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Abstract. Strict feasibility plays an important role in the development
of the theory and algorithms of complementarity problems. In this
paper, we establish sufficient conditions to ensure strict feasibility of a
nonlinear complementarity problem. Our analysis method, based on a
newly introduced concept of µ-exceptional sequence, can be viewed as
a unified approach for proving the existence of a strictly feasible point.
Some equivalent conditions of strict feasibility are also developed for
certain complementarity problems. In particular, we show that a P∏-
complementarity problem is strictly feasible if and only if its solution
set is nonempty and bounded.
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1. Introduction

We denote by Rn
+ [R

n
++] the space of n-dimensional real vectors with non-

negative components [positive components]. We write x¤0 [xH0], when
x ∈ Rn

+ [Rn
++]. For any vector x ∈ Rn, the notation [x]+ denotes the vector

whose i th component is max{0, xi}, for iG1, . . . , n. Consider the following
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complementarity problem

(CP) x¤0, f (x)¤0 , xTf (x)G0,

where f is a continuous function from Rn into itself. We say that the problem
is strictly feasible if there exists a vector uH0 such that f (u)H0. In this case,
the vector u is called a strictly feasible point.

Strict feasibility has played a very important role in the development
of the theory and algorithms for complementarity problems. It is well
known that some interior-point algorithms and continuation methods (see
for example Refs. 1–4) require the existence of some continuous interior-
point paths. Since all points on these paths are strictly feasible, strict feasi-
bility is a necessary condition for such a class of methods to solve comple-
mentarity problems. For monotone CPs, since strict feasibility implies the
existence of the central path (Refs. 5–7), we conclude that the central path
exists if and only if the CP is strictly feasible. For P0-type CPs, Kojima et
al. (Ref. 3) proved the existence of an interior-point path under strict feasi-
bility and a properness condition. Strict feasibility is also closely related to
several other important aspects of a CP, including the solvability and stab-
ility of the problem and the structural property of the solution set. For
instance, when f is a quasi(pseudo)monotone map, or more generally, a
quasi-P∏ map, then the CP has a solution if it is strictly feasible; see Refs.
8–10. Recently, Chen et al. (Ref. 11) and Ravindran and Gowda (Ref. 12)
proved that the nonemptiness and boundedness of the solution set of a
CP of type P0 implies the strict feasibility of the problem. However, the
converse is not true for general P0-functions. Particularly, a monotone CP
is strictly feasible if and only if the solution set is nonempty and bounded
(Refs. 11–13). The latter property is closely related to the stability of a CP;
see Refs. 12, 14–17.

Because of the aforementioned prominent role of strict feasibility in
theory and algorithms for CPs, it is worth developing criteria for strict feasi-
bility of CPs. In this paper, we point out that the problem of judging strict
feasibility can be formulated as a problem of solving a nonlinear equation.
Motivated by this observation and by using the proposed concept of µ-
exceptional sequence of continuous functions, we show a common property
for any continuous complementarity problems. This property provides a
general and very weak sufficient condition for the strict feasibility of CPs.
This sufficient condition is used to develop several other criteria for check-
ing the validity of strict feasibility. Furthermore, we develop some equiva-
lent conditions for strict feasibility of certain CPs. One of our results reveals
that the nonlinear CP with a P∏-map is strictly feasible if and only if its
solution set is nonempty and bounded; hence, such a complementarity prob-
lem is stable in the Facchinei sense if it is strictly feasible. This result gen-
eralizes the one in monotone situations; see Section 4 for details.
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This paper is organized as follows. In Section 2, we introduce the con-
cept of a measure function of strict feasibility and the concept of so-called
µ-exceptional sequence, which plays a key role throughout the paper; we
prove a general sufficient condition for the strict feasibility of continuous
complementarity problems. In Section 3, we study the strict feasibility of
CPs with mappings such as quasimonotone functions and semimonotone
functions. In Section 4, we focus on P∏-maps and show some equivalent
conditions for strict feasibility. Final remarks are given in Section 5.

2. Definitions and General Sufficient Condition

By the continuity of the map f, it is easy to see that a CP is strictly
feasible if and only if there exists a vector x¤0 such that f (x)H0. Indeed,
let µH0 be a sufficiently small scalar such that

f (xCµe)H0, where eG(1, . . . , 1)T;

then,

uGxCµeH0

is a strictly feasible point. On the other hand, we note that the conditions

x¤0 and f (x)H0

can be rewritten as

x¤0 and f (x)¤µe, for some number µH0,

provided that

0Fµ⁄ min
1⁄ i⁄n

fi (x).

