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1. Introduction. Consider the following nonlinear complementarity problem (NCP
for short),
f(#) 20, 220, 2" f(z) =0,

where f is a continuous function from R" into itself. This problem has now gained much
importance because of its many applications in optimization, economics, engineering,
etc. (see [8, 12, 16, 18]).

There are several equivalent formulations of the NCP in form of a nonlinear equation
F(z) = 0, where F is a continuous function from R" into R™. Given such an equation
F(xz) = 0, the most used technique is to perturb F' to certain F, where € is a positive
parameter, and then consider the equation F.(x) = 0. If F.(z) = 0 has a unique solution
denoted by z(¢) and z(e) is continuous in ¢, then the solutions {z(e)} describe, depending
on the nature of F¢(z), a short path denoted by {z(¢) : € € (0,£]}, or a long path {z(e) :
e € (0,00)}. If a short path {z(e) : € € (0,¢]} is bounded, then for any subsequence
{ex} with gy — 0 the sequence {z(ex)} has at least one accumulation point, and by
the continuity each of the accumulation points is a solution to NCP. Thus, a path can
be viewed as a certain continuous curve associated with the solution set of NCP. Based
on the path, we may construct various computational methods for solving NCP, for
example, interior-point path-following methods (see, e.g., [15, 25, 26, 27, 28, 32, 39)]),
regularization methods (see [8, 10, 11, 41]) and non-interior path-following methods (see
[1, 2, 3, 5,7, 17, 21]). The most common interior-point path-following method is based
on the central path. The curve {z(g) : € € (0,00)} is said to be the central path if for
each € > 0 the vector z(¢) is the unique solution to the system

z(e) >0, f(z(e)) >0, X(e)f(x(e)) = ee, (1)

where X (¢) = diag(z(g)) and e = (1,...,1)T, and z(-) is continuous on (0, 00).

In the case when f is a monotone function and the NCP is strictly feasible (i.e., there
is a vector u € R"™ such that u > 0 and f(u) > 0), the existence of the central path is
well known, see for example, [14, 25, 30, 31]. This existence result has been extended to
some non-monotone complementarity problems. Kojima, Mizuno and Noma [27] proved
that the central path exists if f is a uniform-P function. If f is a Py-function satisfying a
properness condition and the NCP is strictly feasible, Kojima, Megiddo and Noma [25]
showed that there exists a class of interior-point trajectories which includes the central
path as a special case. If f is a Pg-function and NCP has a nonempty and bounded
solution set, Chen, Chen and Kanzow [4] and Gowda and Tawhid [13] proved that NCP
has a short central path {z(e) : € € (0,£)}. Under a certain properness condition, Gowda
and Tawhid [13] showed that the NCP with a Py-function has a long central path [13,
Theorem 9]. It should be pointed out that non-interior-point trajectories have also been
extensively studied in the recent literature, see [1, 2, 3, 5, 10, 11, 13, 17, 35, 37|.

However, for a general complementarity problem, the system (1) may have multiple
solutions for a given ¢ > 0, and even if the solution is unique, it is not necessarily
continuous in €. As a result, the existence of the central path is not always guaranteed.



We define the (multi-valued) mapping U : (0,00) — S(R"} ) by
Ue) ={z € R} : f(z) > 0,X f(z) = ee}, (2)

where X = diag(z) and S(R"} ) is the set of all subsets of R ,, the positive orthant of
R"™. The main contribution of this paper is to describe several sufficient conditions which
ensure that the multi-valued mapping U(e) has the following desirable properties:

(a) U(e) # 0 for each e € (0,00).

(b) For any fized € > 0, the set U.c( g U(€) is bounded.

(c) IfU(e) # 0, then U(e) is upper semi-continuous at €. (That is, for any sufficiently
small § > 0, we have that O # U(e") CU(g) + 0B for all €' sufficiently close to €, where
B = {z € R": ||z|| < 1} is the Euclidean unit ball).

(d) IfU(-) is single-valued, then U(e) is continuous at € provided that U(e) # 0.

If the mapping U(-) satisfies the above properties (a), (b) and (c), then the set
Uee(0,00)U(€) can be viewed as an “interior band” associated with the solution set of
NCP. The “interior band” can be viewed as a generalization of the concept of the central
path. Indeed, if U(-) satisfies properties (a), (b) and (d), then the set U,¢(g,00) U(€)
coincides with the central path of NCP.

There exist several ways generating the central path of NCP, including maximal
monotone methods [14, 30], minimization methods [31], homeomorphism techniques [6,
14, 15, 25, 33|, the parameterized Sard theorem [42] and weakly univalent properties
of continuous functions [13, 35, 37]. In this paper, we develop a different method for
the analysis of the existence of the central path. By means of the homotopy invariance
property of the degree and a newly introduced concept of interior-point-e-exceptional
family for continuous functions, we establish an alternative theorem for the nonemptyness
of the mapping U(e). For a given ¢ > 0, the result states that there exists either
an interior-point-e-exceptional family for f or U(e) # (). Consequently, to show the
nonemptyness of the mapping U(-), it is sufficient to verify conditions under which the
function f possesses no interior-point-e-exceptional family for any € > 0. Along this
idea, we provide several sufficient conditions that guarantee the aforementioned desirable
properties of the multi-valued mapping U(-). These sufficient conditions are related to
several classes of (non-monotone) functions such as semi-monotone, quasi-P,-, P(1, a, §)-
and exceptionally regular maps. The results proved in the paper include several known
results on the central path as special instances.

This paper is organized as follows: In Section 2, we introduce some definitions and
some basic results that will be utilized in the paper. In Section 3, we show an essen-
tial alternative theorem that is useful in later derivations. In Section 4, we establish
some sufficient conditions to guarantee the nonemptyness, boundedness and upper semi-
continuity of the map U(e), and the existence of the central path. Some concluding
remarks are given in Section 5.

Notations: R denotes (respectively, R} ) the space of n-dimensional real vectors
with nonnegative components (respectively, positive components), and R™*" stands for
the space of n X n matrices. For any z € R"™, we denote by ||z|| the Euclidean norm of z,



by z; the ith component of z for i = 1, ..., n, and by [z]+ the vector whose ith component
is max{0,z;}. When z € R} (R}, ), we also write it as 2 > 0 (z > 0) for the simplicity.

2. Preliminaries. We first introduce the concept of an Eg-function, which is a
generalization of an Eg-matrix (i.e., semi-monotone matrix), see [8]. Recall that an n xn
matrix M is said to be an Eg-matrix if for any 0 # = > 0, there exists a component
z; > 0 such that (Mz); > 0. M is a strictly semi-monotone matrix if for any 0 # = > 0,
there exists a component z; > 0 such that (Mz); > 0.

DEFINITION 2.1. A function f : R" — R" is said to be an Ey-function (i.e., semi-
monotone function) if for any x # y and x > y in R", there exists some i such that
z; > yi and fi(z) > fi(y). [ is a strictly semi-monotone function if for any x # y and
x >y in R", there exists some i such that z; > y; and fi(z) > fi(y)-

Tt is evident that f = Mz +q, where M € R™*™ and ¢ € R", is an Ey-function if and
only if M is an Eg-matrix. We recall that a function f is said to be a Py(P)-function if
for any z # y in R"

max (z; — i) (fi(z) — fily)) 2 0(> 0).

Clearly, a Py-function is an Eyp-function. However, the converse is not true, see [8,
Example 3.9.2]. Thus the class of Eg-functions is larger than that of Py-functions.
DEFINITION 2.2. (D1): [23, 24] A map f : R™ — R" is said to be quasi-monotone if
for z #vy in R", f(y)T(z —y) > 0 implies that f(z)" (z —y) > 0.
(D2): [26, 44] A map f : R™ — R"™ is said to be a P.-map if there ezists a scalar
k > 0 such that for any ¢ # y in R™ we have

(1+5) Y (@i—w)(filz) - fHiw)+ Y. (i —v)(filz) - fily)) >0,

i€l (z,y) i€l_(zy)

where
Ii(z,y) = {i: (zi —yi)(fi(z) — fi(y)) > 0}, 3)
I (z,y) = {i: (z; —yi)(fi(z) — fi(y)) < 0}.

