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Abstract. The generalized mean function has been widely used in convex analysis and math-
ematical programming. This paper studies a further generalization of such a function. A necessary
and sufficient condition is obtained for the convexity of a generalized function. Additional sufficient
conditions are derived for the purpose of identifying some new classes of generalized mean functions.
Since conditions are given in terms of the first and second derivatives of the functions involved, they
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functions.
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1. Introduction. In this paper, we denote the n-dimensional Euclidean space
by Rn, its nonnegative orthant by Rn

+, and positive orthant by Rn
++.

In 1934, Hardy, Littlewood and Pólya ([13]) considered the following function
under the name of generalized mean:

Υw(x) = φ−1

(
n∑

i=1

wiφ(xi)

)
(1.1)

where φ(·) is a real, strictly increasing, convex function defined on a subset of R and
w = (w1, w2, . . . , wn)T is a given vector in Rn

+. Assuming that φ > 0, φ′ > 0 and
φ′′ > 0, they showed an equivalent condition for the convexity of Υw. When φ is
three times differentiable, Ben-Tal and Teboulle ([2]) established another equivalent
condition for Υw being convex (see next section for details).

The generalized mean function (1.1) has many applications in optimization. Ben-
Tal and Teboulie ([2]) demonstrated an interesting application of (1.1) (in a con-
tinuous form) on penalty functions and duality formulation of stochastic nonlinear
programming problems. However, the most widely used generalized means are the
logorithmic-exponentional and p-norm functions:

fw(x) = log

(
n∑

i=1

wie
xi

)
, pw(x) =

(
n∑

i=1

wix
p
i

)1/p

for x = (x1, ..., xn)T ∈ Rn.

They correspond to the special cases of Υw with φ(t) = et and φ(t) = tp, respectively.
Needless to say that the log-exp function has been widely used in convex analysis

and mathematical programming. For example, a geometric program (see Duffin et
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al.[8] and Boyd and Vandenberghe [6]) can be converted into a convex programming
problem by using the log-exp function so that the interior-point algorithms can be
developed to solve geometric programs with great efficiency (Kortanek et al. [14]).
Another example is concerned with the nondifferentiable minimax problem

min
y∈D

max
1≤i≤n

gi(y),

where gi(·), i = 1, ..., n, are real functions defined on a convex set D in Rm. Since the
recession function of the log-exp function is the “max-function”(see Rockafellar [20]),
i.e., max1≤i≤n xi = limε→0+ εf(x

ε ) where f(·) = fw(·) and w = (1, 1, ..., 1), the above
nondifferential optimization problem can be approximated by solving the following
optimization problem

min
y∈D

ε log

(
n∑

i=1

e
gi(y)

ε

)
.

The objective function is differentiable and convex, if every gi(y) is. Other applications
of the log-exp function in optimization can be found in Ben-Tal [1], Ben-Tal and
Teboulle [3], Zang [25], Bersekas [4], Polyak [19], Fang [9, 10], Li and Fang [15], Peng
and Lin [17], Birbil et al. [5], Sun and Li [22, 23, 24]), etc.

It is worth mentioning that the conjugate function of the log-exp function happens
to be the well-known Shannon’s entropy function ([21]) which plays a vital role in so
many fields ranging from the image enhancement to economics and from statistical
mechanics to nuclear physics (see, Buck and Macaulay [7] and Fang et al. [11]).

We consider in this paper a further generalization of (1.1) in the following form:

Γw(x) = Ψ−1

(
n∑

i=1

wiφi(xi)

)
(1.2)

where φi : Ω → R, i = 1, ..., n, are convex, twice differentiable (but not necessarily
being strictly increasing) functions defined on an open convex set Ω ⊂ R, Ψ : Ω → R
is convex, twice differentiable and strictly increasing, and w ∈ Rn

+ is a given vector.
Clearly, Υw(·) is a special case of Γw(·) with φ1 = φ2 = ... = φn = Ψ = φ. For
convenience, in this paper, we still call Γw given by (1.2) a generalized mean function,
and we call φi the inner function and Ψ the outer function of Γw. To assure the
well-definedness of Γw, we naturally require that

n∑

i=1

Cone[φi(Ω)] ⊆ Ψ(Ω)

where Cone[φi(Ω)] denotes the cone generated by the set φi(Ω).
As in the case of Υw, we would like to derive certain sufficient and necessary

conditions for the function Γw to be convex. Moreover, we hope to find a systematic
way to explicitly construct some classes of convex Γw.

It is interesting to point out that Γw is by no means a new research subject.
In fact, it was essentially studied by W. Fenchel in his lecture notes of “Convex
Cones, Sets and Functions” in 1953 [12]. Based on the properties of level sets and
characteristic roots of Hessian matrices of functions involved, Fenchel derived some
sufficient and necessary conditions for the convexity of the generalized mean function
Γw. The conditions he derived, however, are rather complicated, and there is no simple
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test to decide what kind of functions may admit these complicated properties. Unlike
Fenchel’s approach, our analysis in this paper depends only on the function value, its
first derivative, and second derivative to provide a sufficient and necessary condition
for Γw being convex. The necessary and sufficient condition we derive in this paper
can be viewed as a generalization of that in [13] concerning the function (1.1). We
can also use related sufficient conditions to explicitly construct concrete examples
of convex Γw. Moreover, we show how the self-regular functions [18] (most of such
functions are self-concordant functions as defined in [16]) and S∗-regular functions (to
be defined in this paper) can be used to construct convex generalized mean functions.

The rest of the paper is organized as follows. In Section 2, we investigate the
conditions that assure the convexity of the generalized mean function Γw. In Section
3, we identify some classes of functions that satisfy the conditions derived in Section
2, and illustrate how the generalized mean function Γw can be explicitly constructed.
Conclusions are given in the last section.

2. Necessary and Sufficient Conditions for the Convexity of Γw. Let us
start with a simple lemma (proof omitted) that shows the inverse of an increasing
convex function is concave and increasing.

Lemma 2.1. Let Ω be an open convex subset of R and Ψ : Ω → R be a real
function defined on Ω. Then Ψ is (strictly) convex and strictly increasing if and only
if its inverse Ψ−1 : R → Ω is (strictly) concave and strictly increasing.

Notice that if wi = 0, for some i, then the term wiφi(x) can be removed from the
expression of Γw(x), and it suffices to consider Γw defined on Rn−1. Thus, without
loss of generality, we may assume that the vector w ∈ Rn

++ throughout the rest of the
paper.

To study the convexity of the function Γw, when assuming that φi, i = 1, ..., n,
and Ψ−1 are twice differentiable, we need to check its Hessian matrix. Let

xw =
n∑

i=1

wiφi(xi).

Since ∂xw

∂xi
= wiφ

′
i(xi), we have

∂Γw

∂xi
= (Ψ−1)′(xw)wiφ

′
i(xi).