Let φµ:R
n→Rn be given as

φµ(x)GxA(x2)1/2Cf (x)AµeA{[ f (x)Aµe]2}1/2, (1)

where all algebraic operations are performed componentwise. We refer to
this function as a measure function of the strict feasibility of a CP. Since
û⁄ (û2)1�2, for any û ∈ Rn, it is evident that a CP is strictly feasible if and
only if, for some µH0, the equation φµ(x)G0 has a solution. Actually, it is
easy to see that

φµ(x)G0, if and only if x¤0 and f (x)¤µeH0.

In this paper, we use the measure function (1) to study the strict feasibility
of a CP. We first introduce the concept of µ-exceptional sequence, and then
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use the property of homotopy invariance of topological degree (see Ref. 18)
to establish an alternative theorem, and hence a general sufficient condition
for the existence of a strict feasible point. The following is the definition of
the concept of µ-exceptional sequence, which is inspired by the concepts of
exceptional sequence and exceptional family of elements introduced respect-
ively by Smith (Ref. 19) and Isac et al. (Refs. 20–21).

Definition 2.1. Let µH0 be a number, and let f be a continuous func-
tion from Rn into itself. A sequence {xk} ⊆ Rn

+ is said to be a µ-exceptional
sequence for f if ��xk ��→S and there exists a positive scalar sequence {tk},
with each tk ∈ (0, 1), such that

fi (xk )G−tkxk
i �[2(1Atk )]Cµ, if xk

iH0, (2)

fi (x
k )¤µ, if xk

i G0, (3)

for all iG1, . . . , n.

We are now ready to prove a basic result.

Theorem 2.1. Let f be a continuous function from Rn→Rn. Then, for
any given scalar µH0, there exists either a strictly feasible point for the CP
or a µ-exceptional sequence for f.

Proof. Assume that the CP is not strictly feasible. We now show that
f has a µ-exceptional sequence for any number µH0. Let µH0 be an arbi-
trary scalar. We consider the homotopy between the identity mapping and
φµ(x), that is,

H(x, t)GtxC(1At)φµ(x)

GxC(1At)( f (x)Aµe)

A(1At)[(x2)1�2C{[ f (x)Aµe]2}1/2]. (4)

Denote

S G{x ∈ Rn:H(x, t)G0, for some t ∈ [0, 1]}. (5)

Under the assumption at the beginning of the proof, we assert that the set
S must be unbounded. By contradiction, suppose that S is bounded. Then,
there exists an open bounded set D such that

B (0, 1) ∪ S ⊂ D ,

where

B (0, 1)G{x ∈ Rn: ��x��⁄1}
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and

S ∩ ∂D G∅ ,

where ∂D is the boundary of D . By the homotopy invariance theorem of
degree (Theorem 2.1.2, Ref. 18), we deduce that

deg(I, D , 0)Gdeg(φµ , D , 0), (6)

where I denotes the identity mapping. Since deg(I, D , 0)G1 (Theorem 3.3.3,
Ref. 18), it follows from (6) that φµ(x)G0 has a solution in D (Theorem
2.1.1, Ref. 18). Note that each solution to the equation φµ(x)G0 is a strictly
feasible point for the CP. This is a contradiction. Therefore, S must be an
unbounded set. Let {xk} ⊂ S be a sequence with ��xk ��→S. Without loss
of generality, we may assume that

��xk ��H0, for all k.

It is not difficult to show that {xk} is a µ-exceptional sequence. Since

{xk} ⊂ S , for each xk,

there exists a scalar tk ∈ [0, 1] such that

H(xk, tk )G0.

From (4), we have

xkC(1Atk )[ f (xk )Aµe]

G(1Atk ){[(xk )2]1/2C{[ f (xk )Aµe]2}1/2}. (7)

Since xk≠0, it follows from the above that

tk≠1, for all k.

By our assumption, i.e., the CP is not strictly feasible, it follows that

φµ(x
k )≠0, for all k.

Thus, we deduce from (7) that tk≠0. Therefore, in the rest of the proof,
only the case 0FtkF1 needs to be considered. Taking the square of both
sides of (7) yields

[1A(1Atk )2]XkxkC2(1Atk )Xk [ f (xk )Aµe]

G2(1Atk )2[{Xk [ f (xk )Aµe]}2]1/2, (8)

where

XkGdiag(xk ).
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Again, taking the square of both sides of (8), we have

[1A(1Atk )2]2(Xk )3xkC4(1Atk )[1A(1Atk )2](Xk )3[ f (xk )Aµe]

G4(1Atk )2[(1Atk )2A1]{Xk [ f (xk )Aµe]}2.