(D3): [26] M is said to be a P.-matriz if there exists a scalar k > 0 such that

(1 +r) Y zi(Mz); + ) z(Mz); >0
icly i€l
where I, = {i : z;(Mz); >0} and I_ = {i : z;(Mz); < 0}.

Clearly, for linear map f(z) = Mz +gq, f is a P,-map if and only if M is a P,-matrix.
Véliaho [40] showed that the class of P,-matrices coincides with the class of sufficient
matrices [8, 9]. A new equivalent definition of the P,-matrix is given in [46]. The next
concept is a generalization of the quasi-monotone function and the P,-map.

DEFINITION 2.3. [46] A function f : R™ — R™ is said to be a quasi-P,-map if there
exists a constant T > 0 such that the following implication holds for all x # y in R™.

F@-y) -7 Y (zi—9)filz) - fily) > 0= f(z)" (z —y) 20,

i€l (zy)



where I (x,y) is defined by (3)

iFrom the above definition, it is evident that the class of quasi-P,-maps includes
quasi-monotone functions and P.-maps. (see, [46] for details). The following concept of
a P(7,a,3)-map is also a generalization of the P,-map. In [46], it is pointed out that
monotone functions and P,-maps are special cases of P(7, a, 5)-maps.

DEFINITION 2.4. [46] A mapping f : R — R"™ is said to be a P(7, a, )-map, if there
exist constants T > 0, > 0 and 0 < B < 1 such that the following inequality holds for
allx #y in R":

(1 +7) max (e — ) (fi(2) = £:(0)) + min (@ = y)(fi(z) — fiy)) + alla — y])* > 0.

The concept of exceptional regularity that we are going to define next has a close
relation to such concepts as copositive, Ry-, Pg-, and E¢-functions. It is shown that
the exceptional regularity is a weak sufficient condition for the nonemptyness and the
boundedness of the mapping U(e) (see Section 4.4 for details).

DEFINITION 2.5. Let f be a function from R™ into R™. f is said to be ezceptionally
reqular if for each 8 > 0, the following complementarity problem has no solution of norm
1:

G(z) + Bz >0, >0, 7 (G(x) + Bz) =0,

where G(z) = f(z) — f(0).

The following two results are employed to prove the main result of the next section.
Let S be an open bounded set of R". We denote by S and 9(S) the closure and boundary
of S, respectively. Let F be a continuous function from S into R™. For and y € R" such
that y ¢ F'(9(S)), the symbol deg(F, S,y) denotes the topological degree associated with
F,S and y (see [34]).

LEMMA 2.1. [34] Let S C R"™ be an open bounded set and F,G be two continuous
functions from S into R™.

(i) Let the homotopy H (x,t) be defined as follows

H(z,t) =tG(z) + (1 —t)F(z), 0 <t <1,

and let y be an arbitrary point in R™. Ify ¢ {H(x,t) : z € S and t € [0,1]}, then
deg(G, S,y) = deg(F, S,y).

(ii) If deg(F, S,y) # 0, then the equation F(x) =y has a solution in S.

The following upper semi-continuity theorem of weakly univalent maps is due to
Ravindran and Gowda [35].

LEMMA 2.2. [35] Let g : R"® — R"™ be weakly univalent, that is, g is continuous and
there exist one-to-one continuous functions g : R™ — R™ such that g — g uniformly
on every bounded subset of R™. Suppose that ¢* € R™ such that g~ '(q*) is nonempty and
compact. Then for any given scalar § > 0 there exists a scalar v > 0 such that for any
weakly univalent function h : R™ — R™ and for any q € R™ with

sup [|h(z) — g(@)| <7, llg =4I| <,
Q



we have
0#h""(q) Cg~'(¢") + 6B

where B denotes the open unit ball in R™ and Q2 = g '(q*) + 0B.

3. Interior-point-c-exceptional family and an alternative theorem. We now
introduce the concept of the interior-point-e-exceptional family for a continuous function,
which brings us with a new idea to investigate the properties of the mapping U(e)
defined by (2), especially the existence of the central path for nonlinear complementarity
problems. This concept can be viewed as a variant of the exceptional family of elements
which was originally introduced to study the solvability of complementarity problems
and variational inequalities [19, 20, 36, 43, 44, 45, 46].

DEFINITION 3.1. Let f : R™ — R" be a continuous function. Given a scalar € > 0,
we say that a sequence {z" },~0 C Rl | is an interior-point-c-exceptional family for f if
|lz"|| = oo as r — oo and for each z" there exists a positive number 0 < p, < 1 such
that

1
fi(z") = E (,u,« - —) z; + Elﬁrr foralli=1,...,n. (4)
2 Ly z]

Based on the above concept, we can prove the following result which plays a key role
in the analysis of the paper.

THEOREM 3.1. Let f be a continuous function from R"™ into R™. Then for each e > 0
there exists either a point x(e) such that

z(e) >0, f(z(e)) >0, zi(e)fi(z(e)) =¢, i=1,..,n (5)

or an interior-point-e-exceptional family for f.

Proof. Let F(z) = (Fi(z), ..., F,,(z))T be the Fischer-Burmeister function of f defined

by
Fi(z) = zi + fi(z) —\/22 + fA(z), i =1,...,n.

It is well known that z solves NCP if and only if z solves the equation F(z) = 0. Given
e > 0, we perturb F(z) to F.(z) given by

[Fe(@)]; = @i + fila) = \Jo? + f2(@) + 26, i = 1, .cm. (6)

It is easy to see that z(e) solves the equation F.(z) = 0 if and only if z(e) satisfies the
system (5). We now consider the convex homotopy between the mapping F.(z) and the
identity mapping, that is,

H(z,t) =tz + (1 —1t)F:(z), 0<t < 1.

Let 7 > 0 be an arbitrary positive scalar. Consider the open bounded set S, = {z €
R"™ : ||z|| < r}. The boundary of S, is given by 39S, = {z € R" : ||z|| = r}. There are
only two cases.



Case 1. There exists a number 7 > 0 such that 0 ¢ {H(z,t) : z € S, and ¢t € [0,1]}.
In this case, by (i) of Lemma 2.1, we have that deg(1, S,,0) = deg(F.(z), Sy,0), where
I is the identity mapping. Since deg(I, Sy,0) = 1, from the above equation and (ii) of
Lemma 2.1, we deduce that the equation F.(z) = 0 has a solution, denoted by z(¢),
which satisfies the system (5).

Case 2. For each r > 0, there exists some point 2" € 35, and ¢, € [0, 1] such that

0=H(z",t) = tra” + (1 — t,)F.(a"). (7)

If t, = 0 for some 7 > 0, then the above equation reduces to F.(z") = 0 which implies
that z(g) := 2" satisfies the system (5).

We now verify that ¢, # 1. In fact, if ¢, = 1 for some r > 0, then from (7 ) we have
that £" = 0, which is impossible since z" € 35,.

Therefore, it is sufficient to consider the case of 0 < £, < 1 for all » > 0. In this case,
it is easy to show that f actually has an interior-point-e-exceptional family. Indeed, in
this case, (7) can be written as

2+ (L) fi(a") = (1~ t;)\/(a})? + f2(a") + 2¢, i = 1,...,m. 8)
Squaring both sides of the above and simplifying, we have

1
1—t,

1
z; fi(z") = 3 (D)2 + (1 —t)e, i=1,...,n.

1—t)-

Since t, € (0,1), the above equation implies that z] # 0 for all i = 1,...,n. Denote by
ur =1 —1,.. We see from the above equation that

1 1 € .
fi(z") = 2 (Mr s ) T + —l;TT ,i=1,...,n. 9)
u i

We further show that 2" € R, . In fact, it follows from (8) that
zp + pr fi(z") > ppvV2e >0, i =1,...,n. (10)

On the other hand, by using (9) we obtain

2
HrE

— 1=1,...,n.
i

1
77+ pefila”) = 5 + 1w +

Combining (10) and the above equation yields " € R’} . Since ||z"|| = r, it is clear that
|l="|| = oo as 7 — oo. Consequently, the sequence {z"} is an interior-point-e-exceptional
family for f. O

The above result shows that if f has no interior-point-c-exceptional family for each
€ > 0, then the property (a) of the mapping ¢(-) holds. ;From the result, it is interesting
to study various practical conditions under which a continuous function does not posses
an interior-point-e-exceptional family for every ¢ € (0, 00). In the next section, we provide



several such conditions ensuring the aforementioned desirable properties of the mapping

U(-).
4. Sufficient conditions for properties of U(-).