Moreover,

∂2Γw

∂x2
i

= (Ψ−1)′′(xw)(wiφ
′
i(xi))2 + (Ψ−1)′(xw)wiφ

′′
i (xi),

∂2Γw

∂xi∂xj
= (Ψ−1)′′(xw)wiwjφ

′
i(xi)φ′j(xj) for i 6= j.

Consequently, the Hessian matrices of Γw becomes

∂2Γw

∂x2
= (Ψ−1)′(xw)




w1φ
′′
1(x1) 0 . . . 0
0 w2φ

′′
2(x2) . . . 0

. . . . . . . . . . . .
0 0 . . . wnφ′′n(xn)




+ (Ψ−1)′′(xw)




w1φ
′
1(x1)

w2φ
′
2(x2)

. . .
wnφ′n(xn)


 [w1φ

′
1(x1), w2φ

′
2(x2), . . . , wnφ′n(xn)].(2.1)
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Note that when φi, i = 1, ..., n, is convex and Ψ is convex and increasing, by Lemma
2.1, we see that the first term on the right-hand side of (2.1) is a positive semidefinite
matrix multiplied by a positive coefficient (Ψ−1)′(xw), while the second is a rank one
matrix multiplied by a negative coefficient (Ψ−1)′′(xw).

Under the conditions of φ > 0, φ′ > 0 and φ′′ > 0, it is shown in [13] that the
function Υw(x) is convex if and only if the following condition holds:

n∑

i=1

wi
[φ′(xi)]2

φ′′(xi)
≤ [φ′(y)]2

φ′′(y)
, y = Υw(x).

In what follows, we generalize this result for the function Γw(x). Although the basic
idea of our proof is essentialy tied to that of [13], the proof is not straightforward.
For completeness, we give a detailed proof for our result.

Theorem 2.2. Let Ω ⊂ R be open and convex, Ψ : Ω → R be convex, twice
differentiable and strictly increasing, φi : Ω → R, i = 1, ..., n, be strictly convex and
twice differentiable, and w ∈ Rn

++ be a given vector. Then the generalized mean
function

Γw(x) = Ψ−1

(
n∑

i=1

wiφi(xi)

)

is convex on Ωn :=

n︷ ︸︸ ︷
Ω× · · · × Ω if and only if

Ψ′′(y)

(
n∑

i=1

wi
[φ′i(xi)]2

φ′′i (xi)

)
≤ [Ψ′(y)]2 for x ∈ Ωn and y = Γw(x).(2.2)

Moreover, Γw(x) is strictly convex if and only if the inequality in (2.2) holds strictly.
Proof. Let y = Γw(x) = Ψ−1(xw). Then xw = Ψ(y) and

(Ψ−1)′(xw)Ψ′(y) = 1.(2.3)

Differentiating both sides with respect to y and use the above relations, we have

0 = (Ψ−1)′′(xw)[Ψ′(y)]2 + (Ψ−1)′(xw)Ψ′′(y)

= (Ψ−1)′′(xw)[Ψ′(y)]2 +
Ψ′′(y)
Ψ′(y)

.

Therefore,

(Ψ−1)′′(xw) = − Ψ′′(y)
[Ψ′(y)]3

.(2.4)

Combining (2.3) and (2.4) yields

(Ψ−1)′(xw) + (Ψ−1)′′(xw)

n∑
i=1

wi
[φ′i(xi)]

2

φ′′i (xi)
=

[Ψ′(y)]2 −
(∑n

i=1
wi

[φ′i(xi)]
2

φ′′
i
(xi)

)
Ψ′′(y)

[Ψ′(y)]3
.(2.5)

First we prove that Γw(x) is convex, if (2.2) holds. It suffices to show that the Hessian
matrix of Γw(x) is positive semi-definite.
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Notice that for any d ∈ Rn and x ∈ Ωn, the Cauchy-Schwartz inequality implies
that

(
n∑

i=1

wiφ
′
i(xi)di

)2

=

(
n∑

i=1

[√
wiφ′′i (xi)di

]
·
√

wi

φ′′i (xi)
φ′i(xi)

)2

≤
(

n∑

i=1

wiφ
′′
i (xi)d2

i

)(
n∑

i=1

wi
[φ′i(xi)]2

φ′′i (xi)

)
.

By Lemma 2.1, we know Ψ−1 is concave and hence (Ψ−1)′′(xw) ≤ 0 for all xw.
Combining this fact with the above inequality, we see that, for any d ∈ Rn,

dT ∂2Γw

∂x2
d

= (Ψ−1)′(xw)

(
n∑

i=1

wiφ
′′
i (xi)d2

i

)
+ (Ψ−1)′′(xw)

(
n∑

i=1

wiφ
′
i(xi)di

)2

≥ (Ψ−1)′(xw)

(
n∑

i=1

wiφ
′′
i (xi)d2

i

)
+ (Ψ−1)′′(xw)

(
n∑

i=1

wiφ
′′
i (xi)d2

i

)(
n∑

i=1

wi
[φ′i(xi)]2

φ′′i (xi)

)

=

(
n∑

i=1

wiφ
′′
i (xi)d2

i

)[
(Ψ−1)′(xw) + (Ψ−1)′′(xw)

(
n∑

i=1

wi[φ′i(xi)]2

φ′′i (xi)

)]

=

(
n∑

i=1

wiφ
′′
i (xi)d2

i

)
[Ψ′(y)]2 −

(∑n
i=1 wi

[φ′i(xi)]
2

φ′′
i
(xi)

)
Ψ′′(y)

[Ψ′(y)]3

≥ 0.

The last equality follows from (2.5) and the last inequality follows from the fact that
the first quantity on the right-hand side, i.e.,

∑n
i=1 wiφ

′′
i (xi)d2

i , is nonnegative, and
the second quantity is also nonnegative due to our assumption. Consequently, we
have proven that the Hessian matrix ∂2Γw

∂x2 is positive semi-definite, as desired.
Conversely, we would like to show that inequality (2.2) holds, if Γw(x) is convex.

For any vector 0 6= d ∈ Rn, knowing (2.3), (2.4) and the convexity of Γw(x), we have

0 ≤ dT ∂2Γw

∂x2
d = (Ψ−1)′(xw)

(
n∑

i=1

wiφ
′′
i (xi)d2

i

)
+ (Ψ−1)′′(xw)

(
n∑

i=1

wiφ
′
i(xi)di

)2

=
1

Ψ′(y)

(
n∑

i=1

wiφ
′′
i (xi)d2

i

)
− Ψ′′(y)

Ψ′(y)3

(
n∑

i=1

wiφ
′
i(xi)di

)2

=

(
n∑

i=1

wiφ
′′
i (xi)d2

i

)[
1

Ψ′(y)
− Ψ′′(y)

Ψ′(y)3
[
∑n

i=1 wiφ
′
i(xi)di]

2

∑n
i=1 wiφ′′i (xi)d2

i

]
.(2.6)

Notice that the above inequality holds for any vector d ∈ Rn. In particular, let

di =
φ′i(xi)

φ′′i (xi)
∑n

k=1 wk
[φ′

k
(xk)]2

φ′′
k
(xk)

, i = 1, ..., n.