Noting that 1A(1Atk )2≠0, we have

(Xk )2{[1A(1Atk )2](xk )2C4(1Atk )Xk [ f (xk )Aµe]

C4(1Atk )2[ f (xk )Aµe]2}G0. (9)

If

x k
i G0, for some i,

it follows from (7) and tk ∈ (0, 1) that

f (xk )AµeG{[ f (xk )Aµe]2}1/2,

which implies that

fi (x
k )¤µH0.

We consider now the case where

x k
i ≠0.

It follows from (9) that

[1A(1Atk )2](x k
i )

2C4(1Atk )x k
i [ fi (x

k )Aµ]

C4(1Atk )2[ fi (x
k )Aµ]2G0.

Therefore,

fi (x
k )AµG[−4(1Atk )xk

iJ{16(1Atk )2(x k
i )

2

−16(1Atk )2[1A(1Atk )2](x k
i )

2}1/2]�[8(1Atk )2]

G[−x k
iJ(1Atk )x k

i ]�[2(1Atk )].

That is, we have either

fi (x
k )AµG−tkx k

i �[2(1Atk )] (10)

or

fi (x
k )AµG−(2Atk )x k

i �[2(1Atk )]. (11)

We now show that the latter case in (11) is impossible to hold. Indeed, if
(11) holds, then

[1A(1Atk )2](x k
i )

2C2(1Atk )x k
i [ fi (x

k )Aµ]

G[1A(1Atk )2](x k
i )

2C2(1Atk )x k
i {−(2Atk )x k

i �[2(1Atk )]}



JOTA: VOL. 107, NO. 3, DECEMBER 2000 647

G[1A(1Atk )2A(2Atk )](x k
i )

2

G(tkA1)(2Atk )(x k
i )

2

F0,

which contradicts (8). Thus, {xk} satisfies (10). Furthermore, we show that
x k

iH0 provided that x k
i ≠0. In fact, by (10) we have

x k
iC(1Atk )[ fi (x

k )Aµ]G(1Atk�2)x k
i .

If x k
iF0, it follows from the above that

x k
iC(1Atk )[ fi (x

k )Aµ]F0,

which contradicts (7). Therefore, by Definition 2.1, the sequence {xk} must
be a µ-exceptional sequence for f. The proof is complete. �

From the above result, if there exists a scalar µH0 such that a continu-
ous function does not possess a µ-exceptional sequence, then the CP is
strictly feasible. As a result, it is of interest to study various conditions
under which the map f has no µ-exceptional sequence. In Section 3, using
Theorem 2.1, we establish several criteria to assure the strict feasibility of
CPs with such maps as positively homogeneous, quasimonotone, and semi-
monotone maps, which include P0-functions as special cases.

3. Some Sufficient Conditions for Strict Feasibility

We first introduce some concepts that will be used in this section. Recall
that an nBn matrix M is semimonotone [strictly semimonotone] if, for any
0≠x¤0, there exists a component xiH0 such that (Mx)i¤ [H]0; see Ref. 22.
The following is the nonlinear version of the semimonotone map.

Definition 3.1. See Ref. 23. A function f:Rn→Rn is said to be semi-
monotone [strictly semimonotone] if, for any x≠y and xAy¤0 in Rn, there
exists some i such that xiHyi and fi (x)¤ [H] fi ( y).

We say a function f is a P0[P]-function if, for any x≠y in Rn,

max
xi≠yi

(xiAyi )[ fi (x)Afi ( y)]¤0[>0]0.

Clearly, a P0-function must be a semimonotone function. However, the con-
verse is not true; see Example 3.9.2 of Ref. 22.
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Definition 3.2.

(a) See Refs. 8, 24. A map is said to be quasi(pseudo)monotone if,
for any x, y in Rn, f ( y)T (xAy)H[¤ ]0 implies f (x)T(xAy)¤0.

(b) See Ref. 25. A map f:Rn→Rn is said to be a P∏-map if there
exists a scalar κ¤0 such that, for any x≠y in Rn, we have

(1Cκ ) ∑
i ∈ IC(x,y)

(xiAyi )[ fi (x)Afi ( y)]

C ∑
i ∈ IA(x,y)

(xiAyi )[ fi (x)Afi ( y)]¤0,

where

I+(x, y)G{i: (xiAyi )[ fi (x)Afi ( y)]H0},

I−(x, y)G{1, 2, . . . , n}\I+.

When

fGMxCq,

where M ∈ RnBn and q ∈ Rn, it is easy to see that f is a P∏-map if and only
if M is a P∏-matrix, i.e., a sufficient matrix; see Refs. 1, 26.

