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Matrix rank minimization problems are gaining plenty of recent

attention in both mathematical and engineering fields. This class

of problems, arising in various and across-discipline applications,

is known to be NP-hard in general. In this paper, we aim at provid-

ing anapproximation theory for the rankminimizationproblem, and

prove that a rankminimization problem can be approximated to any

level of accuracy via continuous optimization (especially, linear and

nonlinear semidefinite programming) problems. One of the main

results in this paper shows that if the feasible set of the problem has

a minimum rank element with the least Frobenius norm, then any

accumulation point of solutions to the approximation problem, as

the approximation parameter tends to zero, is a minimum rank so-

lution of the original problem. The tractability under certain condi-

tions and convex relaxation of the approximation problem are also

discussed. An immediate application of this theory to the system

of quadratic equations is presented in this paper. It turns out that

the condition for such a system without a nonzero solution can be

characterized by a rank minimization problem, and thus the pro-

posed approximation theory canbeused to establish some sufficient

conditions for the system to possess only zero solution.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper, let Rn be the n-dimensional Euclidean space, Rm×n be them× n real matrix

space, and Sn be the set of real symmetric matrices. When X, Y ∈ Rm×n, we use 〈X, Y〉 = tr(XTY) to
denote the inner product of X and Y . ‖X‖2 and ‖X‖F denote the spectral norm and Frobenius norm

of X , respectively, and ‖X‖∗ stands for the nuclear norm of X (which is the sum of singular values of

X). ‖ · ‖ denotes a general norm. A � 0 (� 0) means that A ∈ Sn is positive semidefinite (positive
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definite). Given an X ∈ Rm×n with rank r, we use σ(X) to denote the vector (σ1(X), . . . , σr(X))where

σ1(X) � · · · � σr(X) > 0 are the singular values of X .

Let C ⊆ Rm×n be a closed set. Consider the rank minimization problem:

Minimize {rank(X) : X ∈ C} , (1)

which has found many applications in system control [14,4,28,27,20,15,16], matrix completion [6,

7,37], machine learning [1,26], image reconstruction and distance geometry [23,35,33,30,11], com-

binatorial and quadratic optimization [2,38], to name but a few. The recent work on compressive

sensing (see e.g. [8,9,13]) also stimulates an extensive investigation of this class of problems. In many

applications, C is defined by a linear map A : Rm×n→ Rp . Two typical situations are

C = {X ∈ Rm×n : A(X) = b}, (2)

C = {X ∈ Sn : A(X) = b, X � 0}. (3)

UnlessC has a very special structure, the problem (1) is difficult to solve due to thediscontinuity and

nonconvexity of rank(X). It is NP-hard since it includes the cardinality minimization as a special case

[29,30]. The existing algorithms for (1) are largely heuristic-based, such as the alternating projection

[19,11], alternating LMIs [32], and nuclear norm minimization (see e.g. [15,16,30,25,34,31]. The idea

of the nuclear norm heuristic is to replace the objective of (1) by the nuclear norm ‖X‖∗, and to solve

the following convex optimization problem:

Minimize {‖X‖∗ : X ∈ C}. (4)

Under some conditions, the solution to the nuclear norm heuristic coincides with the minimum rank

solution (see e.g. [15,30,31]). This inspires an extensive and fruitful study on various algorithms for

solving the nuclear normminimization problem [15,30,25,18,34,10,3]. While the nuclear norm ‖X‖∗
is the convex envelope of rank(X) on the unit ball {X : ‖X‖2 � 1} (see [15,30]), it may have a drastic

deviation from the rank of X in many cases since rank(X) is a discontinuous nonconvex function. As a

result, the true relationship between (1) and (4) are not known in many situations unless some strong

assumptions such as the “restricted isometry property" hold [30].

In this paper, we develop a new approximation theory for rank minimization problems. We first

provide a continuous approximation for rank(X), by which rank(X) can be approximated to any pre-

scribed accuracy, and can be even computed exactly by a suitable choice of the approximation parame-

ter. Based on this fact, we prove that (1) can be approximated to any level of accuracy by a continuous

optimization problem, typically, a structured linear/nonlinear semidefinite programming (SDP) prob-

lem. One of our main results shows that when the feasible set is of the form (3), and if it contains

a minimum rank element with the least F-norm (i.e. Frobenius norm), then the rank minimization

problem can be approximated to any level of accuracy via an SDP problem, which is computationally

tractable. A key feature of the proposed approximation approach is that the inter-relationship between

(1) and its approximation counterpart can be clearly displayed in many situations. The approximation

theory presented in this paper, aided with modern convex optimization techniques, provides a the-

oretical basis for (and can directly lead to) both new heuristic and exact algorithms for tackling rank

minimization problems.

To demonstrate an application of the proposed approximation theory, let us consider the system

xTAix = 0, i = 1, . . . ,m, x ∈ Rn, (5)

where Ai ∈ Sn, i = 1, . . . ,m. A fundamental question associated with (5) is: when is ‘x = 0′ the only

solution to (5)? The study of this question (e.g. [17,12,5,36,22]) can be dated back to the late 1930s.

For m = 2 and n � 3, the answer to the question is well-known: 0 is the only solution to xTA1x = 0,
xTA2x = 0 if and only if μ1A1 + μ2A2 � 0 for some μ1, μ2 ∈ R. However, this result is not valid for

n = 2, or form � 3. In fact, the condition

m∑
i=1

μiAi � 0 for some μ1, . . . , μm ∈ R (6)
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implies that 0 is the only solution to (5), but the converse is not true in general. When n = 2 and/or

m � 3, the sufficient condition (6) may be too strong. Thus finding a mild sufficient condition for the

system (5)with only zero solution is posted as an open problem in [21].We first show that the study of

this problem can be transformed equivalently as a rankminimization problem, based onwhichwe use

the proposed approximation theory, together with the SDP relaxation and duality theory, to establish

some general sufficient conditions for the system with only zero solution.

This paper is organized as follows. In Section 2, an approximation function of rank(X) (and thus an

approximationmodel for the rankminimization problem) is introduced, and some intrinsic properties

of this function are shown. In Section 3, reformulations andmodifications of the approximation coun-

terpart of the rank minimization problem are discussed, and their proximity to the original problem

is also proved. The application of the approximation theory to the system of quadratic equations has

been demonstrated in Section 4. Conclusions are given in the last section.

2. Generic approximation of rank minimization

The objective of this section is to provide an approximation theory that can be applied to general

rank minimization problems, without involving a specific structure of the feasible set which is only

assumed to be a closed set (and bounded when necessary, but not necessarily convex). In order to get

an efficient approximation of the problem (1), it is natural to start with a sensible approximation of

rank(X). Let us consider the function φε : Rm×n→ R defined by

φε(X) = tr
(
X(XTX + εI)−1XT

)
, ε > 0. (7)

The first result below claims that the rank of a matrix can be approximated (in terms of φε) to any

prescribed accuracy, as long as the parameter ε is suitably chosen.