Then, we have
n∑

i=1

wiφ
′
i(xi)di = 1,

n∑

i=1

wiφ
′′
i (xi)d2

i =
1

∑n
i=1 wi

[φ′
i
(xi)]2

φ′′
i
(xi)

.
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As a result, the inequality (2.6) reduces to

0 ≤

 1

∑n
i=1 wi

[φ′
i
(xi)]2

φ′′
i
(xi)




[
1

Ψ′(y)
− Ψ′′(y)

Ψ′(y)3

(
n∑

i=1

wi
[φ′i(xi)]2

φ′′i (xi)

)]

We see that inequality (2.2) indeed holds. The result about strict convexity can be
easily checked out.

Two related sufficiency results of Theorem 2.2 are derived below for convenient
usage in constructing convex Γw (see next section).

Theorem 2.3. Let Ω be an open convex subset of R, Ψ : Ω → R be strictly
increasing, twice differentiable and convex, φi : Ω → R, i = 1, ..., n, be strictly convex
and twice differentiable, and w ∈ Rn

++ be a given vector. Assume that there exists a
scalar α ∈ R such that

αΨ(t)Ψ′′(t) ≤ [Ψ′(t)]2 for t ∈ Ω.(2.7)

Then the function Γw is convex on Ωn if
n∑

i=1

wi[φ′i(xi)]2

φ′′i (xi)
≤ αΨ(y) for x ∈ Ωn,(2.8)

where y = Γw(x).
Proof. Multiplying both sides of (2.8) by Ψ′′(y) and applying (2.7), we see that

condition (2.2) holds. The result follows from Theorem 2.2 immediately.
Theorem 2.4. Let Ω be an open convex subset of R, Ψ : Ω → R be strictly

increasing, twice differentiable and convex, φi : Ω → R, i = 1, ..., n, be strictly convex
and twice differentiable, and w ∈ Rn

++ be a given vector. Assume that there exist
0 6= αi ∈ R, i = 1, ..., n, holding the same sign such that

αiφi(t)φ′′i (t) ≥ [φ′i(t)]
2 for t ∈ Ω,(2.9)

and there exists an α ∈ R such that the inequality (2.7) holds. Then the function Γw

is convex if

α ≥ max
1≤i≤n

αi ( when αi > 0 for all i),(2.10)

or

α ≤ min
1≤i≤n

αi ( when αi < 0 for all i).(2.11)

Proof. Taking y = Γw(x), we see two cases.
Case 1: αi > 0 for i = 1, ..., n. In this case, (2.9) implies that φi(t) ≥ 0 for t ∈ Ω

and (2.10) implies that
n∑

i=1

wi
[φ′i(t)]

2

φ′′i (xi)
≤

n∑

i=1

wiαiφi(xi) ≤
(

max
1≤i≤n

αi

) n∑

i=1

wiφi(xi) ≤ αΨ(y).

Case 2: αi < 0 for i = 1, ..., n. In this case, (2.9) implies that φi(t) ≤ 0 for t ∈ Ω
and (2.11) implies that

n∑

i=1

wi
[φ′i(t)]

2

φ′′i (xi)
≤

n∑

i=1

wiαiφi(xi) ≤
(

min
1≤i≤n

αi

) n∑

i=1

wiφi(xi) ≤ αΨ(y).
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Both cases yield (2.8) and the desired result follows from Theorem 2.2.
A special case of φ1(t) = φ2(t) = ... = Ψ(t) immediately leads to the next result.
Corollary 2.5. Let Ω be an open convex set in R, φ : Ω → R be a convex,

twice differentiable and strictly increasing function, and w ∈ Rn
++ be a given vector.

If there exists an α 6= 0 such that

[φ′(t)]2 = αφ(t)φ′′(t) for t ∈ Ω,(2.12)

then the function Υw(x) = φ−1(
∑n

i=1 wiφ(xi)) is convex on Ωn.
It is worth making two remarks here:
Remark 2.1. The functions satisfying a differential inequality such as (2.7) are

related to the so-called self-concordant barrier function as introduced by Nesterov and
Nemirovsky [16]. Recall that a C3 function ξ : (0,∞) → R is said to be self-concordant
if ξ is convex and there exists a constant µ1 > 0 such that

|ξ′′′(t)| ≤ µ1(ξ′′(t))
3
2 for t ∈ (0,∞).(2.13)

Moreover, the self-concordant function ξ is called a self-concordant barrier function if
there exists a constant µ2 > 0 such that

|ξ′(t)| ≤ µ2[f ′′(t)]
1
2 for t ∈ (0,∞).(2.14)

Combining (2.13) and (2.14) yields

ξ′(t)ξ′′′(t) ≤ µ[ξ′′(t)]2.

This indicates that the first-order derivative function of a self-concordant barrier func-
tion, i.e., g(t) := ξ′(t), satisfies the inequality (2.7). Our later analysis will show that
a self-concordant function ξ(·) itself may also satisfy an inequality like (2.7) or (2.9).

Remark 2.2. The functions satisfying a differential inequality such as (2.7) also
appear in convexity theory. Given a twice differentiable function φ(t) > 0 on its
domain Ω, we consider the convexity of the function h(t) := 1

φ(t) on Ω. Notice that

h′′(t) =
2[φ′(t)]2 − φ(t)φ′′(t)

[φ(t)]3
for t ∈ Ω.

Hence the function h(t) = 1
φ(t) is convex if and only if the inequality φ(t)φ′′(t) ≤

2[φ′(t)]2 holds on Ω. Moreover, if φ(t)φ′′(t) ≤ [φ′(t)]2, the convex function h(t)
satisfies a reverse inequality, i.e., h(t)h′′(t) ≥ [h′(t)]2 on Ω.

From this observation, a related question arises. Given a function φ(t) > 0 on Ω
and a constant r > 0, when will the function h(t) := 1

φ(t)r become convex and satisfy
an inequality such as (2.9)? A straightforward analysis leads to the next result.

Theorem 2.6. (i) Let Ω be a convex subset of R and φ : Ω → (0,∞) be a function.
If φ(t)φ′′(t) ≤ [φ′(t)]2 for t ∈ Ω, then, for any r > 0, the function h(t) := 1

φ(t)r is
convex and h(t)h′′(t) ≥ [h′(t)]2 for t ∈ Ω. Conversely, if there exists an r > 0 such
that h(t) := 1

φ(t)r is convex and h(t)h′′(t) ≥ [h′(t)]2 for t ∈ Ω, then φ(t)φ′′(t) ≤ [φ′(t)]2

for t ∈ Ω.
(ii) Let Ω be a convex subset of R, τ > 0, and φ : Ω → (τ,∞) be a function. If

φ(t)φ′′(t) ≤ [φ′(t)]2 for t ∈ Ω, then, for any scalar r > 0 and T > 0, the function
hT (t) := T + 1

φ(t)r is convex and αhT (t)h′′T (t) ≥ [h′T (t)]2 for t ∈ Ω, where α = 1
Tτr+1 .
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Proof. For case (A), it is sufficient to see that

h′′(t) =
r2(φ′(t))2 + r[(φ′(t))2 − φ(t)φ′′(t)]

φ(t)r+2
,

and

h(t)h′′(t)− [h′(t)]2 =
r[(φ′(t))2 − φ(t)φ′′(t)]

φ(t)2(r+1)
.