In what follows, we establish sufficient conditions for the strict feasibil-
ity of a CP with such functions as positively homogeneous, (uniform) semi-
monotone functions, and quasimonotone functions. We consider first the
situation where the mapping

G(x)Gf (x)Af (0)

is positively homogeneous on Rn
+, that is,

G(lx)GlG(x), for all lH0 and x ∈ Rn
+.

Combined with some copositive property, this class of mappings was used
to develop the existence of a solution to a CP or a variational inequality;
see Refs. 9, 27–29. Here, we study the strict feasibility of the CP under such
an assumption.

It is worth noting that, if G(x)Gf (x)Af (0) is positively homogeneous
on Rn

+, then there exist two nonnegative vectors µinf and µsup in Rn whose
components are constants given by

0⁄µinf
i G lim inf

x ∈ Rn
+,��x��→S

�xi fi (x) ����x��2, (12)

SHµsup
i G lim sup

x ∈ Rn
+,��x��→S

�xi fi (x) ����x��2. (13)
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Indeed,

xi fi (x)���x��2

G{xi [ fi (x)Afi (0)]Cxi fi (0)}���x��2

G(xi���x��)[ fi (x���x��)Afi (0)]Cxi fi (0)���x��2. (14)

Therefore,

lim sup
x ∈ Rn

+,��x��→S

�xi fi (x) ����x��2

⁄ max
z ∈ Rn,��z��G1

max
1⁄ i⁄n

�zj [ fj (z)Afj (0)]�FS,

and hence the constants µinf
i and µsup

i exist. We now prove the following
result.

Theorem 3.1. Let f be a continuous function, and let G(x)G
f (x)Af (0) be a positively homogeneous map on Rn

+. Assume that the fol-
lowing system of equations:

xiGi (x)G−µi , xi≠0, iG1, 2, . . . , n,

has no solution (x, µ) ∈ R2n
+ with ��x��G1 and µi ∈ [µinf

i , µsup
i ], where the con-

stant vectors µinf and µsup are given by (12) and (13). Then, the CP is strictly
feasible.

Proof. By Theorem 2.1, it suffices to show that f has no µ-exceptional
sequence for some µH0. We show the assertion by the method of contradic-
tion. Suppose that there exists a scalar µH0 such that f has a µ-exceptional
sequence {xk}. Without loss of generality, assume that

xk���xk��→x*.

Clearly,

x* ∈ Rn
+ and ��x*��G1.

Then, from (14), we have

lim
k→S

x k
i [ fi (x

k )Aµ]���xk ��2G lim
k→S

x k
i fi (x

k )���xk ��2

Gx*i Gi (x*). (15)

Since

x k
i [ fi (x

k )Aµ]G−tk (x
k
i )

2�[2(1Atk )]F0,
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for all x k
i ≠0, it follows from (15), (12), (13) that there is a scalar µ*¤0,

where

µ*i ∈ [µinf
i , µsup

i ], iG1, . . . , n,

such that

x*i Gi (x*)G−µ*i , iG1, 2, . . . , n, ∀ x*i ≠0,

which is a contradiction. �

The following is an immediate extension of Theorem 3.1.

Corollary 3.1. Let f be a continuous function. If G(x)Gf (x)Af (0) is
positively homogeneous, and if

max
xi≠0

xiGi (x)H0, for 0≠x ∈ Rn
+, (16)

then the CP is strictly feasible.

Particularly, if f is strictly copositive on Rn
+, i.e.,

xT [ f (x)Af (0)]H0, for 0≠x ∈ Rn
+,

then the condition (16) holds. If f is strict semimonotone, then

max
1⁄ i⁄n

xi [ fi (x)Afi (0)]H0, for 0≠x ∈ Rn
+,

and thus f also satisfies the condition (16). Thus, we have the following
result.

Corollary 3.2. Let f be continuous, and let G(x)Gf (x)Af (0) be posi-
tively homogeneous on Rn

C . If one of the following conditions hold:

(a) f (x) is strictly copositive on Rn
C ,

(b) f (x) is strictly semimonotone on Rn
C ,

then the CP is strictly feasible.

For the linear function

f (x)GMxCq,

where M ∈ RnBn and q ∈ Rn, the positive homogeneity holds trivially. Thus,
from Corollary 3.2, it follows that any linear CP with strictly copositive and
strictly semimonotone matrices is strictly feasible.

