in (4),
we have that

(x− y)T (πα(x)− πα(y))

≥ −(α2/4)‖f(x)− f(y)‖2 + α(x− y)T (f(x)− f(y))

≥ −(α2L2/4)‖x− y‖2 + αc‖x− y‖2

= (αc− α2L2/4)‖x− y‖2.

For α < 4c/L2, it is evident that the scalar

r = αc− α2L2

4
=
αL2

4

(
4c

L2
− α

)
> 0.

Result (ii) is proved.
Similarly, we have the following result for Φα(x).
Theorem 2.2. Let f be a function from Rn into itself and K be a closed convex

set and K ⊆ S ⊆ Rn.
(i) If f is cocoercive with modulus β > 0 on the set S, then for any constant α

such that α > 1/(4β), the normal map Φα(x) given by (2) is monotone on the set S.
(ii) If f is strongly monotone with modulus c > 0 and Lipschitz continuous with

constant L > 0 on the set S, then for any α satisfying α > L2/(4c), the normal map
Φα(x) given by (2) is strongly monotone on the set S.

(iii) If f is cocoercive with modulus β > 0 on the set S, then for any constant
α > 1/(4β), the perturbed normal map Φα,ε(x), where 0 < ε < α, is strongly monotone
in x on the set S.
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968 YUN-BIN ZHAO AND DUAN LI

Proof. Let α, ε, r be given such that α > ε ≥ r ≥ 0. For any vector x, y in S, let
ux and uy be defined by (3) with z = x and z = y, respectively. Then, by Lemma 2.1
we have

(α− r)‖ux − uy‖2 + (ux − uy)
T (f(ΠK(x))− f(ΠK(y)))

≥ − 1

4(α− r)
‖f(ΠK(x))− f(ΠK(y))‖2(5)

and

(x− y)T (ux − uy) ≥ ‖ux − uy‖2,(6)

which further implies

‖x− y‖ ≥ ‖ux − uy‖.
By using the above three inequalities, we have

(x− y)T (Φα,ε(x)− Φα,ε(y))− r‖x− y‖2

= (x− y)T [f(ΠK(x)) + εΠK(x) + αux − f(ΠK(y))− εΠK(y)− αuy]

−r‖x− y‖2

= α(x− y)T (ux − uy) + ε(x− y)T (ΠK(x)−ΠK(y))− r‖x− y‖2

+ (x− y)T (f(ΠK(x))− f(ΠK(y)))

= (α− ε)(x− y)T (ux − uy) + (ε− r)‖x− y‖2

+ (x− y)T (f(ΠK(x))− f(ΠK(y)))(7)

= (α− ε)(x− y)T (ux − uy) + (ε− r)‖x− y‖2 + (ux − uy)
T (f(ΠK(x))

−f(ΠK(y))) + (ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y)))

≥ (α− ε)‖ux − uy‖2 + (ε− r)‖ux − uy‖2 + (ux − uy)
T (f(ΠK(x))

−f(ΠK(y))) + (ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y)))

= (α− r)‖ux − uy‖2 + (ux − uy)
T (f(ΠK(x))− f(ΠK(y)))

+ (ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y)))

≥ − 1

4(α− r)
‖f(ΠK(x))− f(ΠK(y))‖2

+ (ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y))).(8)

Let f be cocoercive with modulus β > 0 on the set S. Setting ε = r = 0 in the above
inequality, and using the cocoercivity of f , we have

(x− y)T (Φα(x)− Φα(y)) ≥ − 1

4α
‖f(ΠK(x))− f(ΠK(y))‖2 +

(ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y)))

≥
(
β − 1

4α

)
‖f(ΠK(x))− f(ΠK(y))‖2.

For α > 1/(4β), the right-hand side is nonnegative, and hence the map Φα is monotone
on the set S. This proves the result (i).