4.1. E¢-function. In this section, we prove that the multi-valued mapping U (-) has
the properties (a) and (b) if f is a continuous E¢-function satisfying certain properness
condition. Moreover, if F(x) given by (6) is weakly univalent, then the property (c¢) also
holds. Applied to Py complementarity problems, this existence result extends a recent
one due to Gowda and Tawhid [13]. The following lemma is quite useful.

LEMMA 4.1. Let f : R® — R" be an Eg-function. Then for any sequence {u*} C R |
with ||u¥|| — oo, there exist an index i and a subsequence of {u*}, denoted by {u*i}, such
that ufj — o0 and f;(uki) is bounded below.

Proof. This proof has appeared in several works, see [11, 13, 35, 38]. Let {uf} C R,
be a sequence satisfying ||u*|| — oo. Choosing a subsequence if necessary, we may suppose
that there exists an index set I C {1,...,n} such that u¥ — oo for each i € I, and {uf}
is bounded for each i ¢ I. Let v* € R" be a vector constructed as follows:

v =ufforig¢g I, vF=0foricl.

Thus, {v¥} is a bounded sequence. Clearly, u¥ > v*. Since f is an Eo-function, there
exist an index 7 € I and a subsequence of {uf} denoted by {u*i} such that ufj >
’Uf 7 and fi(uki) > f;(v*i) for all j. Thus,

fi(ukj) > il}f fi('ukj).

Note that the right-hand side of the above inequality is bounded. The desired result
follows. O

To show the main result of this subsection, we will make use of the following assump-
tion which is weaker than several previously known conditions.

CONDITION 4.1. For any sequence {z*} satisfying

(i) {a*} C Ry, ||z*|| — oo and [ f(z*)]+/||z*]| — 0, and

(ii) for each index i with ¥ — oo, the corresponding sequence {f;(z*)} is bounded
above, and

(iii) there ezists at least one index ig such that =¥ — oo and {f;(2*)} is bounded,

it holds

max o} fi(a") - o0

for some subsequence {z*}.

As we see in the following result the above condition encompasses several particular
cases; we omit the details.

PROPOSITION 4.1. Condition 4.1 is satisfied if one of the following conditions holds.

(C1). For any positive sequence {z*} C R, with ||z*|| = oo and [ f(zF)]+/||z*| —
0, it holds maxi<;<pn xflfi(:ckl) — 00 for some subsequence {z*'}.



(C2). For any sequence {z*} C R, with ||z*|| — oo and mini<i<, fi(z®)/||z*|| — 0,
it holds maxi<i<n :ci-c’ fi(z¥) = oo for some subsequence {z*'}.

(C3). [22, 29] For any sequence {z*} with ||z¥|| — oo, [~z*]./||z*| — 0 and
[ f(zF)]+/||z*|| — 0, it holds

lim inf(zF)T f (zF) /|| z*|| > 0.
k—00

(C4). [13] For any sequence {z*} with ||z*| — oo, and

i inf TS T S 00 g i g P i)
T P %]

there exist an index j and a subsequence {z*'} such that x?’fj(wkl) — 00.
(C5). 16, 39] f is a Ry-function.
(C6). [14, 25, 30, 31] f is monotone and the NCP is strictly feasible.
(C7). [27] f is a uniform P-function.

REMARK 4.1. The condition (C1) of the above proposition is weaker than each
of the conditions (C2) through (C7). (C2) is weaker than each of the conditions (C4)
through (C7). The concept of the Ro-function, a generalization of the Ry-matrix [8], was
introduced in [39] and later modified in [6].

In what follows, we show under a properness condition that the short “interior band”
Uec(o,qU() is bounded for each given £ > 0. The boundedness is important because it
implies that the sequence {z(ex)}, where z(ex) € U(ex) and e — 0, is bounded and each
accumulation point of the sequence is a solution to NCP provided that f is continuous.
We impose the following condition on f.

CONDITION 4.2. For any positive sequence {z*} C R7, such that ||z¥| — oo,
limy,_,o0[—f(2%)]+ = 0, and the sequence {f;(z*)} is bounded for each index i with z¥ —
o0, it holds

A
for some subsequence {z*}.

Clearly, Condition 4.2 is weaker than Condition 4.1, thereby weaker than all con-
ditions listed in Proposition 4.1. We now prove the boundedness of the short “interior
band” under the above condition.

LEMMA 4.2. Suppose that Condition 4.2 is satisfied. IfU(e) # O for each € > 0, then
for any & > 0 the set U, (0,7 U() is bounded, i.e., the property (b) holds. Particularly,
U(e) is bounded for each € > 0.

Proof. Suppose that there exists some & > 0 such that U.¢ (U (¢) is unbounded.
Then there exists a sequence {z(eg)}, where g, € (0,&], such that ||z(eg)|| — oo as
k — oo. Since z(eg) € U(eg), we deduce that [—f(z(ex))]+ =0 for all k, and that

Ek 3 .
0 ; = forall:=1,...,n.
< fl($(8k)) mz(gk) < xi(ak) or all gy IO

9



Thus, for each i such that z;(ex) — oo, the sequence {f;(z(ex))} is bounded. By Condi-
tion 4.2, we deduce that there exists a subsequence {z(ey,)} such that

1<:<

ma_)% wi(gkz)fi(w(gkl)) — Q.

This is a contradiction since z;(eg,) fi(z(ex,)) = ex, <€ foralli=1,...,n. O

The main result on Eg-functions is given as follows. Even for Py-functions, this result
is new.

THEOREM 4.1. Suppose that [ is a continuous Ey-function and Condition 4.1 is
satisfied. Then the properties (a) and (b) of the mapping U(e) hold. Moreover, if F.(z)
defined by (6) is weakly univalent in x, then the mapping U(-) is upper semi-continuous,
i.e., property (¢) also holds.

Proof. To prove the property (a), by Theorem 3.1, it suffices to show that there
exists no interior-point-e-exceptional family of f for any € > 0. Assume the contrary
that for certain ¢ > 0 the function f has an interior-point-¢-exceptional family {z"}.
Since ||z"|| = oo, {z"} C R", and f is an E¢-function, by Lemma 4.1, there exist some
index m and a subsequence {73}, such that z;; — oo and f,,(z") is bounded below.
(From (4), we have

1 1 T; ) Hr; €
0> — | tor, — — | 2y = frn(2") — ——.
2 <N ] l’l"l'j) = fm(2"7) ]
Since z;, — oo and f,,(z"7) is bounded below, the right-hand side of the above equation
is bounded below. It follows that lim;_,co pur; = 1.

On the other hand, we note that for any 0 < y < 1 the function

60 =5 (u= )1+ (11)
is monotonically decreasing with respect to the variable ¢ € (0,00). Passing through a
subsequence, we may suppose that there exists an index set I C {1,...,n} such that
z;” — oo for each i € I, and {z’} is bounded for each i ¢ I.

If ¢ ¢ I, then there exists some scalar C' > 0 such that mgj < C for all j. Since ¢(t)
is decreasing and p,; — 1, we have

) 1 1 . €
fila") =5 <urj - —) o + >
J

1 €
2 (Hrj_—)C-FMTJ —)£>0.
Hr;

7] C C
Thus, for all sufficiently large j, we have
[—fi(z")]+ =0 foralli ¢ 1.

If i € I, by using (4) and the facts y,;, — 1 and z,” — 0o, we have

(T 1 1 i £
fz(x ) _ = (u” N _) T + Hr; -0,

pry ) a3l a2

10



which implies that
[—fi(z")])4/ ||z || = 0 for all i € I.