We now consider the case of uniform semimonotone functions. A map
f:Rn→Rn is said to be a uniform semimonotone function if, for any x≠y
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and x¤y, there exists a constant cH0 such that

max
xi≠yi

(xiAyi )[ fi (x)Afi ( y )]¤c��xAy ��2.

Clearly, the class of uniform semimonotone functions includes that of uni-
form P-functions as a special case. In the following, we show that any CP
with a uniform semimonotone function is strictly feasible. The lemma below
is useful.

Lemma 3.1. Let f:Rn→Rn be a continuous semimonotone function.
If {xk} is a µ-exceptional sequence for f, then there exists a subsequence of
{xk}, denoted by {xkj}, such that the corresponding sequence t kj→0.

Proof. Let {xk} be a µ-exceptional sequence of f. Thus,

{xk} ⊂ Rn
C and ��xk ��→S.

Choosing a subsequence if necessary, we may assume that there exists an
index set I such that

x k
i →S, for all i ∈ I,

and x k
i is bounded for i ∉ I. We construct a sequence {yk} as follows:

ykG�0, if i ∈ I,

xk
i , if i ∉ I.

Thus,

xk¤yk and xk≠yk.

By the semimonotonicity of f, we have

max
i ∈ I

(x k
iAy k

i )[ fi (x
k )Afi ( y

k )]¤0.

Therefore, there exists an index m and a subsequence {xkj} such that

fm (x
kj )¤ fm ( y

kj ), for all j.

Since {ykj} is bounded, { fm (x
kj )} is bounded from below. By (2), we have

0H−t kjxkj
m �[2(1At kj )]Gfm (x

kj )Aµ.

From the fact that xkj
m→S and fm (x

kj ) is bounded from below, we deduce
that t kj→0. �

Theorem 3.2. If f:Rn→Rn is a continuous uniform semimonotone
mapping, then CP is strictly feasible.
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Proof. Assume that µH0 is a number such that f has a µ-exceptional
sequence {xk}. In the following, we derive a contradiction. We note that

{xk} ⊂ Rn
C , with ��xk ��→S.

Passing through a subsequence, we may assume that there exists an index
i0 such that

(xk
i0A0)[ fi0 (x

k )Afi0 (0)]

Gmax
1⁄ i⁄n

(xk
iA0)[ fi (x

k )Afi (0)]¤c��xk��2,

for all k. Thus,

−xk
i0 fi0 (0)Cmax

1⁄ i⁄n
x k

i fi (x
k )¤xk

i0 [ fi0 (x
k )Afi0 (0)]¤c��xk ��2.

Therefore,

max
1⁄ i⁄n

xk
i fi (x

k )���xk ��2¤cCx k
i0 fi0(0)���xk��2→c. (17)

However, from (2) and Lemma 3.1, passing through a subsequence, we have

x k
i fi (x

k )���xk ��2

G−tk (xk )2�[2(1Atk )��xk ��2]Cµxk���xk ��2→0, (18)

for all i such that x k
iH0. There is a contradiction between (17) and (18).

Therefore, f has no µ-exceptional sequence for any µH0. By Theorem 2.1,
the CP is strictly feasible. �

For general semimonotone functions, including P0-functions, Zhao and
Li (Ref. 23) actually showed the following result.

Theorem 3.3. Let f be a continuous semimonotone function. Suppose
that f satisfies the following properness condition: For any sequence
{xk} ⊂ Rn

++ such that ��xk ��→S, [−f (xk )]+���xk ��→0, and the sequence
{ fi (x

k )} is bounded from below for each index i with x k
i →S, and such

that there exists at least one index i0 with x k
i0→S such that { fi0 (x

k )} is
bounded, it holds that

max
1⁄ i⁄n

xkl
i fi (x

kl )→S,

for some subsequence {xkl}. Then, the CP is strictly feasible.

It should be pointed out that the properness condition in the above
theorem is weaker than several previous conditions in the literature such as
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the R0-property (Refs. 30–31) and the conditions in Theorem 4.1 of Ref. 32
and Theorem 1 of Ref. 33.

For quasimonotone mappings (Refs. 8–9, 24), it is known that strict
feasibility is sufficient for the solvability of CPs and variational inequalities.
Zhao and Isac (Ref. 10) generalized the concept of quasimonotonicity to
the so-called quasi-P∏ map; they showed that the CP with a quasi-P∏ map
has a solution if it is strictly feasible. In what follows, we develop a sufficient
condition to assure the strict feasibility of the CP with a quasimonotone
map. We will make use of the following properness condition.

