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`0-minimization problem

(`0) Min{‖x‖0 : Ax = b}

where A is an m × n matrix with m < n.

I Solving this problem has become a common request in

science, biology, and engineering (e.g., signal and image

processing [compression, reconstruction, denoising, inpainting,

separation and transmission], statistical model selection,

compressed sensing, etc.)

I `0-problem is an NP-hard [Natarajan, 1995]. When is it

computationally tractable, and how might it be solved?

[Continuous approximation, heuristic method(orthogonal

matching pursuit), thresholding-type methods, `1-method,

and weighted `1-method].



`1-minimizaton

I Replacing ‖x‖0 by ‖x‖1 yields the `1-minimization:

(`1) Minimize ‖x‖1

s.t. Ax = b,

I `1-norm

‖x‖1 =
n∑

i=1

|xi |

is the convex envelope of ‖x‖0 over the region

{x : ‖x‖∞ ≤ 1}.
I When are `0- and `1-problems equivalent?



Recent `1-norm related problems:

I Basis pursuit denoising:

Minimize λ‖x‖1 + ‖Ax − y‖2
2

I Quadratically constrained basis pursuit:

min{‖x‖1 : ‖Ax − y‖2 ≤ ε}

I LASSO:

min{‖Ax − y‖2 : ‖x‖1 ≤ τ}

I The Dantzig selector:

min{‖x‖1 : ‖AT (Ax − y)‖∞ ≤ τ}



Equivalence & Strong Equivalence

I Definition:

(i) `0- and `1-problems are said to be equivalent if there exists a
solution to `0-problem that coincides with the unique solution
to the `1-problem.

(ii) `0- and `1-problems are said to be strongly equivalent if the
`0-problem has a unique solution which coincides with the
unique solution to the `1-problem.

I At the moment, the understanding of the relationship between

`0- and `1-problems is mainly focused on the strong

equivalence.

[Donoho and Elad (2003), Candés and Tao (2005), Donoho

(2006), Fuchs (2004), Bruckstein et al (2009), Juditski and

Nemirovoski (2011), .... ] .



Some Strong Equivalence Conditions

I Mutual Coherence condition [Donoho and Elad (2003)]:

‖x‖0 <

(
1 +

1

µ(A)

)
/2,

where µ(A) is the mutual coherence defined as

µ(A) = max
i 6=j

|aTi aj |
‖ai‖2 · ‖aj‖2

.

I Restricted Isometry Property (RIP) [Candès and Tao

(2005)]: The matrix A has the restricted isometry property

(RIP) of order k if there exists a constant 0 < δk < 1 such

that

(1− δk)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δk)‖z‖2
2

for all k-sparse vector z .



I Null Space Property (NSP) [Cohen et al (2009), Zhang

(2008), etc.]: The matrix A has the NSP of order k if

‖hΛ‖1 < ‖hΛc‖1

(
i .e., ‖hΛ‖1 ≤

1

2
‖h‖1

)
holds for all 0 6= h ∈ N (A) and all Λ ⊆ {1, 2, ..., n} such that

|Λ| ≤ k .

I Range Space Property (RSP) of order K [Zhao 2013]:

The matrix AT is said to satisfy the range space property of

order K if for any disjoint subsets S1,S2 of {1, ..., n} with

|S1|+ |S2| ≤ K , there is a vector η ∈ R(AT ) such that

ηi = 1 ∀i ∈ S1; ηi = −1 ∀i ∈ S2; otherwise |ηi | < 1.



Restriction of ‘strong equivalence’ Criteria

I The strong equivalence between `0- and `1-problems is

essential to the compressed-sensing theory [Candés (2006),

Donoho (2006)]

I However, the strong-equivalence-type conditions can only

partially explain the numerical behavior of the `1-method in

many situations. [Candés (2008), Elad (2010), Zhao (2012)].

I The probabilistic analysis [Candès and Romberg, 2005]

demonstrates that the `1-method is more powerful of finding

sparse solutions of linear systems than what is indicated by

various strong-equivalence criteria.