Therefore, [—f(z"7)]4/||z" || — 0. Moreover, it follows from (4) that

€
Hr; g%%OforalliEI,

j
T 7

fi(z"7) <

which implies that {f;(z"/)} is bounded above for all 7 € I. Since m € I and {f,(z"7)} is
bounded below, the sequence {f,,,(z"7)} is indeed bounded. ;From Condition 4.1, there
is a subsequence of {z"i}, denoted also by {z"7}, such that

rj r
max I, i\xr'7) — o0.
1<i<n ¢ fila")

However, from (4) we have

7 fia) = <ur,. - /%) ()2 + trye < pirye < e (12
J
for all 7 € {1,...,n}. This is a contradiction. The property (a) of U(e) follows.

Since Condition 4.1 implies Condition 4.2, the boundedness of the set (o7 U(c)
follows immediately from Lemma 4.2. Tt is known that z(¢) € U(e) if and only if z(e) is
a solution to the equation F.(z) = 0, i.e., U(e) = F.1(0). Since U(e) is bounded, the set
F1(0) is bounded (in fact, compact since f is continuous). If F.(z) is weakly univalent
in z, by Lemma 2.2, for each scalar § > 0 there is a v > 0 such that for any weakly
univalent function A : R" — R™ with

sup ||h(z) — Fe(z)| <y, where Q = F710) + 4B, (13)

then we have
0+ h~'(0) C F71(0) + 6B. (14)

It is easy to see that for the given v > 0 there exists a scalar S > 0 such that

sup || Fer (@) — Fe(z)|| < 7, for all |¢' —¢] < B.
e

Setting h(z) := F./(z) in (13) and (14), we obtain that § # F;'(0) C F-1(0) + 6B for
all [¢f —¢| < B, i.e, U(e') C U(e) + 6B for all & sufficiently close to e. Thus, U(e) is
upper semi-continuous. O

Ravindran and Gowda [35] showed that if f is a Po-function then F¢(z) given by (6)
is a P-function in z, and hence the equation F.(z) = 0 has at most one solution z(¢). In
this case, the upper semi-continuity of /(-) reduces to the continuity of z(e). By the fact
that every Po-function is an Eg-function and is weakly univalent, we have the following
result from Theorem 4.1.

COROLLARY 4.1. Suppose that f : R™ — R" is a continuous Py-function and Con-
dition 4.1 s satisfied. Then the central path exists and any slice of it is bounded, i.e.,

11



for each € > 0 there exists a unique z(e) satisfying the system (1), z(e) is continuous on
(0,00) and the set {z(e) : € € (0,€]} is bounded for each € >0 .

When f is a Po-function, Gowda and Tawhid [13, Theorem 9] showed that the (long)
central path exists if the condition (C4) of Proposition 4.1 is satisfied. Corollary 4.1 can
serve as a generalization of the Gowda and Tawhid result. It is worth noting that the
consequences of Corollary 4.1 remain valid if the condition (C1) or (C2) of Proposition
4.1 holds.

4.2. Quasi-P,-maps. The concept of the quasi-P,-map that is a generalization
of the quasi-monotone function and the P,-map was first introduced in [46] to study
the solvability of NCP. Under the strictly feasible assumption as well as the following
condition, we can show the nonemptyness and the boundedness of U(+) if f is a continuous
quasi-P,-map .

CONDITION 4.3. For any sequence {z*} C R" such that

2" = oo, lim [~ f(z*)]; =0
k—ro0
and {f(z*)} is bounded, it holds

510 1 o
for some subsequence {z*}.

Clearly, the above condition is weaker than Conditions 4.1 and 4.2. It is also weaker
than Condition 3.8 in [4] and Condition 1.5(iii) in [25]. The following is the main result
of this subsection.

THEOREM 4.2. Let f be a continuous quasi-P.-map with the constant 7 > 0 (see
Definition 2.8). Suppose that Condition 4.3 is satisfied. If the NCP is strictly feasible,
then the property (a) of U(e) holds. Moreover, if Condition 4.2 is satisfied, then the
property (b) holds, and if F.(x) is weakly univalent in x, then the property (c) also
holds.

While the nonemptyness of U(e) is ensured under Condition 4.3, it is not clear if
the boundedness of U(e) can follow from this condition. However, from the implications
Condition 4.1= Condition4.2 = Condition 4.3, we have the next consequence.

COROLLARY 4.2. Suppose that f is a continuous quasi-P.-map and F.(x) is weakly
uniwvalent in z. If the NCP is strictly feasible and Condition 4.1 or 4.2 is satisfied, then
the mapping U(-) has properties (a), (b) and (c).

The proof of Theorem 4.2 is postponed until we have proved two technical lemmas.

LEMMA 4.3. Let f satisfy Condition 4.3. Assume that {z"},~¢ is an interior-point-
e-exceptional family for f. If there exists a subsequence of {z"}, denoted by {z"*}, such
that for some 0 < vy < 1,

1
tim (jir, = = ) ™47 =0, (15)
o0 I

k— Th
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then we have
lim (min a::’“) =0.

k—o0 \1<:<n

Proof. Suppose that {z"*} is an arbitrary subsequence of {z"} such that (15) holds.
Since ¢(t) defined by (11) is decreasing on (0, ), for each ¢ € {1, ...,n} we have

1 1 Wr, €
(rTE) < = = 3 Tk Tk 16
fla) < 5 (= ) i ol bt (16)
and ) )
(pTRY > - N L L 17
) 2 5 (- o) s ol 4 S (17

Suppose the contrary that there exists a subsequence of {z"*}, denoted also by {z"*},
such that min;<;<y, x:’“ > a > 0 for all £k > 0, where « is a constant. We derive a

contradiction. Indeed, since p,, — ML < 0, from (16) we have
Tk

fi(z™) < __HmE < — foralli=1,...,n.

3
= . Tk -
ming <;<n &, o

(From (17) and the above relation, we obtain

€ 1 1
> . Tk > — _ Tk = . .
fz(x ) 2 (Mrk rk> lrg% T, foralli=1,...,n (18)

Since ||z"*|| = oo, we deduce from (15) that

1
lim (Hrk - —) max z;* = 0.

k—o0 Pry, / 1<i<n

Therefore, it follows from (18) that there exists a scalar ¢ such that ¢ < f;(z"*) < ¢/« for
alli = 1,...,n and limy_, o[~ fi(z™)]+ = 0. By Condition 4.3, there exists a subsequence
of {z"t}, denoted still by {z"*}, such that maxi<;<, z;* fi(z"™) — oco. However, from
(12) we have that z;* f(z*) < p,,e < e for all ¢ = 1,...,n. This is a contradiction. O

LEMMA 4.4. Let f satisfy the Condition 4.3. Assume that {z"} is an interior-
point-e-exceptional family for f. Let uw > 0 be an arbitrary vector in R™. Then for
any subsequence {z"*} (where ri, — 0o as k — oo) there exists a subsequence of {z"*},
denoted still by {x™+}, such that f(z™)T (z™ —u) < 0 for all sufficiently large k.

Proof. Let {z"*} be an arbitrary subsequence of {z"} (where r, — 0o as k — 00).
By using (4) we have

J @) (@™ —

1 1 — 1 ( 1 ) T U fr EUG

= 5 (e o) 1707 et = 5 (= ) @ o
1 1 Tk (|2 re\T . Uq

= (i, — — ) (2" = @) u) + pre (n =Y = |- (19)
2 Hory, i—1 Ti
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We suppose that f(z"*)T (2" —u) > 0 for all sufficiently large k. We derive a contradic-
tion. From (19), we have

1 1
0 ST =) < 5 (= o) (0717 = @70+ sen
Tk

Since ||z || — oo, for all sufficiently large k, we have

1 1

0< 5 (e = == ) (™I = ")) + pryen < arem
2 Porye

which implies that

li 1 T |1+

i (i = = ) 2™

k—o0 Th
: 1 K (|2 re\T
= lim {pp, —— ) ([J™]° = (z"*)" )
o0 p

[

[J7%]* — (z7%) T u

for any scalar 0 < v < 1. Thus, we see from Lemma 4.3 that

min z.* — 0. (20)
1<i<n °

Notice that

1 1
3 (= =) (eI = @)Tw) < 0
2 My,

for all sufficiently large k. From (19), (20) and the above inequality, we have

"o, ming <;<p U;
f(a:rk)T(ka —u) < fiy € (n - ; ﬁ) < pr € (n - ﬁ) <0
for all sufficiently large k. This is a contradiction. O

We are now ready to prove the results of Theorem 4.2.