Condition 3.1. Properness. For any sequence {xk} ⊂ Rn
C satisfying

��xk ��→S and lim
k→S

[−f (xk )]C���xk��G0,

the following holds for some subsequence {x kj}:

max
1⁄ i⁄n

x kj
i fi (x

kj )���x kj ��→S.

The following is the main result concerning quasimonotone CPs.

Theorem 3.4. Let f be a quasimonotone map satisfying Condition 3.1
and the Lipschitz condition; i.e., there exists a constant such that

�� f (x)Af ( y )��⁄L��xAy ��, for all x, y ∈ Rn
C .

If there exists a point u ∈ Rn such that f (u)H0, then the CP is strictly feasible.

Proof. From Theorem 2.1, it is sufficient to show that there exists no
µ-exceptional sequence for f for any number µH0. By a contradiction,
assume that there exists a scalar µH0 such that f has a µ-exceptional
sequence {xk}. From the fact that

{xk} ⊆ Rn
C, ��xk ��→S, f (u)H0,

we deduce that

f (u)T(xkAu)H0,

for all sufficiently large k. Since f is quasimonotone, the above inequality
implies that

f (xk )T(xkAu)¤0, (19)

for all sufficiently large k. Let

α kGtk�[2(1Atk )].
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By (2), we have

f (xk )T(xkAu)

G ∑
xk

iH0

(−α kx k
iCµ)(x k

iAui )C ∑
xk

i G0

Aui fi (x
k )

⁄ ∑
xk

iH0

{−α k[(x k
i )

2A(uiCµ�α k )xk
i ]Aµui}C ∑

xk
i G0

�ui � � fi (xk ) �.

Since f is Lipschitz continuous, we have

∑
xk

i G0

�ui � · � fi (xk ) �⁄ ��u��[�� f (0)��CL��xk �� ].

Combining the above two inequalities yields

f (xk )T(xkAu)���xk ��2

⁄−α k ∑
xk

iH0

[(x k
i )

2A(uiCµ�α k )x k
i ]���xk��2A ∑

xk
iH0

µui���xk��2

C��u��[�� f (0)��CL��xk �� ]���xk ��2. (20)

Choosing a subsequence if necessary, we consider two cases.

Case 1. There exists a constant δ∈ (0, 1) such that

δ⁄ tkF1, for all k.

In this case,

α k¤δ�[2(1Aδ)], for all k.

Without loss of generality, we assume that xk���xk ��→x*. Then, it is easy to
see that

∑
xk

iH0

[(x k
i )

2A(uiCµ�α k )x k
i ]���xk ��2→ ��x*��G1.

Thus, from (20), taking k→S, we have

f (xk )T(xkAu)���xk ��2⁄−δ��x*���[2(1Aδ)]F0,

which contradicts (19).

Case 2. tk→0. Thus, α k→0. If x k
i G0, we have from (3) that

fi (x
k )¤µ, which implies [−fi (x

k )]+G0. If x k
iH0, we have

fi (x
k )���xk ��G−α kx k

i ���xk��Cµ���xk��→0.

Thus,

[−f (xk )]+���xk ��→0.
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By Condition 3.1, there exists a subsequence {x kj} such that

max
1⁄ i⁄n

x kj
i fi (x

kj )���xkj ��→S. (21)

On the other hand, we have

x kj
i fi (x

kj )���zkj ��G−α kjx
kj
i ���xkj ��Cxkj

i µ���xkj ��⁄µ, (22)

for all x kj
i H0. There exists a contradiction between (21) and (22). �

4. Equivalent Conditions of Strict Feasibility for Certain CPs

The focus of this section is on the class of P∏-complementarity prob-
lems; several equivalent conditions of strict feasibility are developed for this
class of problems. We show first that, if f is a P∏-map satisfying the so called
co-P0 property, then the CP is strictly feasible if and only if there exists a
point u ∈ Rn (possibly uiF0, for some component) such that f (u)H0. To
show this result, we need the following lemma.

Lemma 4.1. See Ref. 10. A mapping f:Rn→Rn is a P∏-map if and
only if there exists a constant τ¤0 such that

(1Cτ ) max
1⁄ i⁄n

(xiAyi )[ fi (x)Afi ( y )]C min
1⁄ i⁄n

(xiAyi )[ fi (x)Afi ( y )]¤0, (23)

for all x, y in Rn.

The above result shows that the class of P∏-maps can be defined equiv-
alently by (23). The following is the concept of co-P0 function.

Definition 4.1. A map is said to be a co-P0 function if there exists a
constant cH0 such that

max
1⁄ i⁄n

(xiAyi )[ fi (x)Afi ( y )]¤c�� f (x)Af ( y )��2,

for all x, y in Rn.