For case (B), it is easy to verify that h′′T (t) = h′′(t) and
(

1
Tφ(t)r + 1

)
hT (t)h′′T (t)− [h′T (t)]2 =

r[(φ′(t))2 − φ(t)φ′′(t)]
φ(t)2(r+1)

.

Then the desired result follows.
The above results indicate that if we have a function φ satisfying the inequality

(2.7) with α = 1, then we may construct a function h from φ such that h satisfies the
converse differentiable inequality αh(t)h′′(t) ≥ [h′(t)]2 for some constant α. Moreover,
if we take a T-translation of the value of the function h, then the resulting function
satisfies the converse differentiable inequality with an α that can be reduced to be
smaller than any threshold given in (0,1) provided a suitable choice of T > 0. This
fact will be used near the end of Section 3.

Before closing this section, we mention that Ben-Tal and Teboulle [2] also provided
a sufficient and necessary condition, under different assumptions, for the convexity
of the function Υw(x) as defined in (1.1). They showed that Υw(x) is convex if and
only if −φ′/φ′′ is convex. It is possible to extend their analysis for deriving sufficient
conditions for the convexity of Γw(x) defined by (1.2). For example, the following
result can be proved along the line of the proof of “Theorem 2.1” therein.

Lemma 2.7. Let Ψ(t) ∈ C3 and φi(t) ∈ C3 be strictly increasing and ρ(t) =
−Ψ′′(t)/Ψ′(t). If 1/ρ(t) is convex and Ψ−1(φi(t)) is convex, for i = 1, ..., n, then
Γw(x) given by (1.2) is convex.

3. Constructing convex generalized mean functions Γw. In this section,
we try to identify some classes of functions that satisfy inequality (2.7) and/or inequal-
ity (2.9) so that we have building blocks for constructing concrete convex function
Γw(x). First, we give a result that identifies functions satisfying the equation (2.12).
Obviously, this class of functions satisfy both inequalities (2.7) and (2.9).

Theorem 3.1. Let Ω be an open set in R and φ : Ω → R be a convex, twice
differentiable and strictly increasing function satisfying equation (2.12) with a constant
α 6= 0. Then,

(i) when α = 1, φ is in the form of

φ(t) = γe
t
β

for some γ > 0 and β > 0.
(ii) when 0 < α 6= 1 with v∗ := supt∈Ω

1−α
α t being finite, φ is in the form of

φ(t) = γ

(
α− 1

α
t + β

) α
α−1

for some γ > 0 and β ≥ v∗.
8



(iii) when α < 0 with u∗ := supt∈Ω
α−1

α t being finite, φ is in the form of

φ(t) = −γ

(
β − α− 1

α
t

) α
α−1

for some γ > 0 and β ≥ u∗.
Note that results (i) and (ii) were pointed out in [2] and [13] and result (iii) can

be easily derived. The above result leads to the following consequence related to Υw.
Corollary 3.2. The following functions can be used to explicitly construct a

convex generalized mean function Υw(x) = φ−1(
∑n

i=1 wiφ(xi)) over Ωn:
(i) φ(t) = γe

t
β over Ω = R with γ > 0 and β > 0.

(ii) φ(t) = γ
(

1
p t + β

)p

over Ω = (η,∞) with p > 1, γ > 0 and β ≥ −η
p .

(iii) φ(t) = γ

(β− 1
p t)p over Ω = (−∞, η) with p > 0, γ > 0 and β ≥ −η

p .

(iv) φ(t) = −γ(β − 1
p t)p over Ω = (−∞, η) with 0 < p < 1, γ > 0 and β ≥ η

p .
Again, results (i) and (ii) were given in [2] and [13] and results (iii) and (iv) can

be easily derived. The functions listed in Corollary 3.2 actually form a complete basis
in the sense that the function φ in case (i) satisfies condition (2.12) with α = 1; the
function φ in case (ii) satisfies condition (2.12) with α = p

p−1 > 1; the function φ in
case (iii) satisfies condition (2.12) with α = p

p+1 ∈ (0, 1); and the function φ in (iv)
satisfies condition (2.12) with α = p

p−1 < 0.

We now try to identify some class of functions that satisfy inequalities (2.7) and/or
(2.9). For simplicity, we only consider convex, twice differentiable, strictly increasing
functions ϑ on Ω = (0,∞). Let us first define the following four categories of such
functions:

U1 = {ϑ : There exists α ∈ R such that αϑ(t)ϑ′′(t) ≥ [ϑ′(t)]2 for t ∈ Ω};
U2 = {ϑ : There exists α ∈ R such that αϑ(t)ϑ′′(t) ≤ [ϑ′(t)]2 for t ∈ Ω};
U3 = {ϑ : There exist α1 ≤ α2 such that α1ϑ(t)ϑ′′(t) ≤ [ϑ′(t)]2 ≤ α2ϑ(t)ϑ′′(t)

for t ∈ Ω};
U4 = {ϑ : There exists α ∈ R such that αϑ(t)ϑ′′(t) = [ϑ′(t)]2 for all t ∈ Ω}.

It is evident that

U4 ⊂ U3 ⊂ (U2 ∩ U1).

As pointed out in Theorem 3.1, the class U4 can be given explicitly. By allowing
α1 6= α2, we show that U3 is much broader than U4. In fact, many convex functions
with certain regularities fall into the category U3. To start, we introduce a new class
of functions with certain regularity properties.

Definition 3.3. A convex, twice differentiable, strictly increasing function δ(t) :
(0,∞) → R is called an S∗-regular function if (i) δ(t) vanishes at t = 0 in the sense
of

lim
t→0+

δ(0) = lim
t→0+

δ′(0) = lim
t→0+

δ′′(0) = 0;

and (ii) there exist positive constants 0 < β1 ≤ β2, p ≥ 1 and q ≥ 1 such that

β1[(t + 1)p−1 − (t + 1)−1−q] ≤ δ′′(t) ≤ β2[(t + 1)p−1 − (t + 1)−1−q], t > 0.(3.1)
9



Note that condition (3.1) actually implies the strict convexity of an S∗-regular func-
tion on (0,∞). In particular, setting β1 = β2, condition (3.1) reduces to an equation

δ′′(t) = (t + 1)p−1 − (t + 1)−1−q.(3.2)

Taking integration twice and noting that limt→0+ δ(0) = limt→0+ δ′(0) = 0, the unique
solution to equation (3.2) is