Let α > 1/(4β), 0 < ε < α, and 0 < r < min{ε, α− 1/(4β)}. By the cocoercivity
of f , the inequality (8) can be further written as

(x− y)T (Φα,ε(x)− Φα,ε(y))− r‖x− y‖2

≥
(
β − 1

4(α− r)

)
‖f(ΠK(x))− f(ΠK(y)‖2.
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MONOTONICITY OF FIXED POINT AND NORMAL MAPPINGS 969

Since 0 < r < α − 1/(4β), the right-hand side of the above is nonnegative, and thus
the map Φα,ε is strongly monotone on the set S. Result (iii) is proved.

Finally, we prove result (ii). Assume that f is strongly monotone with modulus
c > 0 and Lipschitz continuous with constant L > 0. For any vector x, y in S, we note
that (7) holds for any α > 0, ε ≥ 0 and r ≥ 0. Setting ε = 0, (7) reduces to

(x− y)T (Φα(x)− Φα(y))− r‖x− y‖2

= α(x− y)T (ux − uy)− r‖x− y‖2

+ (x− y)T (f(ΠK(x))− f(ΠK(y))).(9)

Given α > L2/(4c), let r be a scalar such that 0 < r < α/2 and 2r + L2

4(α−2r) < c.

Notice that

‖x− y‖2 = ‖ΠK(x)−ΠK(y) + ux − uy‖2

≤ 2(‖ΠK(x)−ΠK(y)‖2 + ‖ux − uy‖2).

Substituting the above into (9) and using inequalities (5) and (6), we have

(x− y)T (Φα(x)− Φα(y))− r‖x− y‖2

≥ α‖ux − uy‖2 − 2r(‖ΠK(x)−ΠK(y)‖2 + ‖ux − uy‖2)

+ (x− y)T (f(ΠK(x))− f(ΠK(y))

= (α− 2r)‖ux − uy‖2 + (ux − uy)
T (f(ΠK(x))− f(ΠK(y)))

+ (ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y)))− 2r‖ΠK(x)−ΠK(y)‖2

≥ − 1

4(α− 2r)
‖f(ΠK(x))− f(ΠK(y))‖2 − 2r‖ΠK(x)−ΠK(y)‖2

+ (ΠK(x)−ΠK(y))T (f(ΠK(x))− f(ΠK(y)))

≥
(
− L2

4(α− 2r)
− 2r + c

)
‖ΠK(x)−ΠK(y)‖2,

where the last inequality follows from the Lipschitz continuity and strong monotonicity
of f. The right-hand side of the above is nonnegative. Thus, the map Φα is strongly
monotone on the set S. This proves result (ii).

The following result is an immediate consequence of Theorems 2.1 and 2.2.
Corollary 2.1. Assume that f is monotone and Lipschitz continuous with

constant L > 0 on a set S ⊇ K.
(i) If 0 < ε < ∞ and 0 < α < 4ε

(L+ε)2 , then the perturbed map πα,ε(x) is strongly

monotone in x on the set S.
(ii) If 0 < ε < ∞ and α > (L+ε)2

4ε , then the perturbed normal map Φα,ε(x) is
strongly monotone in x on the set S.

Proof. Let ε ∈ (0,∞) be a fixed scalar. It is evident that under the condition
of the corollary, the function F (x) = f(x) + εx is strongly monotone with modulus
ε > 0 and Lipschitz continuous with constant L+ ε. Therefore, from Theorem 2.1(ii)
we deduce that if 0 < α < 4ε/(L + ε)2, the map πα,ε(x) is strongly monotone on S.
Similarly, the strong monotonicity of Φα,ε(x) follows from Theorem 2.2(ii).