Clearly, each co-P0 function is a P0-function. However, the converse is
not true. It is easy to see that a Lipschitz continuous uniform P-function is
a co-P0 function, and each cocoercive map (see, Refs. 34–35) is also a co-
P0 function.

Theorem 4.1. Assume that f is a continuous P∏-function and co-P0

function. Then, the following two conditions are equivalent:
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(a) There is a point u ∈ Rn such that f (u)H0.
(b) There is a point xH0 such that f (x)H0.

Proof. Clearly, (b) ⇒ (a). It is sufficient to prove that (a) ⇒ (b). Let
u be such a point satisfying (a). We show that the CP is strictly feasible. Let
µH0 be a positive scalar such that

µF min
1⁄ i⁄n

f (u).

We show that f has no µ-exceptional sequence. Assume the contrary, that
there exists a µ-exceptional sequence {xk} for f. We derive a contradiction.
In fact, since {xk} ⊂ Rn

C and ��xk ��→S, there exists an index p and a sub-
sequence {xkj} such that xkj

p →S as j→S. Since fp (u)Hµ and

fp (x
kj )G−t kjx kj

p �[2(1At kj )]CµFµ,

we deduce that

(x kj
p Aup )[ fp (x

kj)Afp (u)]F(xkj
pAup )[µAfp (u)]→ −S. (24)

There exists a subsequence of {x kj}, denoted also by {x kj}, such that there
exist indices m, q such that

(x kj
mAum )[ fm (x

kj )Afm (u)]Gmax
1⁄ i⁄n

(x kj
i Aui )[ fi (x

kj )Afi (u)],

(x kj
q Auq )[ fq (x

kj )Afq (u)]G min
1⁄ i⁄n

(x kj
i Aui )[ fi (x

kj )Afi (u)].

It follows from (24) that

(x kj
q Auq )[ fq (x

kj )Afq (u)] →−S. (25)

Since f is a P∏-map, by Lemma 4.1, there exists a constant τ¤0 such that

(1Cτ )(x kj
mAum )[ fm (x

kj )Afm (u)]C(x kj
q Auq )[ fq (x

kj )Afq (u)]¤0. (26)

By (25)–(26), we deduce that

(x kj
mAum )[ fm(x

kj )Afm (u)]→S. (27)

We consider the following two cases:

Case 1. x kj
mH0. Noting that µFfm (u) and by using (2), we have

(x kj
mAum )[ fm (x

kj )Afm (u)]

G(x kj
mAum ){−tkjx kj

m �[2(1At kj )]A[ fm (u)Aµ]}. (28)

From the above equation and (27), we deduce that

x kj
mAumF0, for all j;



JOTA: VOL. 107, NO. 3, DECEMBER 2000 657

thus,

0Fx kj
mFum;

i.e., {x kj
m} is bounded. It follows from (27)–(28) that t kj→1. However, since

f is a P0-function, by Lemma 3.1, there exists a subsequence of {t kj},
denoted also by {t kj}, such that t kj→0. This is a contradiction.

Case 2. x kj
mG0. In this case,

c�� f (x kj )Af (u)��2⁄ (x kj
mAum )[ fm (x

kj )Afm (u)]

G−um [ fm (x
kj )Afm (u)]

⁄ ��u�� �� f (x kj )Af (u)��.

Thus,

�� f (x kj )Af (u)��⁄ ��u���c.

Therefore, �� f (x kj )�� is bounded; hence, (27) is impossible to hold. We have
a contradiction. The desired result follows from Theorem 2.1. �

The following corollary follows immediately from the above result.

Corollary 4.1. Let f be a cocoercive mapping on Rn; that is, there exists
a constant κ¤0 such that

(xAy )T[ f (x)Af ( y )]¤κ �� f (x)Af ( y )��2, for all x, y ∈ Rn.

Then, the CP is strictly feasible if and only if there exists a point u ∈ Rn such
that f (u)H0.

The class of cocoercive mappings was studied also by Marcotte et al.
(Refs. 34–35). They showed that a cocoercive map has many interesting
properties and plays an important role in the convergence of projection
iterative schemes for monotone variational inequalities. Corollary 4.1 shows
a new property for the class of cocoercive maps. The following example
shows that the result of Corollary 4.1 is not valid in general for a monotone
mapping.

Example 4.1. Let

fGMxCq,

where

MG�0 −1
1 0� and qG(−1, 1)T.
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This function is monotone on R2. It is easy to see that there is a point u ∈
Rn such that f (u)H0; however, f has no strict feasible point.

