Efficiency of ℓ_1 -minimization for ℓ_0 -minimization problems: Analysis via the Range Space Property

Yun-Bin Zhao

School of Mathematics, University of Birmingham http://web.mat.bham.ac.uk/Y.Zhao (E-mail: y.zhao.20bham.ac.uk)

2013/2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

- *l*₀-minimization problem/the sparsest solution to a linear system
- ℓ_0 -minimization and Uniqueness of ℓ_1 -minimizers
- Efficiency analysis for l₁-minimization through a range space property (RSP)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- RSP-based theory for sparse signal recovery
- Sparsest optimal solution of linear programs
- Conclusions

ℓ_0 -minimization problem

 $(\ell_0) \quad Min\{||x||_0 : Ax = b\}$

where A is an $m \times n$ matrix with m < n.

Solving this problem has become a common request in science, biology, and engineering (e.g., signal and image processing [compression, reconstruction, denoising, inpainting, separation and transmission], statistical model selection, compressed sensing, etc.)

• l₀-problem is an NP-hard [Natarajan, 1995]. When is it computationally tractable, and how might it be solved? [Continuous approximation, heuristic method(orthogonal matching pursuit), thresholding-type methods, l₁-method, and weighted l₁-method].

ℓ_1 -minimizaton

• Replacing $||x||_0$ by $||x||_1$ yields the ℓ_1 -minimization:

► ℓ₁-norm

$$||x||_1 = \sum_{i=1}^n |x_i|$$

is the convex envelope of $\|x\|_0$ over the region $\{x: \|x\|_\infty \leq 1\}.$

• When are ℓ_0 - and ℓ_1 -problems equivalent?

Recent ℓ_1 -norm related problems:

Basis pursuit denoising:

Minimize
$$\lambda \|x\|_1 + \|Ax - y\|_2^2$$

Quadratically constrained basis pursuit:

$$\min\{\|x\|_1: \|Ax - y\|_2 \le \varepsilon\}$$

LASSO:

$$\min\{\|Ax - y\|_2 : \|x\|_1 \le \tau\}$$

The Dantzig selector:

$$\min\{\|x\|_{1}: \|A^{T}(Ax-y)\|_{\infty} \leq \tau\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Equivalence & Strong Equivalence

Definition:

- (i) l₀- and l₁-problems are said to be equivalent if there exists a solution to l₀-problem that coincides with the unique solution to the l₁-problem.
- (ii) ℓ_0 and ℓ_1 -problems are said to be **strongly equivalent** if the ℓ_0 -problem has a unique solution which coincides with the unique solution to the ℓ_1 -problem.
- ► At the moment, the understanding of the relationship between ℓ₀- and ℓ₁-problems is mainly focused on the strong equivalence.

[Donoho and Elad (2003), Candés and Tao (2005), Donoho (2006), Fuchs (2004), Bruckstein et al (2009), Juditski and Nemirovoski (2011),] .

Some Strong Equivalence Conditions

Mutual Coherence condition [Donoho and Elad (2003)]:

$$\|x\|_0 < \left(1 + \frac{1}{\mu(A)}\right)/2,$$

where $\mu(A)$ is the mutual coherence defined as

$$\mu(A) = \max_{i \neq j} \frac{|a_i^T a_j|}{\|a_i\|_2 \cdot \|a_j\|_2}$$

Restricted Isometry Property (RIP) [Candès and Tao (2005)]: The matrix A has the restricted isometry property (RIP) of order k if there exists a constant 0 < δ_k < 1 such that</p>

$$(1-\delta_k)\|z\|_2^2 \le \|Az\|_2^2 \le (1+\delta_k)\|z\|_2^2$$

for all k-sparse vector z.

Null Space Property (NSP) [Cohen et al (2009), Zhang (2008), etc.]: The matrix A has the NSP of order k if

$$\|h_{\Lambda}\|_{1} < \|h_{\Lambda_{c}}\|_{1} \quad \left(i.e., \|h_{\Lambda}\|_{1} \le \frac{1}{2}\|h\|_{1}\right)$$

holds for all $0 \neq h \in \mathcal{N}(A)$ and all $\Lambda \subseteq \{1, 2, ..., n\}$ such that $|\Lambda| \leq k$.