Theorem 2.1. Let X ∈ Rm×n be a matrix with rank(X) = r, and φε be defined by (7). Then for every

ε > 0,

φε(X) =
r∑

i=1
(σi(X))2

(σi(X))2 + ε
, (8)

where σi(X)’s are the singular values of X, and the following relation holds:

0 � rank(X)− φε(X) =
r∑

i=1
ε

(σi(X))2 + ε
� ε

r∑
i=1

1

(σi(X))2
for all ε > 0. (9)

Proof. Let X = U�VT be the full singular value decomposition, where U, V are orthogonal matrices

with dimensionsm and n, respectively, and thematrix� =
⎛⎝ diag(σ (X)) 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

⎞⎠where 0p×q

denotes the p× q zero matrix. Let σ 2(X) denote the vector ((σ1(X))2, . . . , (σr(X))2). Note that

XTX + εI = V(�T�)VT + εI = V

⎛⎝ diag(σ 2(X))+ εIr 0

0 εIn−r

⎞⎠ VT ,

where I is partitioned into two small identity matrices Ir and In−r . Thus, we have

φε(X)= tr
(
X(XTX + εI)−1XT

)
= tr

⎛⎜⎝U�

⎛⎝ diag(σ 2(X))+ εIr 0

0 εIn−r

⎞⎠−1 �TUT

⎞⎟⎠
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= tr

⎛⎜⎝
⎛⎝ diag(σ 2(X))+ εIr 0

0 εIn−r

⎞⎠−1 (�T�)

⎞⎟⎠
= tr

⎛⎜⎝
⎛⎝ diag(σ 2(X))+ εIr 0

0 εIn−r

⎞⎠−1 ⎛⎝ diag(σ 2(X)) 0

0 0

⎞⎠
⎞⎟⎠

=
r∑

i=1
(σi(X))2

(σi(X))2 + ε
.

Clearly, φε(X) � r = rank(X) for all ε > 0. Note that

rank(X)− φε(X) =
r∑

i=1

(
1− (σi(X))2

σi(X))2 + ε

)
=

r∑
i=1

ε

(σi(X))2 + ε
�

r∑
i=1

ε

(σi(X))2
.

Thus the inequality (9) holds. �

Fromtheabove resultwehaveφε(X) � rank(X)and limε→0 φε(X) = rank(X).So,we immediately

have the following corollary.

Corollary 2.2. For everymatrix X ∈ Rm×n, there exists accordingly a number ε∗ > 0 such that rank(X) =
�φε(X)
 for all ε ∈ (0, ε∗].

This suggests the following scheme which requires only a finite number of iterations to find the

exact rank of X: Step 1. Choose a small number ε > 0; Step 2. Evaluate φε(X) at X; Step 3. Round up

the value of φε(X) to the nearest integer; Step 4. Set ε ← βε where β ∈ (0, 1) is a given constant,

and repeat the steps 2–4 above.

The threshold ε∗ in Corollary 2.2 depends on X. This can be seen clearly from the right-hand side

of (9). However, the next theorem shows that over the optimal solution set of (1) the approximation is

uniformed. Before stating this result, we first show that the optimal solution set of (1) is closed. Note

that, in general, the set {X ∈ C : rank(X) = r} is not closed.
Lemma 2.3. Let C be a closed set in Rm×n. Then the level set {X ∈ C : rank(X) � r} is closed for any

given number r � 0. In particular, the optimal solution set of (1), i.e., C∗ = {X ∈ C : rank(X) = r∗} is
closed, where r∗(= min{rank(X) : X ∈ C}) is the minimum rank.

Proof. Suppose that {Xk} ⊆ {X ∈ C : rank(X) � r} is a sequence convergent to X0 in the sense

that ‖Xk − X0‖ → 0 as k → ∞. Let r0 = rank(X0) and σ1(X
0) � · · · � σr0(X

0) > 0 be the

nonzero singular values of X0. Note that the singular value is continuously dependent on the entries

of the matrix. It implies that for sufficiently large k, Xk has at least r0 nonzero singular values. Thus

rank(X0) � rank(Xk) � r for all sufficiently large k. This together with the closedness of C implies

that X0 ∈ {X ∈ C : rank(X) � r}, and thus the level set of rank(X) is closed. Particularly, it implies

that the optimal solution set {X ∈ C : rank(X) = r∗} = {X ∈ C : rank(X) � r∗} is closed. �

Wenow show that the function rank(X) can be uniformly approximated byφε(X) over the optimal

solution set of (1), in the sense that the right-hand side of (9) is independent of the choice of X∗.

Theorem 2.4. If the optimal solution set, denoted by C∗, of (1) is bounded, then there exists a constant

δ > 0 such that for any given ε > 0 the inequality

φε(X
∗) � rank(X∗) � φε(X

∗)+ ε

(
min{m, n}

δ2

)
holds for all X∗ ∈ C∗.
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Proof. Let r∗ be the minimum rank of (1). Then r∗ = rank(X∗) for all X∗ ∈ C∗. Let σr∗(X∗) denote

the smallest nonzero singular value of X∗, and denote

σmin = min{σr∗(X
∗) : X∗ ∈ C∗}.

We now prove that σmin > 0. Indeed, if σmin = 0, then there exists a sequence {X∗k } ⊆ C∗ such

that σr∗(X∗k ) → 0. Since C∗ is bounded, passing to a subsequence if necessary we may assume that

X∗k → X̂. Thus, σr∗(X̂) = 0, which implies that rank(X̂) < r∗, contradicting to the closedness of C∗
(see Lemma 2.3). Therefore, we have σmin > 0. Let δ > 0 be a constant satisfying δ � σmin. By (9),

we have

rank(X∗)− φε(X
∗) � ε

r∗∑
i=1

1

(σi(X∗))2
� ε

r∗

(σr∗(X∗))2
� ε

(
min{m, n}

δ2

)
,

as desired. �

It is easy to see from (7) that φε(X) is continuous with respect to (X, ε) over the set Rm×n ×
(0,∞). From Theorem 2.1 and Corollary 2.2, we see that the problem (1) can be approximated by

a continuous optimization problem with φε. In fact, by replacing rank(X) by φε(X), we obtain the

following approximation problem of (1):

Minimize φε(X) = tr
(
X(XTX + εI)−1XT

)
s.t. X ∈ C

(10)

where ε > 0 is a given parameter. From an approximation point of view, some natural questions arise:

Does the optimal value (solution) of (10) converges to a minimum rank (solution) of (1) as ε → 0?

How can we solve the problem (10) efficiently, and when this problem is computationally tractable?