I From a mathematical point of view, it is also important to

understand the equivalence between `0- and `1-problems.



Questions:

1. How to deterministically interpret the actual numerical

performance of `1-minimization more efficiently than

strong-equivalence type criteria?

2. How to deterministically understand the limitation of

`1-minimization for locating the sparsest solution of linear

systems?

3. If a linear system has multiple sparsest solutions, when can

`1-minimization guarantee to find one of them?

The key step is to completely characterize the uniqueness of the

solution to `1-problems, which is central to both recovering sparse

signals and solving `0-problems.



Strict complementarity property of LP

I Consider the LP problem

(P) min{cT x : Qx = p, x ≥ 0},

and its dual problem

(DP) max{pT y : QT y + s = c , s ≥ 0},

I By optimality, (x∗, (y∗, s∗)) is a solution pair of (P) and (DP)

if and only if it satisfies the conditions

Qx∗ = p, x∗ ≥ 0, QT y∗ + s∗ = c , s∗ ≥ 0, (x∗)T s∗ = 0.

Theorem [Schrijver(1989)]. Let (P) and (DP) be feasible. Then

there exists a pair (x∗, (y∗, s∗)) of strictly complementary solutions

of (P) and (DP), i.e., (x∗)T s∗ = 0 and x∗ + s∗ > 0.



The uniqueness of `1-minimizers

Theorem 1 (Necessary Conditions) [Zhao 2013]

If x is the unique solution to the `1-problem, then

(i) the matrix
(

AJ+ AJ−

)
has full column rank, where

J+ = {i : xi > 0}, J− = {i : xi < 0}.

(ii) there exists a vector η such that
η ∈ R(AT ),
ηi = 1 for all xi > 0,
ηi = −1 for all xi < 0,
|ηi | < 1 for all xi = 0.



The uniqueness of `1-minimizers

Merging with Fuchs’ sufficient condition (2004) yields

Theorem 2 (Necessary and Sufficient Condition)

x is the unique solution to the `1-problem, if and only if the

following two conditions hold:

(i) the matrix
(

AJ+ AJ−

)
has full column rank, where

J+ = {i : xi > 0}, J− = {i : xi < 0}.

(ii) there exists a vector η such that
η ∈ R(AT ),
ηi = 1 for all xi > 0,
ηi = −1 for all xi < 0,
|ηi | < 1 for all xi = 0.

(1)



Guaranteed recovery

Corollary 3. If x is the unique solution to `1-minimization, then

‖x‖0 ≤ m, i.e., x must be at least m-sparse.

This Corollary justifies the role of `1-method as a sparsity-seeking

method.

Definition. A solution x of the system Ax = b is said to have a

guaranteed recovery by the `1-method if x is the unique solution to

the `1-problem.

Any x with sparsity ‖x‖0 > m is definitely not the unique solution

of `1-problem. Thus there is no guaranteed recovery for such a

solution by `1-minimization.



Tractability of `0-minimization

Theorem 4. `0- and `1-problems are equivalent if and only if the

range space property (RSP) holds at a sparsest solution x to the

linear system, i.e.,
η ∈ R(AT ),
ηi = 1 for all xi > 0,
ηi = −1 for all xi < 0,
|ηi | < 1 for all xi = 0.

Corollary 5. `0-problem is computationally tractable when the

RSP holds at a sparsest solution of the linear system Ax = b.



Efficiency of `1-method

Some features of RSP

I All existing sufficient conditions for the strong equivalence of

`0- and `1-problems imply RSP property.

I The RSP does not require the uniqueness of the sparsest

solution.

I When `0-problem has multiple sparsest solutions, `1-method

can still solve the `0-problem, when the RSP holds at a

sparsest solution.

Categories of linear systems:

Class 1: Both `1- and `0-problems have a unique soluion

Class 2: `1-problem has a unique solution, but `0-problem has

multiple solutions.

Class 3: Both `1- and `0-problems have multiple solutions.