∆p,q(t) =
(t + 1)p+1 − 1

p(p + 1)
− (t + 1)1−q − 1

q(q − 1)
− p + q

pq
t for p ≥ 1 and q > 1.(3.3)

In addition, since limq→1+ [1− (t + 1)1−q]/(q − 1) = ln(t + 1), we have

∆p,1(t) =
(t + 1)p+1 − 1

p(p + 1)
+ ln(t + 1)− p + 1

p
t for p ≥ 1.(3.4)

Taking p = 1 in (3.4), we have

∆1,1(t) =
(t + 1)2 − 1

2
+ ln(t + 1)− 2t =

1
2
t2 − t + ln(t + 1).(3.5)

Moreover, taking p = 1 and q = 2 in (3.3) yields

∆1,2(t) =
1
2

[
(t + 1)2 − (t + 1)−1 − 3t

]
.(3.6)

In terms of this particular solution ∆p,q(t), condition (3.1) can be written as

β1∆′′
p,q(t) ≤ δ′′(t) ≤ β2∆′′

p,q(t).(3.7)

By integrating and noting that limt→0+ δ′(0) = limt→0+ δ(0) = 0, we further have

β1∆′
p,q(t) ≤ δ′(t) ≤ β2∆′

p,q(t)(3.8)

and

β1∆p,q(t) ≤ δ(t) ≤ β2∆p,q(t).(3.9)

Therefore, we can see that the class of S∗-regular functions is quite broad. Later, by
using (3.7)-(3.9), we show that S∗-regular functions fall into the category U3.

It is worth mentioning that for any p ≥ 1, q > 1 (including the case of q → 1+)
the S∗-regular function ∆p,q(t) is not self-concordant. In fact, the function ∆p,q(t)
does not satisfy the inequality (2.13) since δ′′(t) → 0 and δ′′′(t) → p + q as t → 0+.

The S∗-regular functions are somewhat analogous to (but different from) the so-
called self-regular functions that were defined in [18] to study interior-point algorithms
for linear programming problems.

Definition 3.4. [18] A twice differentiable function ψ(t) : (0,∞) → R is self-
regular if (i) ψ(t) is strictly convex and vanishes at its global minimal point t = 1,
i.e., ψ(1) = ψ′(1) = 0, and (ii) there exist constants ν2 ≥ ν1 > 0 and p ≥ 1, q ≥ 1
such that

ν1(tp−1 + t−1−q) ≤ ψ′′(t) ≤ ν2(tp−1 + t−1−q) for t ∈ (0,∞).

Notice that a self-regular function is not necessarily increasing. However, a variable
translation leads to a strictly increasing function g : (0,∞) → R where g(t) :=

10



ψ(t + 1). We call such g(t) a translated self-regular function (T ∗-regular in short).
From Definition 3.4, we see that a T ∗-regular function g(t) satisfies the following three
conditions: (i) g(t) is strictly increasing on (0,∞), (ii) limt→0+ g(t) = limt→0+ g′(t) =
0, and (iii) there exists positive constants ν2 ≥ ν1 > 0 and p ≥ 1, q ≥ 1 such that

ν1[(t + 1)p−1 + (t + 1)t−1−q] ≤ g′′(t) ≤ ν2[(t + 1)p−1 + (t + 1)−1−q], t > 0.(3.10)

Since limt→0+ g′′(t) 6= 0, T ∗-regular functions and S∗-regular functions belong to
different classes, although conditions (3.10) and (3.1) may look alike. In fact, an
S∗-regular function is not T ∗-regular, and a T ∗-regular function is not S∗-regular.

As shown in [18], when ν1 = ν2, the self-regular function ψ(t) is given by

ψp,q(t) :=
tp+1 − 1
p(p + 1)

+
t1−q − 1
q(q − 1)

+
p− q

pq
(t− 1) for p ≥ 1 and q > 1.(3.11)

For T ∗-regular function Gp,q(t) := ψp,q(t + 1), condition (3.10) can be written as

ν1G
′′
p,q(t) ≤ g′′(t) ≤ ν2G

′′
p,q(t).(3.12)

Similar to (3.7) and (3.8), we have

ν1G
′
p,q(t) ≤ g′(t) ≤ ν2G

′
p,q(t)(3.13)

and

ν1Gp,q(t) ≤ g(t) ≤ ν2Gp,q(t).(3.14)

To compare with the S∗-regular functions ∆p,q(t) (see, (3.3)-(3.6)), we list here a
few T ∗-regular functions:

Gp,q(t) =
(t + 1)p+1 − 1

p(p + 1)
+

(t + 1)1−q − 1
q(q − 1)

+
p− q

pq
t for p ≥ 1 and q > 1.

Gp,1(t) =
(t + 1)p+1 − 1

p(p + 1)
− ln(t + 1) +

p− 1
p

t.

G1,1(t) =
(t + 1)2 − 1

2
− ln(t + 1) =

1
2
t2 + (t− ln(t + 1)).

G1,2(t) =
1
2

[
(t + 1)2 + (t + 1)−1 − t− 2

]
.

As pointed out in [18], the self-regular function (3.11) is self-concordant [16]. Thus, the
T ∗-regular function Gp,q(t) can be also viewed as a translated self-concordant function.
While T ∗-regular and S∗-regular functions are two different classes functions, the
following theorem shows that they both belong to the category of U3.

Theorem 3.5. Let δ(t) : (0,∞) → R be either S∗-regular or T ∗-regular on
(0,∞). Then there exist c2 ≥ c1 > 0 such that

c1 ≤ δ(t)δ′′(t)
[δ′(t)]2

≤ c2 for t ∈ (0,∞),(3.15)

i.e., the function δ(t) ∈ U3.
Proof. We first show that an S∗-regular function ∆p,q(t) satisfies the property

(3.15). Actually, we have

∆p,q(t)∆′′
p,q(t)

[∆′
p,q(t)]2

=

(
(t+1)p+1−1

p(p+1) − (t+1)1−q−1
q(q−1) − p+q

pq t
)

[(t + 1)p−1 − (t + 1)−1−q]
(

(t+1)p

p + (t+1)−q

q − p+q
pq

)2

.
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Dividing the numerator and denominator of the right-hand side of the above equation
by (t + 1)2p = (t + 1)p+1(t + 1)p−1, we have

∆p,q(t)∆
′′
p,q(t)

[∆′
p,q(t)]2

=

(
1−(t+1)−(p+1)

p(p+1)
+ (t+1)−(p+1)−(t+1)−(p+q)

q(q−1)
− (p+q)t

pq(t+1)(p+1)

)(
1− 1

(t+1)(p+q)

)

(
1
p

+ 1

q(t+1)(p+q) − p+q
pq(t+1)p

)2
.

Therefore,

lim
t→∞

∆p,q(t)∆′′
p,q(t)

[∆′
p,q(t)]2

=
p

p + 1
.(3.16)

Notice that ∆′′
p,q(t) = (t + 1)p−1 − (t + 1)−1−q. We have

lim
t→0+

∆′′′
p,q(t) = lim

t→0+
(p− 1)(t + 1)p−2 + (1 + q)(t + 1)−2−q = p + q.