The remainder of this section and the next section are devoted to answering these questions.

For the convenience of the later analysis, we use notation φ0(X) = rank(X). Before we prove the

main result of this section, let us first prove the semicontinuity of the function φε(X) at the boundary

point ε = 0.

Lemma 2.5. With respect to (X, ε), the function φε(X) is continuous everywhere in the region Rm×n ×
(0,∞), and it is lower semicontinuous at (X, 0), i.e.,

lim inf
(Y,ε)→(X,0)

φε(Y) � φ0(X) = rank(X).

Proof. The continuity of φε in Rm×n × (0,∞) is obvious. We only need to prove its lower semiconti-

nuity at (X, 0). Let X̂ be an arbitrary matrix in Rm×n with rank(X̂) = r. Suppose that X → X̂. Then it

is easy to see that

(σ1(X), . . . , σr(X))→ (σ1(X̂), . . . , σr(X̂)) > 0, (11)

and σi(X)→ 0 for i � r + 1. This implies that rank(X) � rank(X̂) as long as X is sufficiently close to

X̂. By (8), we have

φε(X)− φ0(X̂) = φε(X)− rank(X̂) = ∑
i�r+1

(σi(X))2

(σi(X))2 + ε
+

r∑
i=1

(
(σi(X))2

(σi(X))2 + ε
− 1

)
. (12)

It is not difficult to see that when (X, ε) → (X̂, 0), the right-hand side of (12) does not nec-

essarily tend to zero, when (σi(X))2 in the first term of the right-hand side of (12) tends to zero

no faster than that of ε. For instance, let (σ1(X̂), . . . , σr(X̂)) = (1, . . . , 1), and consider the se-

quence Xk → X̂ where Xk satisfies that rank(Xk) = p > r, (σ1(X
k), . . . , σr(X

k)) = (1, . . . , 1) and
(σr+1(Xk), . . . , σp(X

k)) = (1/k, . . . , 1/k). Setting εk = 1

k2
and substituting (Xk, εk) into (12) yields
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φεk(X
k)− φ0(X̂) = 1

2
(p− r)− r

1+ k2
→ 1

2
(p− r) > 0 as k→∞.

So, φε(X) is not necessarily continuous at ε = 0. However, from (12) we see that

φε(X)− φ0(X̂) �
r∑

i=1

(
(σi(X))2

(σi(X))2 + ε
− 1

)
,

where r = rank(X̂). By (11), the right-hand side of the above goes to zero as X → X̂ and ε → 0. It
follows that

lim inf
(X,ε)→(X̂,0)

φε(X) � lim inf
(X,ε)→(X̂,0)

⎛⎝φ0(X̂)+
r∑

i=1

(
(σi(X))2

(σi(X))2 + ε
− 1

)⎞⎠ = φ0(X̂).

The proof is complete. �

It is worth mentioning that for ε > 0 the function

φε(X) = tr((XTX + εI)−1XTX) = tr(I − (XTX + εI)−1) = n− tr(XTX + εI)−1

is differentiable with respect to X , and it is not difficult to obtain its derivative, for instance, following

the matrix calculus rules given in [11]. We now prove the main result of this section, which shows

that the rank minimization over a bounded feasible set can be approximated with (10) to any level of

accuracy.

Theorem 2.6. Assume that C is a closed set in Rm×n and the optimal value of (10) is attained. Let r∗ be
the minimum rank of (1) and for given ε > 0, φ∗ε and X(ε) be the optimal value and an optimal solution

of (10), respectively. Then

φ∗ε � r∗ for any ε > 0. (13)

Moveover, when C is bounded, then

lim
ε→0

φ∗ε = r∗, (14)

and any accumulation point of X(ε), as ε→ 0, is a minimum rank solution of (1).

Proof. Since X(ε) is an optimal solution to (10), we have

φ∗ε = φε(X(ε)) � φε(X) for all X ∈ C.

Particularly, any optimal solution of (1) satisfies the above inequality. So,φ∗ε � φε(X
∗) � rank(X∗) =

r∗ where the second inequality follows from (9), and ε can be any positive number. Thus (13) holds,

and

lim sup
ε→0

φ∗ε � r∗. (15)

On the other hand, since φ∗ε � 0, the number r = lim infε→0 φ∗ε is finite. Without loss of generality,

assume that the sequence {φ∗εk}, where εk → 0 as k → ∞, converges to r. Note that X(εk) is a

minimizer of (10) with ε = εk, i.e., φ
∗
εk
= φεk(X(εk)). When C is bounded, the sequence {X(εk)} is

bounded. Passing to a subsequence if necessary, we assume that X(εk) → X0 as k → ∞. Clearly,
X0 ∈ C since C is closed, and hence rank(X0) � r∗. Therefore,

r = lim
k→∞φ∗εk = lim

k→∞φεk(Xεk) � lim inf
(X,ε)→(X0,0)

φε(X) � φ0(X0),

where the last inequality follows fromLemma2.5. Thus, r � φ0(X0) = rank(X0) � r∗,which together

with (15) implies (14).

We now prove that any accumulation point of X(ε) is a minimum rank solution of (1). Let X̂ (with

rank(X̂) = r̂) be an arbitrary accumulationpoint ofX(ε), as ε→ 0.Wenowprove that X̂ is aminimum

rank solution to (1), i.e., r̂ = r∗. Consider a convergent sequence X(εk)→ X̂ where εk → 0. Then by

(13) and (8), we have
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r∗ � φ∗εk = φεk(X(εk)) =
r̂∑

i=1
(σi(X(εk)))

2

(σi(X(εk)))2 + εk
+∑

i>̂r

(σi(X(εk)))
2

(σi(X(εk)))2 + εk

�
r̂∑

i=1
(σi(X(εk)))

2

(σi(X(εk)))2 + εk
→

r̂∑
i=1

(σi(X̂))2

(σi(X̂))2 + 0
= rank(X̂).

Thus any accumulation point of X(ε) is a minimum rank solution to (1). �

Since r∗ is integer, by (13) and (14), we immediately have the following corollary.

Corollary 2.7. Let r∗ and φ∗ε be defined as in Theorem 2.6. If C ⊂ Rm×n is bounded and closed, then there

exists a number δ > 0 such that r∗ = ⌈
φ∗ε
⌉
for all ε ∈ (0, δ].

The results above provide a theoretical basis for developing new approximation algorithms for rank

minimization problems. Such an algorithm can be a heuristic method for general rank minimization,

and can be an exact method as indicated by Corollary 2.7. From Theorem 2.6, the set {X(ε)} can be

viewedasa trajectory leading to theminimumranksolutionsetof (1), and thus it ispossible toconstruct

a continuation type method (e.g. a path-following method) for rank minimization problems. In the

next section, we are going to discuss how andwhen the approximation problem (10) can be efficiently

dealt with from the viewpoint of computation. We prove that under some conditions problem (10)

can be either reformulated or relaxed as a tractable optimization problem, typically an SDP problem.