RSP doesn’t require uniqueness of sparsest solutions

Example 6. Consider the linear system Ax = b with

A =

 1 0 −2 5
0 1 4 −9
1 0 −2 5

 , and b =

 1
−1

1

 .

The system Ax = b has multiple sparsest solutions:

x (1) = (1,−1, 0, 0)T ,

x (2) = (0, 1,−1/2, 0)T ,

x (3) = (0, 4/5, 0, 1/5)T ,

x (4) = (0, 0, 2, 1)T ,

x (5) = (1/2, 0,−1/4, 0)T ,

x (6) = (4/9, 0, 0, 1/9)T .



I The mutual coherence, RIP and NSP criteria do not apply to

this example, since the system has multiple sparsest solutions.

I The RSP holds at x (6). Indeed, by taking u = (1, 4
9 , 0)T , we

have that

η = ATu =

(
1,

4

9
,−2

9
, 1

)T

,

which satisfies the RSP at x (6).

By Theorem 4, `0- and `1-problems are equivalent.

I This linear system is in Class 2.



Example 7. Consider the system Ax = b with

A =


1√
2

0 1√
3
− 1√

2
1√
2

0
1√
2

1√
2

1√
3
− 1√

3
0 − 1√

2

0 1√
2

1√
3

1√
6
− 1√

2
− 1√

2

 , b =

 1
1
1


I Clearly, x∗ = (0, 0,

√
3, 0, 0, 0) is the unique sparsest solution

to this linear system.

I The mutual coherence condition

‖x∗‖0 <
1

2
(1 +

1

µ(A)
) = 1

fails.

I The RIP of order 2 fails, and the NSP of order 2 also fail.



I However, the RSP holds at x∗.

In fact, taking y = ( 1√
3
, 1√

3
, 1√

3
) yields

η = AT y =

(√
2

3
,

√
2

3
, 1,

1−
√

3−
√

2

3
√

2
, 0,−

√
2

3

)
,

which satisfies the RSP at x∗.

I This example shows that even for problems in Class 1, existing

strong equivalence conditions may still fail to confirm the

strong equivalence of `1- and `0-problems, but the RSP can.



Summary

1. The strong equivalence conditions only apply to problems in

Class 1, and hence cannot explain the success of `1-method

for solving `0-problems in Class 2.

2. The numerical performance of the `1-method can be broadly

explained by the RSP-based analysis.

3. The RSP-based analysis shows that the equivalence of `0- and

`1-problems can be achieved not only for a subclass of

problems in Class 1, but also for a subclass of problems in

Class 2.

4. Moreover, the RSP-based theory also sheds light on the

limitation of `1-methods. Failing to satisfy the RSP, a

sparsest solution definitely has no guaranteed recovery by the

`1-method.



Application to Compressed sensing

I Suppose that we would like to recover a sparse signal x∗. To

serve this purpose, the so-called sensing matrix A ∈ Rm×n

with m < n is constructed, and the measurements y = Ax∗

are taken.

I Then we solve the `1-minimization min{‖x‖1 : Ax = y} to

obtain a solution x̂ .

Two questions:

I What class of sensing matrices can guarantee the exact

recovery x̂ = x∗?

I How sparse should x∗ be in order to be exactly recovered by

`1-method?



Uniform Recovery

Definition:

(i) The exact recovery of all k-sparse vectors (i.e.,

{x : ‖x‖0 ≤ k}) by a single sensing matrix A is called unform

recovery.

(ii) The spark of a given matrix, denoted by Spark(A), is the

smallest number of columns of A that are linearly dependent

(see e.g., Donoho and Elad (2003)).

Under the RIP and NSP of order 2k, the following result was

shown by Candes (2008), Cohen, et al. (2009).

Theorem. If A satisfies the RIP of order 2k with δ2k <
√

2− 1, or

if A satisfies the NSP of order 2k, then all k-sparse signals can be

exectly recovered, where k < 1
2Spark(A).