Items (iii) in both Theorem 2.1 and Theorem 2.2 show that for any sufficiently
small parameter ε, the perturbed fixed point and normal maps are strongly monotone.
This result is quite different from Corollary 2.1. When α is a fixed constant, Corollary
2.1 does not cover the case where ε can be sufficiently small. Indeed, for a fixed α > 0,

the inequalities 0 < α < 4ε
(L+ε)2 and α > (L+ε)2

4ε fail to hold when ε → 0.
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970 YUN-BIN ZHAO AND DUAN LI

Up to now, we have shown that the fixed point map πα(x) (respectively, the
normal map Φα(x)) is monotone if f is cocoercive with modulus β > 0 and α ∈ (0, 4β]
(respectively, α ∈ (1/(4β),∞)). This result includes those known from Sibony [20] and
Gabay [7] as special cases. Under the same assumption on f and α, we deduce from
items (iii) of Theorems 2.1 and 2.2 that the perturbed forms πα,ε and Φα,ε are strongly
monotone provided that the scalar ε is sufficiently small. In the succeeding sections,
we will introduce an application of the above results on globally convergent iterative
algorithms for VI(K, f) whose fixed point map or normal map is monotone.

3. Application: Iterative algorithm for VI(K, f). Since πα(x) and Φα(x)
are monotone if the function f is cocoercive and α lies in a certain interval, we can
solve the cocoercive variational inequity problems via solving the system of monotone
equation πα(x) = 0 or Φα(x) = 0. Recently, Solodov and Svaiter [21] (see also [22, 23,
24]) proposed a class of inexact Newton methods for monotone equations. Let F(x)
be a monotone mapping from Rn into Rn. The Solodov and Svaiter algorithm for the
equation F(x) = 0 proceeds as follows.

Algorithm SS (see [21]). Choose any x0 ∈ Rn, t ∈ (0, 1), and λ ∈ (0, 1). Set
k := 0.

Inexact Newton step. Choose a psd matrix Gk. Choose µk > 0 and γk ∈ [0, 1).
Compute dk ∈ Rn such that

0 = F(xk) + (Gk + µkI)d
k + ek,

where ‖ek‖ ≤ γkµk‖dk‖. Stop if dk = 0. Otherwise,
Line-search step. Find yk = xk + αkd

k, where αk = tmk with mk being the
smallest nonnegative integer m such that

−F(xk + tmdk)T dk ≥ λ(1− γk)µk‖dk‖2.

Projection step. Compute

xk+1 = xk − F(yk)T (xk − yk)

‖F(yk)‖2
F(yk).

Set k := k + 1, and repeat.
As pointed out in [21], the above inexact Newton step is motivated by the idea

of the proximal point algorithm [2, 6, 19]. Algorithm SS has an advantage over other
Newton methods in that the whole iteration sequence is globally convergent to a
solution of the system of equations, provided a solution exists, under no assumption
on F other than continuity and monotonicity. Setting F(x) = πα(x) or Φα(x), from
Theorems 2.1 and 2.2 in this paper and Theorem 2.1 in [21], we have the following
result.

Theorem 3.1. Let f be a cocoercive map with constant β > 0. Substitute F(x)
in Algorithm SS by πα(x) (respectively, Φα(x)) where 0 < α ≤ 4β (respectively,
α > 1/4β). If µk is chosen such that C2 ≥ µk ≥ C1‖F(xk)‖, where C1 and C2 are
two constants, then Algorithm SS converges to a solution of the variational inequality
provided that a solution exists.

While Algorithm SS can be used to solve the monotone equations πα(x) = 0
and Φα(x) = 0, each line-search step needs to compute the values of πα(x

k + βmdk)
and Φα(x

k + βmdk), which represents a major cost of the algorithm in calculating
projection operations. Hence, in general cases, Algorithm SS has high computational
cost per iteration when applied to solve Φα(x) = 0 or πα(x) = 0. To reduce this major
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MONOTONICITY OF FIXED POINT AND NORMAL MAPPINGS 971

computational burden, we propose the following algorithm which needs no projection
operations other than the evaluation of the function f in line-search steps.

Algorithm 3.1. Choose x0 ∈ Rn, t ∈ (0, 1), and γ ∈ [0, 1). Set k := 0.
Inexact Newton Step: Choose a positive semidefinite matrix Gk. Choose µk > 0.