3. Reformulation of the approximation problem (10)

The main result in last section shows that if ε is small enough, the optimal value of the rank

minimization problem can be obtained precisely by solving (10) just once, and the solution X(ε) of

(10) is an approximation to the optimal solution of (1). If the problem (10)with a prescribed ε > 0 fails

to generate the minimum value of (1), we can reduce the value of ε and solve (10) again. By Corollary

2.7, the minimum rank of (1) can be obtained by solving (10) up to a finite number of times. Thus,

roughly speaking, solving a rankminimization problem amounts to solving a continuous optimization

problem defined by (10).

In this section, we concentrate on the problem (10) to find out when and how it can be solved effi-

ciently. To this end, we investigate its equivalent formulations together with some useful variants. By

doing so, we take into account the structure of C when necessary. Let us start with the reformulation

of (10).

Introducing a variable Y ∈ Sm, we first note that (10) can be written as the following nonlinear

semidefinite programming problem:

Minimize
{
tr(Y) : Y � X(XTX + εI)−1XT , X ∈ C

}
. (16)

It is easy to see that if (Y∗, X∗) is an optimal solution to (16), then

Y∗ = X∗((X∗)TX∗ + εI)−1(X∗)T . (17)

Thus, we conclude that X∗ is an optimal solution to (10) if and only if (Y∗, X∗) is an optimal solution to

(16) where Y∗ is given by (17). By Schur complement theorem, the problem (16) can be further written

as

Minimize

⎧⎨⎩tr(Y) :
⎛⎝ Y X

XT XTX + εI

⎞⎠ � 0, X ∈ C

⎫⎬⎭ , (18)

which remains a nonlinear SDP problem.We now introduce the variable Z = XTX,which implies that

Z is the optimal solution to the problemminZ{tr(Z) : Z � XTX}. By Schur complement theorem again,
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Z � XTX is nothing but

⎛⎝ I X

XT Z

⎞⎠ � 0. So the problem (10) can be written exactly as a bilevel SDP

problem:

min
Y∈Sm ,̃Z∈Sn,X∈C

tr(Y)

s.t.

⎛⎝ Y X

XT Z̃ + εI

⎞⎠ � 0, (19)

Z̃ = arg min
Z∈Sn

⎧⎨⎩tr(Z) :
⎛⎝ I X

XT Z

⎞⎠ � 0

⎫⎬⎭ .

From the discussion above, we conclude that (10) is equivalent to the nonlinear SDP problem (18),

and is equivalent to the linear bilevel SDP problem (19). As a result, by Theorem 2.6, the rank min-

imization over a bounded feasible set is equivalent to the linear bilevel SDP problem of the form (19).

Thus, the level of difficulty for rank minimization can be understood from the perspective of its lin-

ear bilevel SDP counterpart. It is worth mentioning that the bilevel programming (in vector form)

has been long studied (e.g. [24]), but to our knowledge the bilevel SDP problem remains a new topic

so far. The analysis above shows that a bilevel SDP model does arise from rank minimization. How-

ever, both (18) and (19) are not convex problems, and hence they are not computationally tractable in

general.

This motivates us to consider the next approximation model which can be viewed as a variant of

(10). The difficulty of (18) and (19) lies in the hard equality Z = XTX. An immediate idea is to relax it

to Z � XTX, yielding the problem:

Minimize

⎧⎨⎩tr(Y) :
⎛⎝ Y X

XT Z + εI

⎞⎠ � 0,

⎛⎝ I X

XT Z

⎞⎠ � 0, X ∈ C

⎫⎬⎭
which is a convex problem if C is convex, and an SDP problem if C is defined by (2) or (3). However,

for any given X ∈ C and any number β > 0, the point (Y = βI, Z = αI) is feasible to the above

problem when α > 0 is sufficiently large. So the optimal value of the above problem is always zero,

providing nothing about theminimum rank of the original problem (1). This happens since Z gains too

much freedomwhile Z = XTX is relaxed to Z � XTX. Thus the value tr(Y) = tr(X(Z + εI)−1XT ) may

significantly deviate from φε(X)(≈ rank(X)). To avoid this, some driving force should be imposed on

Z so that it is near (or equal) to XTX.
Motivated by this observation, we consider the following problem in which a ‘penalty’ term is

introduced into the objective:

Minimize tr(Y)+ 1
γ
tr(Z)

s.t.

⎛⎝ Y X

XT Z + εI

⎞⎠ � 0,

⎛⎝ I X

XT Z

⎞⎠ � 0, X ∈ C,
(20)

where γ is a positive number. The term 1
γ
tr(Z) acts as a penalty when Z(� XTX) is deviated away

from XTX. Since tr(Z) � tr(XTX) = ‖X‖2F , this term also drives ‖X‖F to be minimized. Note that

when Z is driven near to XTX, it is the first term tr(Y) of the objective that approximates the rank of

X, and returns the approximate value of rank(X). The advantage of the approximation model (20) is

that it is an SDP problem when C is defined by linear constraints (such as (2) or (3)), and hence it is

computationally tractable. In what follows, we concentrate on this model and prove that under some

conditions the rank minimization can be approximated by (20) to any level of accuracy.
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Theorem 3.1. Let C be a bounded, closed set in Rm×n. Suppose that C contains a minimum rank element

X∗ with the least F-norm, i.e., rank(X∗) � rank(X), ‖X∗‖F � ‖X‖F for all X ∈ C. Let (Yε,γ , Zε,γ , Xε,γ )
denote the optimal solution of the problem (20). Then tr(Yε,γ ) � φε(X

∗) � rank(X∗) for all (ε, γ ) > 0

and

lim
(ε,γ )→0,

γ
ε
→0

tr(Yε,γ ) = r∗ = rank(X∗), lim
(ε,γ )→0,

γ
ε
→0

tr(Zε,γ ) = ‖X∗‖2F ,

and any accumulation point of the sequence {Xε,γ } is a minimum rank solution of (1), as (ε, γ )→ 0 and
γ
ε
→ 0.