Range space property (RSP) of order K

RSP of order K . The matrix AT is said to satisfy the range

space property of order K if for any disjoint subsets S1,S2 of

{1, ..., n} with |S1|+ |S2| ≤ K , the range space R(AT ) contains a

vector η such that

ηi = 1 ∀i ∈ S1; ηi = −1 ∀i ∈ S2; otherwise |ηi | < 1.

Lemma 8. Suppose that one of the following holds:

I K < 1
2

(
1 + 1

µ(A)

)
.

I The matrix A has the RIP of order 2K with constant

δ2K <
√

2− 1.

I The matrix A has the NSP of order 2K .

Then the matrix AT has the RSP of order K .



Uniform Recovery Theorem

Theorem 9. Any x with ‖x‖0 ≤ K can be exactly recovered by

`1-minimization if and only if AT has the RSP of order K .

Thus the RSP of order K is a necessary and sufficient condition for

exactly recovering all K -sparse vectors, so the RSP of order K has

completely characterized the uniform recovery by the `1-method.

Lemma (Upper bound for K ) If AT has the RSP of order K , then

any K columns of A are linearly independent, so K < Spark(A).



Beyond the uniform recovery

I RIP or NSP of order 2k can recover a k-sparse vector with

k < Spark(A)/2. From a mathematical point of view, it is

interesting to know how a vector x with

1

2
Spark(A) ≤ ‖x‖0 < Spark(A))

can be possibly recovered.

I This is also motivated by some practical applications, where

an unknown vector (representing a signal or an image) might

not be sparse enough to be in the range ‖x‖0 < Spark(A)/2.

I Theorem 2 makes it possible to handle such a situation by

introducing a weak-RSP concept governing the so-called

non-uniform recovery of signals.



Extended to problems with nonnegativity constraints

min{‖x‖0 : Ax = b, x ≥ 0},

min{‖x‖1 : Ax = b, x ≥ 0},

Theorem If x is the unique least `1-norm nonnegative solution to

the system Ax = b if and only of if there exists a vector η ∈ Rn

satisfying

η ∈ R(AT ), ηi = 1 for i ∈ J+, and ηi < 1 for i /∈ J+, (2)

where J+ = {i : xi > 0}.



Application to linear programs

min{cT x : Ax = b, x ≥ 0}.

I In many situations, reducing the number of activities is vital

for efficient planning, management and resource allocations.

I The sparsest optimal solution of a linear program provides the

smallest number of activities to achieve the optimal objective

value.

Let d∗ be the optimal value of LP. The optimal solution set of the

LP is given by

S∗ = {x : Ax = b, x ≥ 0, cT x = d∗}.



A sparsest optimal solution to the LP is an optimal solution to the
`0-problem

min

{
‖x‖0 :

(
A

cT

)
x =

(
b

d∗

)
, x ≥ 0

}
,

associated with which is the `1-problem

min

{
‖x‖1 :

(
A

cT

)
x =

(
b

d∗

)
, x ≥ 0

}
.

Theorem 10. x is the unique least `1-norm optimal solution to

LP if and only if the matrix H =

(
AJ+

cT
J+

)
has full column rank,

and there exists a vector η ∈ Rn obeying

η ∈ R([AT , c]), ηi = 1 ∀i ∈ J+, and ηi < 1 ∀i /∈ J+

where J+ = {i : xi > 0}. Moreover, a sparsest optimal solution to

LP is the unique least `1-norm optimal solution of the LP if and

only if the above RSP holds at this optimal solution.



Conclusions

I The uniqueness of the solution to `1-problem can be

characterized: x is the unique solution to the `1-problem if

and only if the range space property (RSP) of AT and a

full-rank property hold at x .

I It was shown that `0- and `1-problems are equivalent if and

only if the range space property is satisfied at a sparsest

solution of linear systems.



I Through the RSP-based analysis, the numerical efficiency and

limitation of `1-minimization for solving `0-minimization can

be deterministically explained.

I We have shown that the equivalence of `0- and `1-problems

exists for a broad range of linear systems in Classes 1 and 2.

I Moreove, it was shown that all k-sparse signals can be exactly

recovered if and only if the sensing matrix AT has the RSP of

oder k .
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