► Range Space Property (RSP) of order K [Zhao 2013]: The matrix A^T is said to satisfy the range space property of order K if for any disjoint subsets S₁, S₂ of {1, ..., n} with |S₁| + |S₂| ≤ K, there is a vector η ∈ R(A^T) such that

$$\eta_i = 1 \ \forall i \in S_1; \ \eta_i = -1 \ \forall i \in S_2; \ otherwise \ |\eta_i| < 1.$$

Restriction of 'strong equivalence' Criteria

- ► The strong equivalence between ℓ₀- and ℓ₁-problems is essential to the compressed-sensing theory [Candés (2006), Donoho (2006)]
- However, the strong-equivalence-type conditions can only partially explain the numerical behavior of the l₁-method in many situations. [Candés (2008), Elad (2010), Zhao (2012)].
- ► The probabilistic analysis [Candès and Romberg, 2005] demonstrates that the l₁-method is more powerful of finding sparse solutions of linear systems than what is indicated by various strong-equivalence criteria.
- ► From a mathematical point of view, it is also important to understand the equivalence between ℓ₀- and ℓ₁-problems.

Questions:

- How to deterministically interpret the actual numerical performance of l₁-minimization more efficiently than strong-equivalence type criteria?
- 2. How to deterministically understand the limitation of ℓ_1 -minimization for locating the sparsest solution of linear systems?
- 3. If a linear system has multiple sparsest solutions, when can ℓ_1 -minimization guarantee to find one of them?

The key step is to completely characterize the uniqueness of the solution to ℓ_1 -problems, which is central to both recovering sparse signals and solving ℓ_0 -problems.

Strict complementarity property of LP

Consider the LP problem

$$(P) \quad \min\{c^T x: \quad Qx = p, \ x \ge 0\},\$$

and its dual problem

$$(DP) \quad \max\{p^T y : Q^T y + s = c, \ s \ge 0\},\$$

By optimality, (x*, (y*, s*)) is a solution pair of (P) and (DP) if and only if it satisfies the conditions

$$Qx^* = p, \ x^* \ge 0, \ Q^T y^* + s^* = c, \ s^* \ge 0, \ (x^*)^T s^* = 0.$$

Theorem [Schrijver(1989)]. Let (P) and (DP) be feasible. Then there exists a pair $(x^*, (y^*, s^*))$ of strictly complementary solutions of (P) and (DP), i.e., $(x^*)^T s^* = 0$ and $x^* + s^* > 0$.

The uniqueness of ℓ_1 -minimizers

Theorem 1 (Necessary Conditions) [Zhao 2013]

If x is the unique solution to the ℓ_1 -problem, then

(i) the matrix $(A_{J_{+}} A_{J_{-}})$ has full column rank, where $J_{+} = \{i : x_{i} > 0\}, J_{-} = \{i : x_{i} < 0\}.$

(ii) there exists a vector η such that

$$\begin{cases} \eta \in \mathcal{R}(A^T), \\ \eta_i = 1 \quad for \ all \quad x_i > 0, \\ \eta_i = -1 \quad for \ all \quad x_i < 0, \\ |\eta_i| < 1 \quad for \ all \quad x_i = 0. \end{cases}$$

The uniqueness of ℓ_1 -minimizers

Merging with Fuchs' sufficient condition (2004) yields

Theorem 2 (Necessary and Sufficient Condition)

x is the unique solution to the ℓ_1 -problem, if and only if the following two conditions hold:

(i) the matrix $(A_{J_{+}} A_{J_{-}})$ has full column rank, where $J_{+} = \{i : x_{i} > 0\}, J_{-} = \{i : x_{i} < 0\}.$

(ii) there exists a vector η such that

$$\begin{cases} \eta \in \mathcal{R}(A^{T}), \\ \eta_{i} = 1 & for \ all \quad x_{i} > 0, \\ \eta_{i} = -1 & for \ all \quad x_{i} < 0, \\ |\eta_{i}| < 1 & for \ all \quad x_{i} = 0. \end{cases}$$
(1)

Guaranteed recovery

Corollary 3. If x is the unique solution to ℓ_1 -minimization, then $||x||_0 \le m$, i.e., x must be at least m-sparse.