Proof. SinceC is bounded and closed, the sequence {Xε,γ }has at least one accumulationpoint, and any

such an accumulation point is in C. Let X0 be an arbitrary accumulation point of the sequence {Xε,γ }
as (ε, γ ) → 0 and

γ
ε
→ 0. Without loss of generality, we assume that Xε,γ → X0, as (ε, γ ) → 0

and
γ
ε
→ 0. By Schur complement and the structure of the problem (20), it is easy to see that for any

given ε, γ > 0 the optimal solution (Yε,γ , Zε,γ , Xε,γ ) of (20) satisfies the following relation

Yε,γ = Xε,γ (Zε,γ + εI)−1XT
ε,γ , Zε,γ � XT

ε,γ Xε,γ . (21)

LetX∗ be an arbitraryminimumrank solution of (1)with the least F-norm. Then thepoint (Y∗ε , Z∗, X∗),
whereY∗ε = X∗((X∗)TX∗+ε)−1(X∗)T andZ∗ = (X∗)TX∗, is feasible to theproblem(20).Byoptimality,

we have

tr(Yε,γ )+ 1

γ
tr(Zε,γ ) � tr(Y∗ε )+ 1

γ
tr(Z∗) = φε(X

∗)+ 1

γ
‖X∗‖2F . (22)

It follows from (21) that

tr(Zε,γ ) � tr(XT
ε,γ Xε,γ ) = ‖Xε,γ ‖2F � ‖X∗‖2F for all ε, γ > 0. (23)

Combining (22) and (23) yields

tr(Yε,γ ) � φε(X
∗), (24)

0 � tr(Zε,γ )− ‖X∗‖2F � γ (φε(X
∗)− tr(Yε,γ )) � γφε(X

∗) � γ min{m, n}, (25)

for all (ε, γ ) > 0. The last inequality of (25) follows from φε(X
∗) � rank(X∗) � min{m, n}. Let

Xε,γ = X0 +
ε,γ where 
ε,γ → 0 since Xε,γ → X0. Then

XT
ε,γ Xε,γ = (X0)TX0 + (
T

ε,γ X
0 + (X0)T
ε,γ +
T

ε,γ 
ε,γ ) = (X0)TX0 + G(
ε,γ ),

where G(
ε,γ ) = 
T
ε,γ X

0 + (X0)T
ε,γ +
T
ε,γ 
ε,γ . Thus by (21) we have

Zε,γ � XT
ε,γ Xε,γ = (X0)TX0 + G(
ε,γ ). (26)

Note that tr(G(
ε,γ ))→ 0 as 
ε,γ → 0. By (25) and (26), we have

‖X∗‖2F = lim
(ε,γ )→0,γ /ε→0

tr(Zε,γ ) � lim
(ε,γ )→0,γ /ε→0

tr((X0)TX0 + G(
ε,γ )) = ‖X0‖2F .

Thus, X0 is a least F-norm element in C. On the other hand, from (26), we see that 
̂ε,γ := Zε,γ −
XT
ε,γ Xε,γ � 0. Thus, by (26) and (25) again, we have

‖
̂ε,γ ‖2 � tr(
̂ε,γ ) = tr(Zε,γ )− ‖Xε,γ ‖2F � tr(Zε,γ )− ‖X∗‖2F � γ min{m, n}.
The first inequality above follows from the fact 
̂ε,γ � 0, and the second follows from ‖Xε,γ ‖F �
‖X∗‖F . Therefore,

‖
̂ε,γ ‖2/ε→ 0, as (ε, γ )→ 0 and γ /ε→ 0. (27)
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When M ∈ Rn×n and ‖M‖2 < 1, it is well-known that (I + M)−1 = I − M + M2 − M3 + · · · =
I +∑∞

i=1(−1)iMi. Thus, for any U, V ∈ Rn×n where U is nonsingular, if ‖VU−1‖2 < 1 we have

(U + V)−1 = U−1(I + VU−1)−1 = U−1 + U−1
⎛⎝∞∑

i=1
(−1)i(VU−1)i

⎞⎠ . (28)

As (ε, γ )→ 0 and γ /ε→ 0, it follows from (27) that

‖
̂ε,γ (XT
ε,γ Xε,γ + εI)−1‖2 � ‖
̂ε,γ ‖2‖(XT

ε,γ Xε,γ + εI)−1‖2 � ‖
̂ε,γ ‖2/ε→ 0.

Thus, substituting U = XT
ε,γ Xε,γ + εI and V = 
̂ε,γ into (28) yields

(XT
ε,γ Xε,γ + 
̂ε,γ + εI)−1 − (XT

ε,γ Xε,γ + εI)−1

= (XT
ε,γ Xε,γ + εI)−1

⎛⎝∞∑
i=1

(−1)i
(

̂ε,γ (XT

ε,γ Xε,γ + εI)−1
)i⎞⎠ .

Note that‖(XT
ε,γ Xε,γ+εI)−1‖2 � 1/ε and

∥∥∥(I − ε(XT
ε,γ Xε,γ + εI)−1

)∥∥∥
2

� 1.When
∥∥∥
̂ε,γ

∥∥∥
2
/ε < 1,

we have∥∥∥XT
ε,γ Xε,γ

(
(XT

ε,γ Xε,γ + 
̂ε,γ + εI)−1 − (XT
ε,γ Xε,γ + εI)−1

)∥∥∥
2

=
∥∥∥[(XT

ε,γ Xε,γ + εI)− εI
] (

(XT
ε,γ Xε,γ + 
̂ε,γ + εI)−1 − (XT

ε,γ Xε,γ + εI)−1
)∥∥∥

2

=
∥∥∥∥∥∥
(
I − ε(XT

ε,γ Xε,γ + εI)−1
)⎛⎝∞∑

i=1
(−1)i

(

̂ε,γ (XT

ε,γ Xε,γ + εI)−1
)i⎞⎠∥∥∥∥∥∥

2

�
∥∥∥(I − ε(XT

ε,γ Xε,γ + εI)−1
)∥∥∥

2

∥∥∥∥∥∥
∞∑
i=1

(−1)i
(

̂ε,γ (XT

ε,γ Xε,γ + εI)−1
)i∥∥∥∥∥∥

2

�
∥∥∥∥∥∥
∞∑
i=1

(−1)i
(

̂ε,γ (XT

ε,γ Xε,γ + εI)−1
)i∥∥∥∥∥∥

2

�
∞∑
i=1

∥∥∥
̂ε,γ

∥∥∥i
2

∥∥∥(XT
ε,γ Xε,γ + εI)−1

∥∥∥i
2

�
∞∑
i=1

(
‖
̂ε,γ ‖2/ε

)i =
(
‖
̂ε,γ ‖2/ε

)
1−

(
‖
̂ε,γ ‖2/ε

) .