Since ∆′′
p,q(t) → 0, ∆′

p,q(t) → 0 and ∆p,q(t) → 0 as t → 0+, we have

lim
t→0+

(∆′′
p,q(t))

2

∆′
p,q(t)

= lim
t→0+

[(∆′′
p,q(t))

2]′

[∆′
p,q(t)]′

= lim
t→0+

2∆′′
p,q(t)∆

′′′
p,q(t)

∆′′
p,q(t)

= 2(p + q).

Hence

lim
t→0+

∆p,q(t)
2∆′

p,q(t)∆′′
p,q(t)

= lim
t→0+

[∆p,q(t)]′

[2∆′
p,q(t)∆′′

p,q(t)]′

= lim
t→0+

∆′
p,q(t)

2[∆′′
p,q(t)]2 + 2∆′

p,q(t)∆′′′
p,q(t)

= lim
t→0+

1

2 [∆′′p,q(t)]2

∆′p,q(t) + 2∆′′′
p,q(t)

=
1

2(2(p + q) + (p + q))
=

1
6(p + q)

.

Using the above relations, we further have

lim
t→0+

∆p,q(t)∆′′
p,q(t)

[∆′
p,q(t)]2

= lim
t→0+

[
∆p,q(t)∆′′

p,q(t)
]′

[(∆′
p,q(t))2]′

= lim
t→0+

∆′
p,q(t)∆

′′
p,q(t) + ∆p,q(t)∆′′′

p,q(t)
2∆′

p,q(t)∆′′
p,q(t)

=
1
2

+ lim
t→0+

∆p,q(t)∆′′′
p,q(t)

2∆′
p,q(t)∆′′

p,q(t)

=
1
2

+ lim
t→0+

∆p,q(t)
2∆′

p,q(t)∆′′
p,q(t)

lim
t→0+

∆′′′
p,q(t)

=
1
2

+
1

6(p + q)]
(p + q)

=
2
3
.(3.17)

12



Notice that ∆p,q(t) > 0,∆′′
p,q(t) > 0 and ∆′

p,q(t) > 0 in (0,∞). From (3.16) and (3.17),
we can see by continuity that there exist two constants µ2 ≥ µ1 > 0 such that

µ1 ≤
∆p,q(t)∆′′

p,q(t)
[∆′

p,q(t)]2
≤ µ2 for t ∈ (0,∞).

Together with (3.7) through (3.9), this implies that an S∗-regular function δ(t) satisfies
the following inequality:

0 < µ1β1 ≤ δ(t)δ′′(t)
[δ′(t)]2

≤ β2µ2,

Therefore, (3.15) holds with c1 := µ1β1 and c2 := µ2β2.
Now, for a T ∗-regular function Gp,q(t), we have

Gp,q(t)G′′p,q(t)
[G′p,q(t)]2

=

(
(t+1)p+1−1

p(p+1) + (t+1)1−q−1
q(q−1) + p−q

pq t
)

((t + 1)p−1 + (t + 1)−1−q)
(

(t+1)p

p − (t+1)−q

q + p−q
pq

)2

Dividing the numerator and denominator of the right-hand side of the above equation
by (t + 1)2p = (t + 1)p+1(t + 1)p−1, and taking t →∞, we have

lim
t→∞

Gp,q(t)G′′p,q(t)
[G′p,q(t)]2

=
p

p + 1
.(3.18)

Notice that

lim
t→0+

G′′p,q(t) = lim
t→0+

(t + 1)p−1 + (t + 1)−1−q = 2.

Since Gp,q(t) → 0 and G′p,q(t) → 0 as t → 0+, thus,

lim
t→0+

Gp,q(t)G′′p,q(t)
[G′p,q(t)]2

= lim
t→0+

Gp,q(t)
[G′p,q(t)]2

lim
t→0+

G′′p,q(t)

= lim
t→0+

[Gp,q(t)]′

[(G′p,q(t))2]′
lim

t→0+
G′′p,q(t)

= lim
t→0+

G′p,q(t)
2G′p,q(t)G′′p,q(t)

lim
t→0+

G′′p,q(t)

=
1
2
.(3.19)

Notice that Gp,q(t), G′′p,q(t), and G′p,q(t) are positive on (0,∞). From (3.18) and (3.19),
we can conclude by continuity that there exist λ2 ≥ λ1 > 0 such that

λ1 ≤
Gp,q(t)G′′p,q(t)

[G′p,q(t)]2
≤ λ2 for t ∈ (0,∞).

Together with (3.12) through (3.14), this implies that a T ∗-regular function satisfies
the following inequality:

0 < λ1ν1 ≤ g(t)g′′(t)
[g′(t)]2

≤ λ2ν2.

13



Hence (3.15) holds with c1 := ν1λ1 and c2 := ν2λ2.
A fact that should be pointed out here is that new functions in U1 or U2 can

be constructed by using the basic operations (addition, multiplication, division and
composition) on known functions.

Theorem 3.6. (i) If φ : (0,∞) → (0,∞), φ ∈ U1 with α = α1 and ϕ : (0,∞) →
(0,∞), ϕ ∈ U1 with α = α2, then φ + ϕ ∈ U1 with α = 2 max{α1, α2}.

(ii) If φ : (0,∞) → (0,∞), φ ∈ U1 with α1 ∈ (0, 1] and ϕ : (0,∞) → (0,∞),
ϕ ∈ U1 with α2 ∈ (0, 1], then the multiplicative function φ(t) · ϕ(t) ∈ U1 with α = 1.
Similarly, if φ ∈ U2 with α1 ≥ 1 and ϕ ∈ U2 with α2 ≥ 1, then φ(t) · ϕ(t) ∈ U2 with
α = 1.

(iii) If φ : (0,∞) → (0,∞), φ ∈ U2 with α1 ≥ 1 and ϕ : (0,∞) → (0,∞), ϕ ∈ U1

with α2 ∈ (0, 1], then the function φ
ϕ ∈ U2 with α = 1. Similarly, if φ ∈ U1 with

α1 ∈ (0, 1] and ϕ ∈ U2 with α2 ≥ 1, then φ
ϕ ∈ U1 with α = 1.

(iv) Let ϕ : (0,∞) → Ω1 ⊂ R and φ : Ω1 → (0,∞) be two convex functions. If
φ ∈ U1 with α > 0, then the composite function (φ ◦ ϕ)(t) = φ(ϕ(t)) ∈ U1 with the
same constant α.

Proof. Keep in mind that all functions in U1 and U2 are convex, twice differ-
entiable, and strictly increasing. For (i), we note that α1, α2, φ(t) and ϕ(t) are all
nonnegative. Thus,

(φ′(t) + ϕ′(t))2 ≤ 2[(φ′(t))2 + (ϕ′(t))2]
≤ 2α1φ(t)φ′′(t) + 2α2ϕ(t)ϕ′′(t)
≤ 2max{α1, α2}(φ(t) + ϕ(t))(φ′′(t) + ϕ′′(t)).