This Corollary justifies the role of ℓ_1 -method as a sparsity-seeking method.

Definition. A solution x of the system Ax = b is said to have a guaranteed recovery by the ℓ_1 -method if x is the unique solution to the ℓ_1 -problem.

Any x with sparsity $||x||_0 > m$ is definitely not the unique solution of ℓ_1 -problem. Thus there is no guaranteed recovery for such a solution by ℓ_1 -minimization.

Tractability of ℓ_0 -minimization

Theorem 4. ℓ_0 - and ℓ_1 -problems are equivalent if and only if the range space property (RSP) holds at a sparsest solution x to the linear system, i.e.,

$$\begin{cases} \eta \in \mathcal{R}(A^T), \\ \eta_i = 1 \quad for \ all \quad x_i > 0, \\ \eta_i = -1 \quad for \ all \quad x_i < 0, \\ |\eta_i| < 1 \quad for \ all \quad x_i = 0. \end{cases}$$

Corollary 5. ℓ_0 -problem is computationally tractable when the RSP holds at a sparsest solution of the linear system Ax = b.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Efficiency of ℓ_1 -method

Some features of RSP

- ► All existing sufficient conditions for the strong equivalence of ℓ₀- and ℓ₁-problems imply RSP property.
- The RSP does not require the uniqueness of the sparsest solution.
- When ℓ₀-problem has multiple sparsest solutions, ℓ₁-method can still solve the ℓ₀-problem, when the RSP holds at a sparsest solution.

Categories of linear systems:

Class 1: Both ℓ_1 - and ℓ_0 -problems have a unique solution

Class 2: ℓ_1 -problem has a unique solution, but ℓ_0 -problem has multiple solutions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Class 3: Both ℓ_1 - and ℓ_0 -problems have multiple solutions.

RSP doesn't require uniqueness of sparsest solutions

Example 6. Consider the linear system Ax = b with

$$A = \begin{pmatrix} 1 & 0 & -2 & 5 \\ 0 & 1 & 4 & -9 \\ 1 & 0 & -2 & 5 \end{pmatrix}, \text{ and } b = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

The system Ax = b has multiple sparsest solutions:

$$\begin{aligned} x^{(1)} &= (1, -1, 0, 0)^{T}, \\ x^{(2)} &= (0, 1, -1/2, 0)^{T}, \\ x^{(3)} &= (0, 4/5, 0, 1/5)^{T}, \\ x^{(4)} &= (0, 0, 2, 1)^{T}, \\ x^{(5)} &= (1/2, 0, -1/4, 0)^{T}, \\ x^{(6)} &= (4/9, 0, 0, 1/9)^{T}. \end{aligned}$$

- The mutual coherence, RIP and NSP criteria do not apply to this example, since the system has multiple sparsest solutions.
- ► The RSP holds at x⁽⁶⁾. Indeed, by taking u = (1, ⁴/₉, 0)^T, we have that

$$\eta = A^T u = \left(1, \frac{4}{9}, -\frac{2}{9}, 1\right)^T$$

which satisfies the RSP at $x^{(6)}$.

By Theorem 4, ℓ_0 - and ℓ_1 -problems are equivalent.

This linear system is in Class 2.

Example 7. Consider the system Ax = b with

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{2}}\\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}, b = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$$

- ► Clearly, x* = (0, 0, √3, 0, 0, 0) is the unique sparsest solution to this linear system.
- The mutual coherence condition

$$\|x^*\|_0 < \frac{1}{2}(1 + \frac{1}{\mu(A)}) = 1$$

fails.

The RIP of order 2 fails, and the NSP of order 2 also fail.

However, the RSP holds at x*.

In fact, taking $y = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ yields

$$\eta = A^{T} y = \left(\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}, 1, \frac{1 - \sqrt{3} - \sqrt{2}}{3\sqrt{2}}, 0, -\sqrt{\frac{2}{3}}\right),$$

which satisfies the RSP at x^* .