Thus, by (27), we have

tr

(
XT
ε,γ Xε,γ

[(
XT
ε,γ Xε,γ + 
̂ε,γ + εI

)−1 − (
XT
ε,γ Xε,γ + εI

)−1])→ 0 (29)

as (ε, γ )→ 0 and γ /ε→ 0. By (24), (9) and (21), we have

rank(X∗) � φε(X
∗) � tr(Yε,γ ) = tr

(
Xε,γ

(
Zε,γ + εI

)−1
XT
ε,γ

)
= tr

(
Xε,γ

(
XT
ε,γ Xε,γ + 
̂ε,γ + εI

)−1
XT
ε,γ

)
= tr

(
Xε,γ

[(
XT
ε,γ Xε,γ + 
̂ε,γ + εI

)−1 − (
XT
ε,γ Xε,γ + εI

)−1]
XT
ε,γ

)
+tr

(
Xε,γ

(
XT
ε,γ Xε,γ + εI

)−1
XT
ε,γ

)
= tr

(
XT
ε,γ Xε,γ

[(
XT
ε,γ Xε,γ + 
̂ε,γ + εI

)−1 − (
XT
ε,γ Xε,γ + εI

)−1])+ φε(Xε,γ ).
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which together with (29) and Lemma 2.5 implies that

rank(X∗) � lim sup
ε,γ→0,

γ
ε
→0

tr(Yε,γ ) � lim inf
ε,γ→0,

γ
ε
→0

tr(Yε,γ )

= lim inf
ε,γ→0,

γ
ε
→0
{tr(XT

ε,γ Xε,γ [(XT
ε,γ Xε,γ + 
̂ε,γ + εI)−1 − (XT

ε,γ Xε,γ + εI)−1])
+φε(Xε,γ )}
= lim inf

ε,γ→0,
γ
ε
→0

φε(Xε,γ ) � �0(X
0) = rank(X0).

Since X∗ is a minimum rank solution, all inequalities above must be equalities, and thus X0 is a

minimum rank solution, and limε,γ→0,
γ
ε
→0 tr(Yε,γ ) = rank(X∗). �

By Theorem 3.1, we may simply set γ = γ (ε) as a function of ε, for instance, γ = εp where p > 1

is a constant. Then (20) becomes the problem below:

Minimize tr(Y)+ 1
γ (ε)

tr(Z)

s.t.

⎛⎝ Y X

XT Z + εI

⎞⎠ � 0,

⎛⎝ I X

XT Z

⎞⎠ � 0, X ∈ C,
(30)

which includes only one parameter. An immediate corollary from Theorem 3.1 is given as follows,

which shows that the minimum rank of (1) can be obtained exactly by solving (30) with a suitable

chosen parameter ε.

Corollary 3.2. Let C ⊂ Rm×n be a bounded and closed set, containing an element X∗ with the minimum

rank r∗ = rank(X∗)and the least F-norm. Letγ : (0,∞)→ (0,∞)bea function satisfyingγ (ε)/ε→ 0

as ε→ 0. If (Yε, Zε, Xε) is the optimal solution of (30), then tr(Yε) � r∗ for all ε, and
lim
ε→0

tr(Yε) = r∗, lim
ε→0

tr(Zε) = ‖X∗‖2F ,
and any accumulation point of the sequence {Xε} is a minimum rank solution of (1). Moreover, there exists

a threshold δ > 0 such that r∗ = �tr(Yε)
 for every ε ∈ (0, δ].
From the above results, we see that a rank minimization problem can be tractable under some

conditions. We summarize this result as follows.

Corollary 3.3. When C is defined by linear constraints (such as (2) and (3)), and if C contains a minimum

rank element with the least F-norm, the rank minimization problem (1) is equivalent to the SDP problem

(20) by a suitable choice of the parameter (η, ε).

Note that the first term of the objective of (20) is to estimate rank(X) and the second term is

to measure the least F-norm. So from Theorem 3.1 we may roughly say that under some conditions

minimizing rank(X) over C is equivalent to minimizing rank(X) + β‖X‖2F over C for some β. This is
true, as shown by the next result below.

Theorem 3.4. Let the feasible set be of the form C = F ∩ {X : γ1 � ‖X‖F � γ2}, where 0 < γ1 � γ2

are constants and F ⊆ Rm×n is a closed set.

(i) The following two problems are equivalent in the sense that they yield the same minimum rank

solution:

Minimize {rank(X) : X ∈ C = F ∩ {X : γ1 � ‖X‖F � γ2}} , (31)
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Minimize

{
rank(X)+ 1

η
‖X‖2F : X ∈ C = F ∩ {X : γ1 � ‖X‖F � γ2}

}
, (32)

where η > γ2 − γ1 is a given number

(ii) If F is a cone, then the set C contains a minimum rank matrix X∗ with the least F-norm.

Proof. (i) Assume that X∗ is a minimizer of (31) with the minimum rank r∗, and assume that X̃ is an

arbitrary minimizer of the problem (32). We show that rank(X̃) = r∗. In fact, if this is not true, then

rank(X̃) � r∗ + 1, and thus

rank(X̃)+ (1/η)‖X̃‖2F
� rank(X∗)+ 1+ (1/η)‖X̃‖2F
= rank(X∗)+ (1/η)‖X∗‖2F + 1+ (1/η)

(
‖X̃‖2F − ‖X∗‖2F

)
> rank(X∗)+ (1/η)‖X∗‖2F , (33)

where the last inequality above follows from the fact X∗, X̃ ∈ {X : γ1 � ‖X‖F � γ2} which implies

that 1+ (1/η)
(
‖X̃‖2F − ‖X∗‖2F

)
� 1+ (1/η)(γ1− γ2) > 0 by the choice of η. Thus, (33) contradicts

to the fact of X̃ being a minimizer of (32).

(ii) Suppose that F is cone. Consider the F-norm minimization problem:

Minimize {‖X‖2F : X ∈ C = F ∩ {X : γ1 � ‖X‖F � γ2}}.
Since the feasible set of the problem is closed and bounded, the least F-norm solution, denoted by

X, exists. Let X∗ be a minimum rank element in C. Then ‖X∗‖F � ‖X‖F � γ1 > 0. Thus, there is a

positive number 1 � α > 0 such that α‖X∗‖F = ‖X‖F . Note that αX∗ ∈ F (since F is a cone), and

that rank(αX∗) = rank(X∗). Thus, αX∗ is a minimum rank matrix with the least F-norm in C. �

Before we close this section, let us make some further comments on the situation where C is the

intersection of a cone and a bounded set defined by matrix norm, as discussed in Theorem 3.4. This

situation does arise in the study of quadratic (in)equality systems and quadratic optimization. First of

all, it is worth pointing out the following fact. Its proof is evident and omitted.

Theorem 3.5. LetF be a cone in Rm×n, and let 0 < γ1 � γ2 be two positive numbers. Then theminimum

rank r∗ of the rank minimization problem

r∗ = min {rank(X) : X ∈ C = F ∩ {X : γ1 � ‖X‖ � γ2}} (34)

is independent of the choice of γ1, γ2 and the norm ‖ · ‖.
In another word, no matter what matrix norms and the positive numbers γ1, γ2 are used, the

problem of the form (34) yields the same minimum rank. So, in theory, all these rank minimization

problems are equivalent. From a computation point of view, however, the choice of the norm ‖ ·‖ does
matter. For instance, when F is a subset of the positive semidefinite cone, there are some benefits of

using the nuclear norm ‖X‖∗ in (34). Since ‖X‖∗ = tr(X) in positive semidefinite cone, the constraint

γ1 � ‖X‖∗ � γ2 in this case coincides with the linear constraint γ1 � tr(X) � γ2. As a result, the

approximation counterpart, defined by (20), of the problem (34) is an SDP problem for this case, and

hence it can be solved efficiently. However, when the nuclear norm is used in (34), the problem (34)

may not satisfy the condition of Theorem 3.1.