Proof of Theorem 4.2. To show the property (a) of the mapping U(e), by Theorem
3.1, it suffices to show that f has no interior-point-e-exceptional family for any ¢ >
0. Assume the contrary that there exists an interior-point-e-exceptional family for f,
denoted by {z"}. By the strict feasibility of the NCP, there is a vector u > 0 such that
f(u) > 0. Consider two possible cases.

Case (A): There exists a number 79 > 0 such that

max (z; — u;)(fi(z") — fi(u)) <0 for all r > r.
1<i<n
In this case, the index set I, (z",u) is empty. Since f(u) > 0,z" > 0 and ||z"|| — oo, it
is easy to see that
Fuw)" (2" —u) >0

for all sufficiently large r. Since f is a quasi-P,-map and I, (z",u) is empty, the above
inequality implies that f(z")T (2" —u) > 0 for all sufficiently large r. However, by Lemma

14



4.4 there exists a subsequence of {z"}, denoted by {z"*}, such that f(z"*)? (z"™ —u) < 0
for all sufficiently large k. This is a contradiction.

Case (B): There exists a subsequence of {z"} denoted by {z"7}, where r; — oo as
7 — o0, such that

max (2 —ui)(fi(z"7) — fi(u)) > 0 for all j.

By using (4), for each 7 we have
AT = (@] ) (fila) ~ filw)

- 1(1 . .
= (2] —w) (—5(r—urj)w,-i—fi<u)+’;;f). (21)

There exist a subsequence of {z"7 }, denoted also by {z" }, and a fixed index m such that

A = (@5 = ) (f(277) = () = max (277 — wi)(fi(a"?) = filw)).

1<i<n

rj (rj)

For each i such that z; — oo, (21) implies that A; 7’ — —oo. Since Agf') > 0 for all j,
we deduce that {z;3} is bounded, i.e., there is a constant § such that 0 < 7, < ¢ for all
J- '

If 27, < Uy, setting i = m in (21), we have

r rv (11 r
A'Snj) < (um —Tm) (5 <_ - NTj) T + fm(u)>
Hor;

< unm (% (L - Nrj) U, + fm(u)> . (22)
Hr;

If um < zd, < 0, setting ¢ = m in (21), we obtain

€
firi® < pri€ < €. (23)

S
T,

AT < (27— um)

We consider two subcases, choosing a subsequence whenever it is necessary.
Subcase 1: pir; — 1. From (22) and (23), for all sufficiently large j we have

A%j) < max {e,um (fm(u) + 1%”) } )

Thus, for all sufficiently large j, we obtain

F)T (2" —u) =7 max (z7 — ) (fi(2") — fi(w))

1<i<n
> f(u)T(ij - u) - Tmax{e, um(fm (u) + um/2)}
> 0.
The last inequality above follows from the fact that f(u) > 0,{z"7} C R} and [[z"i| —

0. Since f is a quasi-P,-map, the above inequality implies that f(z™)7 (2" —u) > 0 for
all sufficiently large j, which is impossible according to Lemma, 4.4.
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Subcase 2: There exists a subsequence of {u,,}, denoted also by {u,}, such that
pr; < 6 for all j, where 0 < ¢* < 1. In this case, from (22) and (23), we have

y 2 (1
AgnJ) < max {5,umfm(u) + ’%” (— — u,«j> } .
T

It follows from (4) that

T = f@) (=) = 7 aax (@] - i) (fi(a") = fi(w)
1(1 ° ri
- ! (7 - u) (™12 = (27)"w) + pry e (Z - n) — A,
Tj =1 "1

We now show that T(7) > 0 for all sufficiently large j.

2 . . .
Ife < upfrm(u)+=2 (uij - urj> , noting that p,; < 0 and [|z" 12— (z") 'u—7u2, —

00 as j — 00, we obtain

. 1 . ,
T > <— - urj> (l="[* = (") Tu = Tugy,) = T fon (w) = ;e

171
Z 3 (_ - ‘5*) (2" = (") 'u — Tul,) — Tum fm(u) — *en > 0.

Ife > umfm(u) + % (uij — /zrj) , by the same argument as the above, we can show

that 11
TCH) > (5 — ) (27 |2 = (o7)Tw) - e — 7e > 0

for all sufficiently large j. Thus, by the quasi-P,-property of f, we deduce from T("i) > (
that f(u)? (u — x77) > 0 for all sufficiently large j. It is a contradiction since {z"7} C
R4, |27 — oo and f(u) > 0.

The above contradictions show that f has no interior-point-e-exceptional family for
each ¢ > 0. By Theorem 3.1, the set U(e) # @ for any € > 0. The boundedness of the
short “interior band ” follows from Lemma 4.2, and the upper semi-continuity of U(¢)
follows easily from Lemma, 2.2. O

The class of quasi-P,-maps includes the quasi-monotone functions as particular cases.
The following result is an immediate consequence of Theorem 4.2.

COROLLARY 4.3. Suppose that f is a continuous quasi-monotone (in particular,
pseudo-monotone) function, and the NCP is strictly feasible.

(i) If Condition 4.3 is satisfied, then property (a) of U(e) holds.

(ii) If Condition 4.2 is satisfied, then properties (a) and (b) of U(e) hold.

In the case when F.(z) is univalent (continuous and one-to-one) in z, the equation
F.(z) = 0 has at most one solution. Combining this fact and Theorem 4.2, we have the
following result concerning the existence of the central path of NCP. To our knowledge,
this result can be viewed as the first existence result on the central path for the NCP
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with a (generalized) quasi-monotone function. Up to now, there is no interior-point type
algorithms designed for solving (generalized) quasi-monotone complementarity problems.

COROLLARY 4.4. Let f be a quasi-P.-map and F.(x) is univalent in x. If NCP is
strictly feasible and Condition 4.2 is satisfied, then the central path exists and the set
{z(e) : € € (0,£]} is bounded for any given &€ > 0.

Particularly, if f is a Po-function, then F.(z) is univalent in z (see [35]). We have
the following result.

COROLLARY 4.5. Let f be a continuous Py and quasi-Py-map. If NCP is strictly
feasible and Condition 4.2 is satisfied, then the conclusions of Corollary 4.4 are valid.

4.3. P(71,a,)-maps. It is well known (see [14, 25, 30, 31]) that the monotonicity
combined with strict feasibility implies the existence of the central path. In this section,
we extend the result to a class of non-monotone complementarity problems. Our result
states that if f is a P(7, @, 8) and Py-map (see Definition 2.4) the central path exists
provided that NCP is strictly feasible. This result gives an answer to such a question:
What class of nonlinear functions beyond P,-maps can ensure the existence of the central
path if NCP is strictly feasible? We first show properties of the mapping U(-) when f is
a P(r1,a, 8)-map.

THEOREM 4.3. Let f be a continuous P(7,a,3)-map. If NCP is strictly feasible,
then properties (a) and (b) of U(e) hold. Moreover, if F.(x) is weakly univalent in z,
the property (c¢) also holds.

Proof. Suppose that there exists a scalar € > 0 such that f has an interior-point-¢-
exceptional family denoted by {z"}. Since {z"} C R, and ||z"| = oo as r — oo, there
exist some p and a subsequence denoted by {z"i}, where r, — 0o as j — oo, such that
|z"]| — oo and

Tj _ Tj
Ty — up = 112%)%(351 — u;).
Clearly, x;j — 00 as j — oo. On the other hand, there exists a subsequence of {z"i },
denoted also by {z"i}, such that for some fixed index m and for all j we have

(@ = um) (fm(277) = fm(u)) = max (z"7 — ;) (fi(z") = fi(u)).