► This example shows that even for problems in Class 1, existing strong equivalence conditions may still fail to confirm the strong equivalence of ℓ₁- and ℓ₀-problems, but the RSP can.

Summary

- 1. The strong equivalence conditions only apply to problems in Class 1, and hence cannot explain the success of ℓ_1 -method for solving ℓ_0 -problems in Class 2.
- 2. The numerical performance of the ℓ_1 -method can be broadly explained by the RSP-based analysis.
- 3. The RSP-based analysis shows that the equivalence of ℓ_0 and ℓ_1 -problems can be achieved not only for a subclass of problems in Class 1, but also for a subclass of problems in Class 2.
- 4. Moreover, the RSP-based theory also sheds light on the limitation of ℓ_1 -methods. Failing to satisfy the RSP, a sparsest solution definitely has no guaranteed recovery by the ℓ_1 -method.

Application to Compressed sensing

- Suppose that we would like to recover a sparse signal x^{*}. To serve this purpose, the so-called sensing matrix A ∈ R^{m×n} with m < n is constructed, and the measurements y = Ax^{*} are taken.
- ► Then we solve the l₁-minimization min{||x||₁ : Ax = y} to obtain a solution x̂.

Two questions:

- ▶ What class of sensing matrices can guarantee the exact recovery x̂ = x*?
- ► How sparse should x* be in order to be exactly recovered by ℓ₁-method?

Uniform Recovery

Definition:

- (i) The exact recovery of all k-sparse vectors (i.e., {x : ||x||₀ ≤ k}) by a single sensing matrix A is called unform recovery.
- (ii) The spark of a given matrix, denoted by Spark(A), is the smallest number of columns of A that are linearly dependent (see e.g., Donoho and Elad (2003)).

Under the RIP and NSP of order 2k, the following result was shown by Candes (2008), Cohen, et al. (2009).

Theorem. If A satisfies the RIP of order 2k with $\delta_{2k} < \sqrt{2} - 1$, or if A satisfies the NSP of order 2k, then all k-sparse signals can be exectly recovered, where $k < \frac{1}{2}Spark(A)$.

Range space property (RSP) of order K

RSP of order *K*. The matrix A^T is said to satisfy the range space property of order *K* if for any disjoint subsets S_1, S_2 of $\{1, ..., n\}$ with $|S_1| + |S_2| \le K$, the range space $\mathcal{R}(A^T)$ contains a vector η such that

$$\eta_i = 1 \ \forall i \in S_1; \ \eta_i = -1 \ \forall i \in S_2; \ otherwise \ |\eta_i| < 1.$$

Lemma 8. Suppose that one of the following holds:

•
$$K < \frac{1}{2} \left(1 + \frac{1}{\mu(A)} \right)$$

• The matrix A has the RIP of order 2K with constant $\delta_{2K} < \sqrt{2} - 1$.

► The matrix A has the NSP of order 2K. Then the matrix A^T has the RSP of order K.

Uniform Recovery Theorem

Theorem 9. Any x with $||x||_0 \le K$ can be exactly recovered by ℓ_1 -minimization if and only if A^T has the RSP of order K.

Thus the RSP of order K is a necessary and sufficient condition for exactly recovering all K-sparse vectors, so the RSP of order K has completely characterized the uniform recovery by the ℓ_1 -method.

Lemma (Upper bound for K) If A^T has the RSP of order K, then any K columns of A are linearly independent, so K < Spark(A).

Beyond the uniform recovery

RIP or NSP of order 2k can recover a k-sparse vector with k < Spark(A)/2. From a mathematical point of view, it is interesting to know how a vector x with

$$\frac{1}{2} \mathrm{Spark}(A) \leq \|x\|_0 < \mathrm{Spark}(A))$$

can be possibly recovered.

- ► This is also motivated by some practical applications, where an unknown vector (representing a signal or an image) might not be sparse enough to be in the range ||x||₀ < Spark(A)/2.</p>
- Theorem 2 makes it possible to handle such a situation by introducing a weak-RSP concept governing the so-called non-uniform recovery of signals.