When C is defined by a cone, from Theorem 3.4(ii) the problem (34) satisfies the condition of

Theorem 3.1. However, when the F-norm is used, the problem (20) is not convex in general. To handle

this nonconvexity, we may consider the relaxation of (34). For instance, when F in (34) is a cone

contained in the positive semidefinite cone, we define
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δ2 = max{tr(X) : γ1 � ‖X‖F � γ2, X � 0} (35)

where γ1 > 0. Clearly, δ1 and δ2 exist and are positive. Thus the problem (34) is relaxed to

l∗ = min{rank(X) : X ∈ C = F ∩ {X : δ1 � tr(X) � δ2}}.
When F is defined by linear constraints, the approximation counterpart (20) of this relaxation

problem is an SDP problem. Denote the optimal solution of this SDP problemby (Yε,η, Zε,η, Xε,η). Then
by Theorem 3.1 it provides a lower bound for the minimum rank of the above relaxation problem, and

hence a lower bound for the minimum rank of the original problem (34), i.e., tr(Yε,η) � l∗ � r∗.

4. Application to the system of quadratic equations

Given afinite number ofmatricesAi ∈ Sn, i = 1, . . . ,m,weconsider the development of sufficient

conditions for the following assertion:

xTAix = 0, i = 1, . . . ,m �⇒ x = 0, (36)

i.e., 0 is the only solution to (5). At the first glance, it seems that (5) and (36) have nothing to do

with a rank minimization problem. In this section, however, we show that (4.1) can be equivalently

formulated as a rankminimization problem, based onwhichwemay derive some sufficient conditions

for (36) by applying the approximation theory developed in previous sections. Note that system (5)

can be written as 〈Ai, xx
T 〉 = 0, i = 1, . . . ,m. Since X = xxT is either 0 (when x = 0) or a positive

semidefinite rank-one matrix (when x �= 0), it is natural to consider the linear system:

〈Ai, X〉 = 0, i = 1, . . . ,m, X � 0, (37)

which is a homogeneous system. The set {X : 〈Ai, X〉 = 0, i = 1, . . . ,m, X � 0} is a convex cone. It

is evident that the system (5) has a nonzero solution if and only if the system (37) has a rank-one solution.

In another word, 0 is the only solution to (5) if and only if (37) has no rank-one solution. There are only

two cases for the system (37) with no rank-one solution: either X = 0 is the only matrix satisfying

(37) or the minimum rank of the nonzero matrices satisfying (37) is greater than or equal to 2. As a

result, let us consider the following rank minimization problem:

r∗ = min {rank(X) : 〈Ai, X〉 = 0, i = 1, . . . ,m, δ1 � ‖X‖ � δ2, X � 0} , (38)

where 0 < δ1 � δ2 are two given positive constants. Clearly, X = 0 is the only matrix satisfying (37)

if and only if the problem (38) is infeasible, in which case we set r∗ = ∞. It is also easy to see that

system (37) has a solution X �= 0 if and only if the problem (38) is feasible, in which case r∗ is finite
and 1 � r∗ � n. Thus for the problem (38), we have either r∗ = ∞ or 1 � r∗ � n.

From the above discussion, we immediately have the following result.

Lemma 4.1. 0 is the only solution to system (5) if and only if r∗ � 2 where r∗ is the minimum rank of

(38).

Thus developing a sufficient condition for (36) can be achieved by identifying the condition under

which the minimum rank of (38) is greater than or equal to 2. We follow this idea to establish some

sufficient conditions for (36). By Theorem 3.5, the optimal value r∗ of (38) is independent of the choice
of δ1, δ2 and ‖ · ‖. Thus Lemma 4.1 holds for any given 0 < δ1 � δ2 and any prescribed matrix norm

in (38). So we have a freedom to choose δ1, δ2 and thematrix norm in (38) without affecting the value

of r∗ in (38). Thus, by setting δ1 = δ2 = 1 for simplicity and using the F-norm in (38), we have the

problem

r∗ = min {rank(X) : 〈Ai, X〉 = 0, i = 1, . . . ,m, ‖X‖F = 1, X � 0} . (39)
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By Theorem3.4(ii), the feasible set of this problem contains aminimum rank solutionwith the least

F-norm (which is equal to 1 for this case). From Theorem 3.1 and its corollary, the rank minimization

(39) can be approximated by the following continuous optimization problem (as (η, ε) → 0 and

η/ε→ 0):

Minimize tr(Y)+ (1/η)tr(Z)

s.t.

⎛⎝ Y X

X Z + εI

⎞⎠ � 0,

⎛⎝ I X

X Z

⎞⎠ � 0, (40)

〈Ai, X〉 = 0, i = 1, . . . ,m, ‖X‖F = 1, X � 0.

(All results later in this section can be statedwithout involving the parameterη by setting, for instance,

η = ε2 for the simplicity). ByCorollary 3.2, thefirst termof theobjective in the aboveproblemprovides

a lower bound for the minimum rank of (39). However, the constraint ‖X‖F = 1 makes the problem

(40) difficult to be solved directly. So let us consider a relaxation of this constraint. Similar to (35), we

define two constants:

δ1 = min{tr(X) : ‖X‖F = 1, X � 0}, δ2 = max{tr(X) : ‖X‖F = 1, X � 0}. (41)

It is easy to verify that δ1 = 1 and δ2 = √n. In fact, in terms of eigenvalues of X , the above two

extreme problems are nothing but minimizing and maximizing, respectively, the function
∑n

i=1 λi

subject to
∑n

i=1 λ2
i = 1, λi � 0, i = 1, . . . , n. The optimal values of these two problems are 1 and√

n, respectively. Therefore, we conclude that

{X : ‖X‖F = 1, X � 0} ⊆ {X : 1 � tr(X) �
√

n, X � 0}.
Thus, the following SDP problem is a relaxation of (40):

Minimize tr(Y)+ (1/η)tr(Z)

s.t.

⎛⎝ Y X

X Z + εI

⎞⎠ � 0,

⎛⎝ I X

X Z

⎞⎠ � 0,

〈Ai, X〉 = 0, i = 1, . . . ,m, 1 � tr(X) � √n, X � 0.