This indicates that φ + ϕ ∈ U1 with α = 2 max{α1, α2}. The proofs of statements (ii)
and (iii) are easy by noting that

(φ(t)ϕ(t))[φ(t)ϕ(t)]′′ = (φ(t)φ′′(t)− [φ′(t)]2)ϕ2(t) + φ2(t)(ϕ(t)ϕ′′(t)− [ϕ′(t)]2)
+[(φ(t)ϕ(t))′]2

and

φ(t)

ϕ(t))

(
φ(t)

ϕ(t)

)′′
=

(φ(t)φ′′(t)− [φ′(t)]2)ϕ2(t) + φ2(t)([ϕ′(t)]2 − ϕ′′(t)ϕ(t))

ϕ4(t)
+

[(
φ(t)

ϕ(t)

)′]2

.

Statement (iv) can also be easily verified.
To construct examples of the convex function Γw, Theorem 2.4 tells us that it

suffices to find functions satisfying the inequalities (2.7) and (2.9) and compare their
α values. The next result is to estimate the α values, or equivalently, to estimate the
values of c1 and c2 in (3.15). For simplicity, we use the S∗-regular and T ∗-regular
functions with p = 1 and q = 1, 2 to estimate required c1 and c2.

Theorem 3.7. (i) The S∗-regular functions ∆1,1(t) and ∆1,2(t) given by (3.5)
and (3.6), respectively, satisfy condition (3.15) with c1 = 1

2 and c2 = 2
3 , that is,

3
2
∆1,1(t)∆′′

1,1(t) ≤ [∆′
1,1(t)]

2 ≤ 2∆1,1(t)∆′′
1,1(t)(3.20)

and

3
2
∆1,2(t)∆′′

1,2(t) ≤ [∆′
1,2(t)]

2 ≤ 2∆1,2(t)∆′′
1,2(t)(3.21)
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for t ∈ (0,∞).
(ii) The T ∗-regular function G1,1(t) satisfies condition (3.15) with c1 = 4

9 and
c2 = 1

2 , while G1,2(t) satisfies condition (3.15) with c1 = 12
29 and c2 = 1

2 , i.e.,

2G1,1(t)G′′1,1(t) ≤ [G′1,1(t)]
2 ≤ 9

4
G1,1(t)G′′1,1(t)(3.22)

and

2G1,2(t)G′′1,2(t) ≤ [G′1,2(t)]
2 ≤ 29

12
G1,2(t)G′′1,2(t)(3.23)

for t ∈ (0,∞).
Proof. We give a proof to (3.20). (3.21) can be shown similarly. For the function

∆1,1(t), we have

∆′
1,1(t) =

t2

t + 1
, ∆′′

1,1(t) =
t(t + 2)
(t + 1)2

,

and hence

ζ(t) :=
∆1,1(t)∆′′

1,1(t)
[∆′

1,1(t)]2
=

(t + 2)
(

1
2 t2 − t + ln(t + 1)

)

t3
.

Clearly, we have

ζ ′(t) =
( 1
2 t2 − t + ln(t + 1))(−2t− 6) + (t+2)t3

t+1

t4
.

This implies that its stationary (including the maximum or minimum) point t∗ on
(0,∞), if exists, satisfies the following equality:

1
2
t2∗ − t∗ + ln(t∗ + 1) =

(t∗ + 2)t3∗
(2t∗ + 6)(t∗ + 1)

.

The corresponding value of ζ(t) becomes

ζ(t∗) =
(t∗ + 2)

(
1
2 t2∗ − t∗ + ln(t∗ + 1)

)

t3∗
=

(t∗ + 2)2

(2t∗ + 6)(t∗ + 1)
.

Let

κ(t) =
(t + 2)2

(2t + 6)(t + 1)
for t ∈ (0,∞)

It is easy to verify that limt→0+ κ(t) = 2
3 , limt→∞ κ(t) = 1

2 , and κ′(t) < 0 for
t ∈ (0,∞). Thus 1

2 ≤ κ(t) ≤ 2
3 for t ∈ (0,∞). Since ζ(t∗) = κ(t∗), the extremum value

of ζ(t) on (0,∞) is located in the interval [12 , 2
3 ]. By (3.16) and (3.17), we see that

ζ(t) → 2
3 as t → 0+, ζ(t) → 1

2 as t →∞. Hence, we have 1
2 ≤ ζ(t) ≤ 2

3 for t ∈ (0,∞).
This validates inequality (3.20).

We now prove (3.22). It is evident that

G′1,1(t) =
t(t + 2)
t + 1

, G′′1,1(t) =
t2 + 2t + 2
(t + 1)2

,
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and hence

χ(t) :=
G1,1(t)G′′1,1(t)

[G′1,1(t)]2
=

( 1
2 t2 + t− ln(t + 1))(t2 + 2t + 2)

(t2 + 2t)2
.

It is not difficult to check that

χ′(t) =
−(2t + 2)(t2 + 2t + 4)

(
1
2 t2 + t− ln(t + 1)

)
+ (t2+2t)2(t2+2t+2)

t+1

(2t + t2)3
.

The stationary point t∗ of χ(t) on (0,∞), if exists, must satisfy

1
2
t2∗ + t∗ − log(t∗ + 1) =

(2t∗ + t2∗)
2(t2∗ + 2t∗ + 2)

2(t∗ + 1)2(t2∗ + 2t∗ + 4)
.

Therefore, if the χ(t) has an extremum point t∗, its extremum value is given by

χ(t∗) =

(
1
2 t2∗ + t∗ − log(t∗ + 1)

)
(t2∗ + 2t∗ + 2)

(t2∗ + 2t∗)2

=
(2t∗ + t2∗)

2(t2∗ + 2t∗ + 2)
2(t∗ + 1)2(t2∗ + 2t∗ + 4)

· (t2∗ + 2t∗ + 2)
(t2∗ + 2t∗)2

=
[(t∗ + 1)2 + 1]2

2(t∗ + 1)2[(t∗ + 1)2 + 3]
= ω((t∗ + 1)2),

where ω(t) := (t+1)2

2t(t+3) for t ∈ (1,∞). It is evident that limt→1+ ω(t) = 1
2 and

limt→∞ ω(t) = 1
2 . We can also check that ω′(t) = 0 has a unique solution over (1,∞)

at t∗ = 3 with value ω(t∗) = 4
9 . Therefore, 4

9 ≤ ω(t) ≤ 1
2 for t ∈ (1,∞). This means

that

4
9
≤ χ(t∗) = ω((t∗ + 1)2) ≤ 1

2
.