Extended to problems with nonnegativity constraints

$$\min\{\|x\|_0: Ax = b, x \ge 0\},$$
$$\min\{\|x\|_1: Ax = b, x \ge 0\},$$

Theorem If x is the unique least ℓ_1 -norm nonnegative solution to the system Ax = b if and only of if there exists a vector $\eta \in R^n$ satisfying

 $\eta \in \mathcal{R}(A^T), \ \eta_i = 1 \text{ for } i \in J_+, \text{ and } \eta_i < 1 \text{ for } i \notin J_+,$ (2) where $J_+ = \{i : x_i > 0\}.$

Application to linear programs

$$\min\{c^T x : Ax = b, x \ge 0\}.$$

- In many situations, reducing the number of activities is vital for efficient planning, management and resource allocations.
- The sparsest optimal solution of a linear program provides the smallest number of activities to achieve the optimal objective value.
- Let d^* be the optimal value of LP. The optimal solution set of the LP is given by

$$S^* = \{x : Ax = b, x \ge 0, c^T x = d^*\}.$$

A sparsest optimal solution to the LP is an optimal solution to the $\ell_0\mbox{-}problem$

$$\min\left\{\|x\|_0: \begin{pmatrix} A\\ c^T \end{pmatrix} x = \begin{pmatrix} b\\ d^* \end{pmatrix}, x \ge 0\right\},\$$

associated with which is the ℓ_1 -problem

$$\min\left\{\|x\|_1: \begin{pmatrix} A\\ c^{\mathsf{T}} \end{pmatrix} x = \begin{pmatrix} b\\ d^* \end{pmatrix}, \ x \ge 0\right\}.$$

Theorem 10. *x* is the unique least ℓ_1 -norm optimal solution to LP if and only if the matrix $H = \begin{pmatrix} A_{J_+} \\ c_{J_+}^T \end{pmatrix}$ has full column rank, and there exists a vector $\eta \in \mathbb{R}^n$ obeying

$$\eta \in \mathcal{R}([A^T, c]), \ \eta_i = 1 \ \forall i \in J_+, \ and \ \eta_i < 1 \ \forall i \notin J_+$$

where $J_+ = \{i : x_i > 0\}$. Moreover, a sparsest optimal solution to LP is the unique least ℓ_1 -norm optimal solution of the LP if and only if the above RSP holds at this optimal solution.

Conclusions

- ► The uniqueness of the solution to l₁-problem can be characterized: x is the unique solution to the l₁-problem if and only if the range space property (RSP) of A^T and a full-rank property hold at x.
- It was shown that l₀- and l₁-problems are equivalent if and only if the range space property is satisfied at a sparsest solution of linear systems.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Through the RSP-based analysis, the numerical efficiency and limitation of l₁-minimization for solving l₀-minimization can be deterministically explained.
- ► We have shown that the equivalence of ℓ₀- and ℓ₁-problems exists for a broad range of linear systems in Classes 1 and 2.
- Moreove, it was shown that all k-sparse signals can be exactly recovered if and only if the sensing matrix A^T has the RSP of oder k.

Main references

- E. Candès, Compressive sampling, International Congress of Mathematicians, Vol. III, 2006, 1433–1452.
- D. Donoho, Compressed sensing, *IEEE Trans. Inform. Theory*, 52 (2006), 1289–1306.
- D. L. Donoho and M. Elad, Optimality sparse representation ... via l₁ minimization, Proc. Natl. Acad. Sci., 100 (2003), 2197-2202.
- J.J. Fuchs, On sparse representations in arbitrary redundant bases, *IEEE Trans. Inform. Theory*, 50 (2004), 1341–1344.
- Y.B. Zhao, RSP-based analysis for sparsest and least ℓ_1 -norm solutions to underdetermined linear systems, *IEEE Trans. Signal Processing*, 61 (2013), no. 22, pp. 5777-5788
- Y.B. Zhao, Equivalence and Strong Equivalence between the Sparsest and Least l₁-Norm Nonnegative Solutions of Linear Systems and Their Applications, Technical reprot, University of Birmingham, June 2012.