Compute dk ∈ Rn such that

0 = πα(x
k) + (Gk + µkI)d

k + ek,(10)

where ‖ek‖ ≤ γµk‖dk‖. Stop if dk = 0. Otherwise,
Line-search step. Find yk = xk+skd

k, where sk = tmk withmk being the smallest
nonnegative integer m such that

‖f(xk + tmdk)− f(xk)‖ < (1− γ)µk − 4tm

2α
‖dk‖.(11)

Projection step. Compute

xk+1 = xk − πα(y
k)T (xk − yk)

‖πα(yk)‖2
πα(y

k).

Set k := k + 1. Return.
The above algorithm has the following property.
Lemma 3.1. Let πα(x) be given as (1). At kth iteration, if mk is the smallest

nonnegative integer such that (11) holds, then yk = xk + tmkdk satisfies the following
estimation:

−πα(yk)T dk ≥ 1

2
(1− γ)µk‖dk‖2.

Proof. By the definition of πα(x), the nonexpansiveness of the projection operator,
and (11), we have

‖πα(xk + tmkdk)− πα(x
k)‖

= ‖xk + tmkdk −ΠK(xk + tmkdk − αf(xk + tmkdk))

−(xk −ΠK(xk − αf(xk)))‖
≤ tmk‖dk‖+ ‖ΠK(xk + tmkdk − αf(xk + tmkdk))

−ΠK(xk − αf(xk))‖
≤ tmk‖dk‖+ ‖xk + tmkdk − αf(xk + tmkdk)

−(xk − αf(xk))‖
≤ 2tmk‖dk‖+ α‖f(xk + tmkdk)− f(xk)‖
≤ 1

2
(1− γ)µk‖dk‖.(12)

Also,

−πα(xk + tmkdk)T dk

= −[πα(x
k + tmkdk)− πα(x

k)]T dk − πα(x
k)T dk

≥ −‖πα(xk + tmkdk)− πα(x
k)‖‖dk‖ − πα(x

k)T dk.(13)

By (10) and positive semidefiniteness of Gk, we have

−πα(xk)T dk = (dk)T (Gk + µkI)d
k + (ek)T dk

≥ µk‖dk‖2 − γµk‖dk‖2

= (1− γ)µk‖dk‖2.(14)
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972 YUN-BIN ZHAO AND DUAN LI

Combining (12), (13), and (14) yields

−πα(xk + tmkdk)T dk ≥ 1

2
(1− γ)µk‖dk‖2.

The proof is complete.

Using Lemma 3.1 and following the line of the proof of Theorem 2.1 in [21], it is
not difficult to prove the following convergence result.

Theorem 3.2. Let f : Rn → Rn be a continuous function such that there exists
a constant α > 0 such that πα(x) defined by (1) is monotone. Choose Gk and µk

such that ‖Gk‖ ≤ C ′ and µk = C‖πα(xk)‖p, where C ′, C and p are three fixed positive
numbers and p ∈ (0, 1]. Then the sequence {xk} generated by Algorithm 3.1 converges
to a solution of the variational inequality provided that a solution exists.

Algorithm 3.1 can solve the variational inequality whose fixed point mapping
πα(x) is monotone for some α > 0. Since the cocoercivity of f implies the monotonic-
ity of the functions πα(x) and Φα(x) for suitable choices of the value of α, Algorithm
3.1 can locate a solution of any solvable cocoercive variational inequality problem.
This algorithm has an advantage over Algorithm SS in that it does not carry out
any projection operation in the line-search step and hence the computational cost is
significantly reduced.

4. Conclusions. In this paper, we show some sufficient conditions for the mono-
tonicity (strong monotonicity) of the fixed point and normal maps associated with
the variational inequality problem. The results proved in the paper encompass some
known results as particular cases. Based on these results, an iterative algorithm for
a class of variational inequalities is proposed. This algorithm can be viewed as a
modification of Solodov and Svaiter’s method but has lower computational cost than
the latter.
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