From (3.18) and (3.19), we see that limt→0+ χ(t) = 1
2 = limt→∞ χ(t). Hence inequality

(3.22) holds. The proof of (3.23) that is similar to that of (3.22) is omitted here.
The next result shows that the composition functions of et belong to U3.
Lemma 3.8. Denote the exponential function et by exp(t) and the composition of

m (m ≥ 1) exponential functions by

θm(t) :=

m︷ ︸︸ ︷
(exp ◦ exp ◦ · · · ◦ exp)(t).

Then

1
m

θm(t)θ′′m(t) ≤ [θ′m(t)]2 ≤ θm(t)θ′′m(t) for t ∈ R.(3.24)

Proof. Let αm(t) := [θ′m(t)]2/(θm(t)θ′′m(t)) for t ∈ R. Since α1(t) ≡ 1, we can prove
the right-hand side inequality of (3.24) using (iv) of Theorem 3.6 and mathematical
induction. For the left-hand side inequality, notice that

θ′m(t) = θm(t)θ′m−1(t), θ′′m(t) = θm(t)(θ′m−1(t))
2 + θm(t)θ′′m−1(t) for t ∈ R.
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This indicates that

αm(t) =
1

1 + 1
αm−1(t)θm−1(t)

>
1

1 + 1
αm−1(t)

for t ∈ R.

It is easy to check that α2(t) ∈ ( 1
2 , 1). The desired result follows by induction.

We now give the last result concerning how to construct some convex functions
Γw.

Theorem 3.9. Let Ω be an open convex subset of R.
(i) Let φ : Ω → (0,∞) be a convex, twice differentiable, strictly increasing function

on Ω. If φ(t)φ′′(t) ≤ [φ′(t)]2 for t ∈ Ω, then the generalized mean function

Γ(1)
w (x) := φ−1

(
n∑

i=1

wi

φ(xi)r

)

is convex on Ωn for any given w ∈ Rn
++ and r > 0.

(ii) Let κ > 0 be a constant and φ : Ω → (κ,∞) be a convex, twice differentiable,
strictly increasing function satisfying the inequality φ(t)φ′′(t) ≤ [φ′(t)]2 for t ∈ Ω.
Then, for any given w ∈ Rn

++ and T > 0, r > 0, the function

Γ(2)
w (x) :=

`︷ ︸︸ ︷
ln ◦ ln ◦ · · · ◦ ln

(
n∑

i=1

wi

(
T +

1
φ(xi)r

))

is convex on Ωn for any positive integer ` ≤ Tκr + 1.
Proof. Result (i) comes from part (i) of Theorem 2.6 and Theorem 2.4. Result

(ii) follows from Lemma 3.8 and Theorem 2.4, and part (ii) of Theorem 2.6. In fact,
it suffices to take the inner function hT (t) = T + 1

φ(t)r and outer function θm(t), as

defined in Lemma 3.8, whose inverse function is given by

m︷ ︸︸ ︷
ln ◦ ln · · · ◦ ln(t).

The above result partially answers the following interesting question: Given a
convex function, how many times of log-transformations can be applied while retaining
the convexity?

Using Theorems 2.4, 2.6, 3.7 and 3.9, we have the following examples for convex
Γw.

Example 3.1.

(i) ∆−1
1,j

[
n∑

i=1

1
∆1,j(xi)r

]
, G−1

1,j

[
n∑

i=1

1
G1,j(xi)r

]
, j = 1, 2.

(ii) ln

(
n∑

i=1

1
∆1,j(xi)r

)
, ln

(
n∑

i=1

1
G1,j(xi)r

)
, j = 1, 2.

(iii)

`≤m+1︷ ︸︸ ︷
ln ◦ ln ◦ · · · ◦ ln

(
n∑

i=1

(
m + e−rxi

)
)

, x ∈ (0,∞)n.

(iv)

`︷ ︸︸ ︷
ln ◦ ln ◦ · · · ◦ ln

[
n∑

i=1

(
m +

1
∆1,1(xi)r

)]
, x ∈ (τ,∞)n, ` ≤ m∆1,1(τ)r + 1, τ > 0.

It follows from Corollary 3.2 that the function xp over (0,∞) satisfies (2.12) with
α = p

p−1 . Hence, when 1 < p ≤ 2, we have α ≥ 2, and when 1 < p ≤ 29
17 , we have

17



α ≥ 29
12 ≥ 9

4 . By Theorems 3.7, both ∆1,2(t) and ∆1,1(t) satisfy condition (2.9) with
α = 2, and both G1,2(t) and G1,1(t) satisfy condition (2.9) with α = 29

12 . According
to Theorem 2.4, we see the functions listed below are examples of convex Γw.

Example 3.2. (a) Let 1 < p ≤ 2 and δi(t) = ∆1,2(t) or ∆1,1(t), for t ∈ (0,∞)

and i = 1, ..., n. Then Γw(x) = (
∑n

i=1 wiδi(xi))
1
p is convex on (0,∞)n.

(b) Let 1 < p ≤ 29
17 and δi(t) be G1,2(t), G1,1(t), ∆1,2(t) or ∆1,1(t), for t ∈ (0,∞)

and i = 1, ..., n. Then Γw(x) = (
∑n

i=1 wiδi(xi))
1
p is convex on (0,∞)n.

Taking the outer function Ψ(t) = G1,1(t) or G1,2, and the inner function φ(t) =
∆1,1(t) or ∆1,2(t), Theorems 3.7 shows that conditions required by Theorem 2.4 are
satisfied. Also, for these functions, we can take et as the inner function. Thus, more
examples of convex Γw can be obtained.

Before closing this section, we briefly illustrate a possible application of involv-
ing function Γw in the regularization method for solving a nonlinear programming
problem:

min{f0(x) : x ∈ C}.

For simplicity, we assume that C is a convex set and f0 is a convex function. Let
µ > 0 be a positive parameter. Given a strictly convex function Γw, we consider the
following problem:

min{f0(x) + µΓw(x) : x ∈ C}.

This problem becomes a strictly convex programming problem with a unique solution,
denoted by x(µ), which comprises of a continuation trajectory {x(µ) : µ > 0}. Under
suitable conditions of f0,Φ and φ, this trajectory becomes bounded. In this case,
by setting µ → 0, any accumulation point of x(µ), as µ → 0, is a solution to the
original problem. Thus, a path-following algorithm can be designed to follow this
trajectory to achieve the solution of the original problem. The performance of such
path following algorithm certainly depends on the choice of the function Γw with
regularity conditions.

4. Conclusions. In this paper, we have further extended the theoretical founda-
tion for the generalized mean function. We have established a necessary and sufficient
condition for such a generalization to be convex. Some useful and easy-to-test suffi-
cient conditions have also been developed to construct concrete examples of convex
Γw. Moreover, a systematic way to explicitly construct convex Γw has been illustrated.
To this end, definitions of S∗-regular and T ∗-regular functions have been introduced.
The latter is essentially a transformation of the self-regular function proposed in [18].
It should be noted that most S∗-functions are not self-concordant, while the class of
T ∗-regular (self-regular) functions has a large overlap with the class of self-concordant
functions [16].
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