1<i<n

By the definition of the P(7, @, 8)-map, we have

(xgj —up)(fp(2"7) — fp(u))

> lfsniiéln(ﬂﬁzj —ui)(fi(x"7) — fi(u))
> —(1+7) 121{35)%(36? —w;)(fi(a") — fi(u)) — al|z” —ul)®
= —(1+ 7)(z7h — tm) (fm(2"7) = fin(w)) — allz™ — . (24)

;From (4), we have that f,(z") < ¢/z , and hence,

Bz()rj) = (w5 — p) (fp(z") — fp(w) < (zp — up) ( :

2 — ull? = e —ullP \ 2y

- fp(u)> . (25)
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It is easy to see that

i — yl|? i _ g 1 B/2
o7l (o ) L 6)
Ty — Up Ty — Up (z — up)1F) /

Combining (25) and (26) leads to

B,(,Tj) — —00 as j — oo.

From ; N
B](fj) > B, = min (=" — Ui)(fi(ﬂc i) - fi(u))’
m 1<i<n |z7i — ul|?
we deduce that
B':‘riin — —00 as j — oo. (27)

We now show that {zy,} is bounded. Assume that there exists a subsequence of {z},
denoted still by {a::,%}, such that zj — oco. Then, from (21), we have

(21 — ) (Fn(277) = fin(u)) = —o0,
and hence for all sufficiently large j we have

(rj) ._ (x:rjl = Um) (fm(277) — fm(u)) — max (37:] — ;) (fi(z"7) — fi(u)) <0
s a7 — ul? SR Jan - |

By (27) and the above relation, we obtain

(1+7)BY + B, — —00 as j — co. (28)

min
However, since f is a P(7, @, 3)-map, we have

(1+7)BS + B, > —a,

min
which contradicts (28). This contradiction shows that the sequence {z} is bounded.
By using (4) and (24), we have

r 1 1 r r
_(;(;pﬂ — up) (5 (— - NTj) ;(;pj + fp(u) - ux,{f)

Hr; P

) 1 1 ; U €
> (14 7) (2, — um) (5 (— - urj) Try + fm(u) — rrjj
,u'rj L

> —al|lz" — u||ﬂ

Multiplying both sides of the above inequality by 1/ (:v;j — up), rearranging terms and
using (26), we have

1 1 . 14+ 7)o (2l — u
_E (_ _l'l”"j) <x;J + ( )r;n( m m)>

Kr;€ fm(u)(wrﬂgt — Um) p""js(x% — Upp) allz’i — ul|?
pr()_:BTj T+ Ty —u oy —up) ) @y —u
P P P m(ZTp P P P
€ 1+ 7)fm(wum (1 +7)e anb/?
pr(u)_ﬁ_ Ty —u oy —up (ap —up) B
P 12 P P P P P



For all sufficiently large j, the left-hand side of the above inequality is negative, but the
right-hand side tends to fy(u) > 0 as j — oo. This is a contradiction. The contradiction
shows that f has no interior-point-e-exceptional family for every € > 0. By Theorem 3.1,
the property (a) of U(e) follows. The proof of the boundedness of the set .o U(€)
is not straightforward. It can be proved by the same argument as the above. Indeed, we
suppose that {z(ex)}o<e <z C Uee(o,51U(€) is an unbounded sequence. Replacing {z"7}

by {z(ex)}, and using )
_ _fk &
f(l‘(&k)) - iL'(&'k) < -’E(ek)

instead of (4), repeating the aforementioned proof, we can derive a contradiction. The
upper semi-continuity of ¢(-) can be obtained by Lemma 2.2. The proof is complete. O

The class of P(7,,)-maps includes several particular cases such as P(r,«,0)-,
P(7,0,0)- and P(0, o, B)-maps. It is shown in [46] that the class of P(r,0,0)-maps coin-
cides with the class of P,-maps. Therefore, f is said to be a P,-map if and only if there
exists a nonnegative scalar k > 0 such that

(1 + ) max (z; — i) (fi(2) - fi(y) + min (z; — ) (fi(z) - fiy)) > 0.
<i<n 1<i<n
Particularly, a matrix M € R™*" is a P,-matrix if and only if there is a constant x > 0
such that
(1+ k) DX z;(Mz); + min zi(Mz); > 0.

This is an equivalent definition of the concept of a P,-matrix (sufficient matrix) intro-
duced by Kojima et al.[26] and Cottle et al. [9]. The following result follows immediately
from Theorem 4.3.

COROLLARY 4.6. Let f be a continuous Py and P(t,«,3)-map. If NCP is strictly
feasible, then the central path exists and any slice of it is bounded.

It is worth noting that each P,-map is a Py and a P(7, o, 8)-function. The following
result is a straightforward consequence of the above corollary.

COROLLARY 4.7. Let f be a continuous P,-map. If NCP is strictly feasible, then the
central path exists and any slice of it is bounded.

It should be pointed out that P,-maps are also special instances of quasi-P,-maps.
A result similar to Corollary 4.3 can be stated for P,-maps. However, as we have shown
in Corollary 4.7, the additional conditions such as Conditions 4.1, 4.2 and 4.3 are not
necessary for a P,-map to guarantee the existence of the central path. While P,-maps
and quasi-monotone functions are contained in the class of quasi-P,-maps, Zhao and Isac
[46] gave examples to show that a P,-map, in general, is not a quasi-monotone function,
and vice versa.

4.4. Exceptionally regular functions. In Section 4.1, we study the properties
of the mapping U(e) for Eg-functions satisfying a properness condition, i.e., Condition
4.1. In Sections 4.2, we show properties of U(e) for quasi-P,-maps under the strictly
feasible condition as well as some properness conditions. In the above section, properness
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assumptions are removed, and properties of U(e) for P(7, o, 3)-maps are proved under
the strictly feasible condition only. In this section, removing both the strictly feasible
condition and properness conditions, we prove that properties of U(e) hold if f is an
exceptionally regular function. The exceptional regularity of a function (see Definition
2.5) was originally introduced in [46] to investigate the existence of a solution to NCP.

DEFINITION 4.1. [16] A map v : R™ — R" is said to be positively homogeneous of
degree of a > 0 if v(tz) = t*v(z) for all z € R".

When a = 1, the above concept reduces to the standard concept of positive homo-
geneity. Under the assumption of positively homogeneous of degree of a > 0, we can
show that properties (a) and (b) of U(e) hold if f is exceptionally regular. See the
following result.

THEOREM 4.4. Let f be a continuous and exceptionally reqular function from R™
into R". If G(z) = f(z) — f(0) is positively homogeneous of degree of o > 0, then
properties (a) and (b) of U(e) hold. Moreover, if F.(x) is weakly univalent, the property
(¢) also holds.

Proof. Suppose that there is a scalar € > 0 such that f has an interior-point-&-
exceptional family {z"}. We derive a contradiction. Indeed, since G(z) is positively
homogeneous of degree of a > 0, we have

f(@") = f(0) + |l="[[*(f (=" /[l«"[]) = £(0)).

Without loss of generality, assume that z” /||z"|| — Z. From the above relation, we have

Jim )/l = £(2) - £(0) = G(e). (29
(From (4), we have
1/1 ~ fila") Ur€ .
3 (E - ur) =— o + (@)? foralli=1,...,n. (30)

Let I, (z) = {i : & > 0}. Since ||z"|| — oo and z} /||z"|| = &;, we deduce that z] — oo
for each i € I (Z). We now show that

1/1 r
tim 5 ( ur)Mzﬂ (31)

r502 \pyp ) Jla]e

for some i > 0. It is sufficient to show the existence of the above limit. Indeed, for each
i € I.(%), by using (30) and (29) we have

pe D) Nl e gt [E A lE

Thus, (31) holds, with
Gi(2)

Z;

= —p foralli € I (). (32)
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Now, we consider the case of 1 ¢ I (Z). In this case, Z; = 0. By using (4), (31) and (29),
we see from z] /||z"|| — 0 that

0< lim M€ — im (fz'(wr) (1/pr —ur)wi)
= roo0 g ||z7|| r—oo \ [|z" || 2[|z" ||
~ i (fi(w’") L Wpe = p)lla"|| )
oo \ ||z || 2||z" || [Ed
= Gi(%),

ie.,

Gi(2) >0 forall i ¢ I.(2).