(42)

The optimal value of (42) is a lower bound for that of (40). It is not difficult to verify that the dual

problem of (42) is given by

Maximize tr(�)− εtr(Q)+ t1 +
√

nt2

s.t. t1 � 0, t2 � 0,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V + VT +∑m
i=1 yiAi + (t1 + t2)I U1 U2 U3 U4

UT
1 � �− V U5 U6

UT
2 �T − VT Q − 1

η
I U7 U8

UT
3 UT

5 UT
7 −I −�

UT
4 UT

6 UT
8 −�T −Q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0. (43)

All blocks in the above matrix are n × n submatrices. Also, note that (43) is always feasible and

satisfies the Slater’s condition, for instance, (� = V = 0, � = −I,Q = 1
2η

I, t1 = 1, t2 = −2, yi = 0

for all i = 1, . . . ,m, and Ui = 0 for all i = 1, . . . , 8) is a strictly feasible point. So there is no duality

gap between (42) and (43). We have the following result.
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Theorem 4.2. If there exist (η, ε) > 0 and t1, t2, μi, i = 1, . . . ,m andmatrices�,Q ∈ Sn×n, V, � ∈
Rn×n and Mi ∈ Rn×n, i = 1, . . . , 8 such that the following conditions hold⌈

tr(�)− εtr(Q)+ t1 +
√

nt2 − 1

η

⌉
� 2, t1 � 0, t2 � 0, (44)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑m
i=1 μiAi − (t1 + t2)I − (V + VT ) M1 M2 M3 M4

MT
1 −� V −� M5 M6

MT
2 VT −�T 1

η
I − Q M7 M8

MT
3 MT

5 MT
7 I �

MT
4 MT

6 MT
8 �T Q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0, (45)

then 0 is the only solution to the quadratic equation (5).

Proof. Let X∗ be the minimum rank solution of (39) with the least norm ‖X∗‖F = 1. Let

(Yη,ε, Xη,ε, Zη,ε) be the optimal solution to (40), by Theorem 3.1, we have r∗ � �Yη,ε
 for every

(η, ε) > 0, where r∗ is the minimum rank of (39). Since (42) is a relaxation of (40), the optimal value

of (42), denoted by v∗(η, ε), provides a lower bound for that of (40), i.e.,

tr(Yη,ε)+ (1/η)tr(Zη,ε) � v∗(η, ε), (46)

which holds for any given (η, ε) > 0. Note that (43) is the dual problem of (42). If the conditions (44)

and (45) hold, then for this (η, ε), the point (t1, t2, yi = −μ, i = 1, . . . ,m, �, V, �,Ui = −Mj, j =
1, . . . , 8) is feasible to the dual problem (43). Thus, by duality theory we have

v∗(η, ε) � tr(�)− εtr(Q)+ t1 +
√

nt2. (47)

Notice that (Y∗, Z∗, X∗), where Y∗ = X∗((X∗)TX∗ + εI)−1(X∗)T and Z∗ = (X∗)TX∗, is a feasible

point of (40). Thus

tr(Yη,ε)+ (1/η)tr(Zη,ε) � tr(Y∗)+ (1/η)tr(Z∗) = φε(X
∗)+ (1/η), (48)

where the last equality follows from that tr(Y∗) = φε(X
∗) and tr(Z∗) = ‖X∗‖2F = 1. Combining (46),

(47) and (48) yields

φε(X
∗)+ (1/η) � tr(�)− εtr(Q)+ t1 +

√
nt2.

This together with (9) implies that rank(X∗) � tr(�) − εtr(Q) + t1 + √nt2 − (1/η). Thus, under
the conditions (44) and (45), we see that

r∗ = rank(X∗) �
⌈
tr(�)− εtr(Q)+ t1 +

√
nt2 − (1/η)

⌉
� 2.

By Lemma 4.1, we conclude that (36) holds, i.e., 0 is the only solution to (5). �

From the above result, a number of sufficient conditions stronger than (44)–(45) can be obtained.

For example, we have the following corollary.

Corollary 4.3. Let Ai ∈ Sn, i = 1, . . . ,m be a given set of matrices. If there exist (η, ε) > 0,
t1, t2, μ1, . . . , μm ∈ R, Q , � ∈ Sn×n and V, � ∈ Rn×n such that⌈

tr(�)− εtr(Q)+ t1 +
√

nt2 − 1/η
⌉

� 2, t1 � 0, t2 � 0, (49)⎛⎝ −� V −�

VT −�T 1
η
I − Q

⎞⎠ � 0,

⎛⎝ I �

�T Q

⎞⎠ � 0, (50)

m∑
i=1

μiAi − (t1 + t2)I − (Y + YT ) � 0, (51)

then 0 is the only solution to the system (5).
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We now point out that (6) implies (49)–(51). Let η > 0 be a given number. If
∑m

i=1 tiAi � 0 for

some ti, i = 1, . . . ,m, then we choose μi = αti where α can be any large positive number such that∑m
i=1 μiAi � t1I where t1 = 2 + 1

η
. Then conditions (49)–(51) hold with V = � = Q = � = 0

and t2 = 0. Thus, the known condition (6) indeed implies (49)–(50). For m = 2 and n � 3, since

the condition (36) is equivalent to μ1A1 + μ2A2 � 0, the sufficient conditions in Theorem 4.2 and

Corollary 4.3 are also necessary conditions for (36).

Remark 4.4. To getmore simple sufficient conditions for (36), wemay continue to reduce the freedom

of the variables in (49)–(51). For instance, (50) can be replaced by a stronger version like� � 0, 1

ε2
I �

Q ,Q � YTY without involving thematrix�. It is alsoworth stressing that checking the new sufficient

conditions developed in this section can be achieved by solving an SDP problem. For instance, if the

optimal value of the SDP problem (43) is greater than 1
η
+ 1, then the conditions (44)–(45) hold.

Similarly, if the optimal value of the SDP problem (43) with Mi = 0, i = 1, . . . , 8 is greater than
1
η
+ 1, then the conditions (49)–(51) hold.

5. Conclusions

Since rank(X) is a discontinuous function with an integer value, this makes the rank minimization

problemhard to be solved directly. In this paper, we have presented a generic approximation approach

for rank minimization problems through the approximation function φε(X). In particular, we have

shown that when the feasible set is bounded the rank minimization problem can be approximated

to any level of accuracy by a nonlinear SDP problem or a linear bilevel SDP problem with a special

structure. To obtain a tractable approximation of the rank minimization with linear constraints, the

approximation model (20) is introduced, and is proved to be efficient for locating the minimum rank

solution of the problem if the feasible set contains a minimum rank element with the least F-norm.

In this case, the rank minimization problem is equivalent to an SDP problem. This theory was applied

to a system of quadratic equations which can be formulated as a rank minimization. Based on its

approximation counterpart, we have developed some sufficient conditions for such a system with

zero being its unique solution.
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