Combining (32) and the above relation implies that f is not exceptionally regular. This
is a contradiction. The contradiction shows that f has no interior-point-e-exceptional
family for each € > 0, and hence the property (a) of U(e) follows from Theorem 3.1. The
property (b) of U(e) can be easily proved. Actually, suppose that there exists a sequence
{z(ek) bo<e,<e With ||z(eg)| — oo, where z(ex) € U(ex). Without loss of generality, let
z(ex)/||z(ex)|| = Z where ||Z|| = 1. As in the proof of (29) we have

0< lim f(a(ex))/lalen)] = G(@).
Since z(eg) € U(e), we have that z;(er)fi(z(ex)) = ex for all s = 1,...,n. Thus,

0= lim Ziler)filz(er)

koo |lz(en) T #;G;(z) foralli=1,...n.

Therefore,
Gi(z) =0 whenever 7; > 0, G;(Z) > 0 whenever z; = 0,

which contradicts the exceptional regularity of f(z). O

It is not difficult to see that a strictly copositive map and a strictly semi-monotone
function are special cases of exceptionally regular maps. Hence, we have the following
result.

COROLLARY 4.8. Suppose that G(z) = f(z)— f(0) is positively homogeneous of degree
of a > 0. Then conclusions of Theorem 4.4 are valid if one of the following conditions
holds.

(i) f is an Ey-function, and for each 0 # z > O there exists an index i such that
z; > 0 and fi(z) # fi(0).

(ii) f is strictly copositive, that is, z7(f(z) — £(0)) > 0 for all 0 # z > 0.

(iii) f is a strictly semi-monotone function.

Proof. Since each of the above conditions implies that f(z) is exceptionally regular,
the result follows immediately from Theorem 4.4. O

Motivated by Definition 2.5, we introduce the following concept:

DEFINITION 4.2. M € R™ " is said to be an exceptionally regular matriz if for all
B >0,M + BI is a Ry-matriz.
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It is evident that an exceptionally regular matrix is a Ry-matrix, but the converse
is not true. The following result is an immediate consequence of Theorem 4.4 and its
corollary.

COROLLARY 4.9. Let f = Mz + q, where M € R™*", and q is an arbitrary vector in
R™. If one of the following conditions is satisfied,

(i) M € R™"™ is an exceptionally reqular matriz,

(ii) M is a strictly copositive matriz,

(iii) M is a strictly semi-monotone matriz,

(iv) M is an Ey-matriz, and for each 0 # x > 0 there ezists an indezx i such that
z; >0 and (Mz); # 0 (possibly, (Mz); <0),

then properties (a) and (b) of the mapping U(e) hold. Furthermore, if M is also
a Pyg-matriz, then the central path of a linear complementarity problem exists and any
slice of it is bounded.

The Ry-property of f has played an important role in the complementarity theory.
We close this section by considering this situation. The concept of a nonlinear Rp-
function was first introduced by Tseng [38] and later modified by Chen and Harker [6].
We now give a definition of the Ry-function that is different from those in [38] and [6].

DEFINITION 4.3. f : R® — R"™ is said to be a Ry-function if x = 0 is the unique
solution to the following complementarity problem:

G(z) = f(z) — f(0) >0, >0, T G(z) = 0.

This concept is a natural generalization of the Ro-matrix [8]. In fact, for the linear
function f(x) = Mz + q, it is easy to see that f is a Ryo-function if and only if M is a Re-
matrix. In the case when f is an Eg-function, we have shown in Theorem 4.1 that there
exists a subsequence {yx,, } such that p,, — 1. Moreover, if G is positively homogeneous,
then from (31) we deduce that i = 0. By using these facts and the above Ry-property
and repeating the proof of Theorem 4.4, we have the following result.

THEOREM 4.5. Suppose that G(tz) = tG(x) for each scalar t > 0 and x € R", and
that f is an Ey and Rg-function. Then the conclusions of Theorem 4.4 remain valid.
Moreover, if f is a Py and Ry -function, the central path exists and any slice of it is
bounded.

5. Conclusions. We introduced the concept of the interior-point-e-exceptional
family for continuous functions, which is important since it strongly pertains to the
existence of an interior-point z(e) € U(e) and the central path, even to the solvability of
nonlinear complementarity problems. By means of this concept, we proved that for every
continuous nonlinear complementarity problem the set U(¢) is nonempty for each scalar
€ > 0 if there exists no interior-point-e-exceptional family for f. Based on the result, we
established some sufficient conditions for the assurance of some desirable properties of
the multi-valued mapping U (e) associated with certain non-monotone complementarity
problems. Since properties (a) and (b) of U(e) imply that NCP has a solution, the
argument of this paper based on the interior-point-e-exceptional family can serve as a
new analysis method for the existence of a solution to NCP.
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It is worth noting that any point in U(e) is strictly feasible, i.e., z(e) > 0 and
f(z(e)) > 0. Therefore, the analysis method in this paper can also be viewed as a
tool for investigating the strict feasibility of a complementarity problem. In fact, from
Theorems 3.1, 4.1, 4.4 and 4.5, we have the following result.

Theorem 5.1. Let f be a continuous function. Then the complementarity problem
is strictly feasible whenever one of the following conditions holds.

(i) There ezxists a scalar €* > 0 such that f has no interior-point-¢*-exceptional
family.

(ii) f is an Ey-function and Condition 4.1 is satisfied.

(iii) G(z) = f(z) — f(0) is positively homogeneous of degree of @ > 0 and f is
exceptionally reqular.

(iv) f(z) = Mz + q, where M is an Ey and Ry-matriz.

It should be pointed out that the results and the argument of this paper can be easily
extended to other interior-point paths. For instance, we can consider the existence of
the following path

{(z(€),y(e)) >0:e>0,y(e) = f(z(e)) + b, z;(e)y;(e) = €a; for all 1} (33)

(where b and a > 0 are fixed vectors in R") first studied by Kojima, Megiddo and Noma
[25]. (When a = €e,b = 0, the above path reduces to the central path). This path can
be studied by the concept of interior-point-e(a, b)-exceptional family. For a continuous
function f : R™ — R", we say that a sequence {z"} C R, is an interior-point-¢(a, b)-
exceptional family for f if ||z"|| — co as 7 — oo, and for each z” there exists a positive
number g, € (0,1) such that for each ¢

1 1 €a;
fZ(.’L‘r) = —eb; + 5 [/Jr — ;] .’L‘: + lf';r L.

1

Using

Fi(z,e) = z; + (fi(z) + eb;) — \/xf + (fi(z) + eb;)? + 2¢a;

and arguing as in the same proof of Theorem 3.1, we can show that for any € > 0 there
exists either a point z(e) satisfying (33) or an interior-point-¢(a, b)-exceptional family
for f. This result enables us to develop some sufficient conditions for the existence of
the path (33).

Acknowledgments. The author would like to thank the referees and professor Jim
Burke for their helpful suggestions and comments on an earlier version of this pa-
per, which helped them to correct some mistakes and improve the presentation of the
manuscript. They also thank Dr. Mustapha Ait Rami for his valuable comments.

References

[1] J. BURKE AND S. XU, The global linear convergence of a non-interior-point path following
algorithm for linear complementarity problems, Math. Oper. Res., 23 (1998), pp- 719-734.

23



[2]

[3]
[4]

[16]

[17]

[18]

[19]

J. BURKE AND S. Xu, A Non-Interior Predictor-Corrector Path Following Algorithm for
the Monotone Linear Complementarity Problem, Department of Mathematics, University
of Washington, Seattle, Washington, 1997.

B. CHEN AND X. CHEN, A global and local superlinear continuation smoothing method for
Py and Ry and monotone NCP, SIAM J. Optim., 9 (1999), pp. 625-645.

B. CHEN, X. CHEN AND C. KaANzZOW, A Penalized Fischer-Burmeister NCP-Function:
Theoretical Investigation and Numerical Results, Technical Report, Zur Angewandten
Mathematik, Hamburger Beitrige, 1997.

B. CHEN AND P. T. HARKER, A non-interior-point continuation method for linear com-
plementarity problems, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 1168-1190.

B. CHEN AND P. T. HARKER, Smooth approximations to nonlinear complementarity prob-
lems, SIAM J. Optim., 7 (1997), pp. 403-420.

C. CHEN AND O. L. MANGASARIAN, A class of smoothing functions for nonlinear and
mized complementarity problems, Comput. Optim. Appl., 5 (1996), pp. 97-138.

R. W. COTTLE, J. S. PANG AND R. E. STONE, The Linear Complementarity Problem,
Academic Press, Boston, 1992.

R. W. CoTTLE, J. S. PANG AND V. VENKATESWARAN, Sufficient matrices and the
linear complementarity problem, Linear Algebra Appl., 114/115 (1989), pp. 231-249.

F. FACCHINEL, Structural and stability properties of Py nonlinear complementarity prob-
lems, Math. Oper. Res., 23 (1998), pp. 735-749.

F. FACCHINEI AND C. KANZOW, Beyond monotonicity in regularization methods for non-
linear complementarity problems, SIAM J. Control Optim., 37 (1999), pp. 1150-1161.

M. C. FERRIS AND J. S. PANG, Engineering and economic applications of complementarity
problems, STAM Rev., 39 (1997), pp. 669-713.

M. S. GowpA AND M. A. TAWHID, Ezistence and limiting behavior of trajectories asso-
ciated with Py-equations, Comput. Optim. Appl., 12 (1999), pp. 229-251.

O. GULER, FEtistence of interior points and interior-point paths in nonlinear monotone
complementarity problems, Math. Oper. Res., 18 (1993), pp. 128-147.

O. GULER, Path Following and Potential Reduction Algorithm for Nonlinear Monotone
Complementarity Problems, Technical Report, Department of Management Sciences, The
University of Iowa, Iowa City, 1990.

P. T. HARKER AND J. S. PANG, Finite- dimensional variational inequality and non-
linear complementarity problems: a survey of theory, algorithms and applications, Math.
Programming, 48 (1990), pp. 161-220.

K. HoTTA AND A. YOSHISE, Global Convergence of A Class of Non-Interior-Point Algo-
rithms Using Chen-Harker-Kanzow-Functions for Nonlinear Complementarity Problems,
Discussion paper, No. 708, Institute of Policy and Planning Science, University of Tsukuba,
Tsukuba, Japan, 1996.

G. Isac, Complementarity Problems, Lecture Notes in Mathematics, Vol. 1528, Springer-
Verlag, Germany, 1992.

G. Isac, V. BuLavskl AND V. KALASHNIKOV, Ezxceptional families, topological degree
and complementarity problems, J. Global Optim., 10 (1997), pp. 207-225.

24



[20]
[21]
[22]
23]
[24]
[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]
[33]
[34]
[35]
[36]

[37]

G. Isac AND W. T. OBUCHOWSKA, Functions without exceptional families of elements
and complementarity problems, J. Optim. Theory Appl., 99 (1998), pp. 147-163.

C. KANzOW, Some nonlinear continuation methods for linear complementarity problems,
SIAM J Matrix Anal. Appl., 17 (1996), pp. 851-865.

C. Kanzow, N. YAMASHITA AND M. FUKUSHIMA, New NCP-functions and their prop-
erties, J. Optim. Theory Appl., 94 (1997), pp. 115-135.

S. KARAMARDIAN, Complementarity problems over cones with monotone and pseudomono-
tone maps, J. Optim. Theory Appl., 18 (1976), pp. 445-454.

S. KARAMARDIAN AND S. SCHAIBLE, Seven kinds of monotone maps, J. Optim. Theory
Appl., 66 (1990), pp. 37-46,

M. KoJiMA, N. MEGIDDO AND T. NOMA, Homotopy continuation methods for nonlinear
complementarity problems, Math. Oper. Res., 16 (1991), pp. 754-774.

M. KojimMa, N. MEGIDDO, T. NOMA AND A. YOSHISE, A Unified Approach to Inte-
rior Point Algorithms for Linear Complementarity Problems, Lecture Notes in Computer
Sciences, 538, Springer-Verlag, New York, 1991.

M. KoJIMA, M. Mi1zUNO AND T. NOMA, A new continuation method for complementarity
problems with uniform P-functions, Math. Programming, 43 (1989), pp. 107-113.

M. KoJiMA, M. MiZzUNO AND A. YOSHISE,A polynomial-time algorithm for linear com-
plementarity problems, Math. Programming, 44 (1989), pp. 1-26.

Z. Q. Luo AND P. TSENG, A new class of merit functions for the nonlinear complemen-
tarity problems, in Complementarity and Variational Problems: State of the Art, (M.C.
Ferris and J.S. Pang, eds.), SITAM Philadelphia, 1997, pp. 204-225.

L. McLINDEN, The complementarity problem for mazimal monotone multifunctions, in
Variational Inequalities and Complementarity Problems, (R.W. Cottle, F. Giannessi, and
J.L. Lions, eds.), John Wiley and Sons, New York, 1980, pp. 251-270.

N. MEGIDDO, Pathways to the optimal set in linear programming, in Progress in Math-
ematical Programming: Interior-Point and Related Methods, N. Megiddo (ed.), Springer-
Verlag, New York, 1989, pp. 131-158.

R. D. C. MONTEIRO AND 1. ADLER, Interior path following primal dual algorithms, Part
I: linear programming, Math. Programming, 44 (1989), pp. 27-42.

R. D. C. MONTEIRO AND J. S. PANG, Properties of an interior-point mapping for mized
complementarity problems, Math. Oper. Res., 21 (1996), pp. 629-654.

J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press, New York, 1970.

G. RAVINDRAN AND M. S. GOwDA, Regularization of Py-functions in box variational
inequality problems, SIAM J. Optim., to appear.

T. E. SMITH, A solution condition for complementarity problems with an application to
spatial price equilibrium, Appl. Math. Comput., 15 (1984), pp. 61-69.

R. SZNAJDER AND M. S. GOWDA, On the limiting behavior of the trajectory of regular-
ized solutions of Py complementarity problems, in Reformulation: Nonsmooth, Piecewise
Smooth, Semismooth and Smoothing Methods, (M. Fukushima and L. Qi, eds.), Kluwer
Academic Publishers, 1998, pp. 317-379.

25



[38]
[39]
[40]
[41]

[42]

[43]
[44]
[45]

[46]

P. TSENG, Growth behavior of a class of merit functions for the nonlinear complementarity
problems, J. Optim. Theory Appl., 89 (1996), pp. 17-37.

P. TSENG, An infeasible path-following method for monotone complementarity problems,
SIAM J. Optim., 7 (1997), pp. 386-402.

H. VALIAHO, P, matrices are just sufficient, Linear Algebra Appl., 239 (1996), pp. 103-
108.

V. VENKATESWARAN, An algorithm for the linear complementarity problem with a Py-
matriz, STAM J. Matrix Anal. Appl., 14 (1993), pp. 967-977.

D. ZHANG AND Y. ZHANG, On Constructing Interior-Point Path-Following Methods for
Certain Semimonotone Linear Complementarity Problems, Department of Computational
and Applied Mathematics, Rice University, Houston, 1997.

Y. B. ZHAO, Ezxistence of a solution to nonlinear variational inequality under generalized
positive homogeneity, Oper. Res. Letters, 25 (1999), pp. 231-239.

Y. B. ZHAao AND J. HAN, Exceptional family of elements for a variational inequality
problem and its applications, J. Global Optim., 14 (1999), pp. 313-330.

Y. B. ZHAao, J. HAN AND H. D. QI, Ezceptional families and existence theorems for
variational inequality problems, J. Optim. Theory Appl., 101 (1999), pp. 475-495.

Y. B. ZHAO AND G. Isac, Quasi-P,-maps, P(t,a, 8)-maps, exceptional family of elements
and complementarity problems, J. Optim. Theory Appl., 105 (2000), pp. 213-231.

26