It is known that, for a monotone mapping, the CP is strictly feasible if
and only if the solution set is nonempty and bounded. Karamardian
(Theorem 4.1, Ref. 8) proved that, for a monotone CP, strict feasibility
implies the nonemptiness and boundedness of the solution set. McLinden
(Ref. 13) proved that the converse is true in the setting of maximal mono-
tone mappings (Theorem 4, Ref. 8). Chen, Chen, and Kanzow (Proposition
3.12, Ref. 11) used the Fischer function and the mountain pass theorem to
show that the converse is also true for continuously differentiable P0-func-
tions. Ravindran and Gowda (Corollary 5, Ref. 12) proved the same result
by degree theory, but they required only the continuity of the mappings.
For a general CP of type P0, however, strict feasibility does not imply the
nonemptiness and boundedness of the solution set. An interesting problem
arises: What class of functions beyond monotone functions can ensure the
equivalence of strict feasibility and nonemptiness and boundedness of the
solution set? The following result offers a positive answer to this question.

Theorem 4.2. Let f be a continuous P∏-map. Then, a CP is strictly
feasible if and only if the solution set is nonempty and bounded.

Proof. Since each P∏-map is a P0-function, the nonemptiness and
boundedness of the solution set implies strict feasibility; see Corollary 5 in
Ref. 12 and Proposition 3.12 in Ref. 11. It is sufficient to show that strict
feasibility implies the nonemptiness and boundedness of the solution set. In
Ref. 25, Zhao and Han showed that, for P∏-maps, the solution set of a CP
is nonempty if it is strictly feasible. Thus, it suffices to show the boundedness
of solution set when the CP is strictly feasible. Let u be a strict feasible
point, i.e.,

uH0 and f (u)H0.

By contradiction, let {xk} be a solution sequence and ��xk ��→S. Noting
that

Xk f (xk )G0, for all k, where XkGdiag(xk ),

we have that, for all i,

(x k
iAui)[ fi (x

k )Afi (u)]

Gx k
i fi (x

k )Ax k
i fi (u)Aui fi (x

k )Cui fi (u)

G−x k
i fi (u)Aui fi (x

k )Cui fi (u)

⁄−x k
i fi (u)Cui fi (u). (29)
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Since ��xk ��→S, there exists a subsequence {x kj} and indices m, p such that,
for all j,

(x kj
mAum)[ fm (x

kj)Afm (u)]Gmax
1⁄ i⁄n

(x kj
i Au kj

i )[ fi (x
kj)Afi (u)],

and x kj
p →S. It follows from x kj

p →S so that

(x kj
p Aup )[ fp (x

kj)Afp (u)]⁄−x kj
p fp (u)Cup fp (u)→ −S. (30)

We have from (30) that

min
1⁄ i⁄n

(x kj
i Au kj

i )[ fi (x
kj)Afi (u

kj)]

⁄ (x kj
p Aup)[ fp (x

kj)Afp (u)]→ −S.

Since f is a P∏-map, we deduce from the above relation and Lemma 4.1 that

(x k
mAum )[ fm (x

k )Afm (u)]→S.

However, (29) implies that

(x k
mAum )[ fm (x

k )Afm (u)]

⁄−x k
m fm (u)Cum fm (u)⁄um fm (u).

This is a contradiction. Thus, we have shown that, for P∏-maps, the solution
set is nonempty and bounded if it is strictly feasible. �

Since the class of P∏-maps encompasses the class of monotone maps as
its subset, the above result is a generalized version of the result for mono-
tone cases; see Refs. 11–13.

The nonemptiness and boundedness of the solution set is also closely
related to the stability of the CP; see for example Refs. 12–17, 22, 36. The
following concept is due to Facchinei (Ref. 16).

Definition 4.2. See Ref. 16. Let SOL( f ) be the solution set of the CP,
where f:Rn→Rn is assumed to be continuous. We say that the CP is stable
if, for every positive γ , a δ(γ )H0 exists such that, for every continuous
function g:Rn→Rn with

�� f (x)Ag(x)��Fδ(γ )(1C��x��), ∀ x ∈ SOL( f )CB (0, γ ),

where

B (0, γ )G{x ∈ Rn: ��x��Fγ},

the CP with g has a solution in SOL( f )CB (0, γ ).
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The following result is proved in Ref. 16.

Lemma 4.2. See Ref. 16. Let f be a continuously differentiable P0-
function, and let SOL( f ) be nonempty. Then, the CP is stable if and only
if SOL( f ) is bounded.

Since P∏-maps are contained in the class of P0-functions, from Theorem
4.1 and Theorem 4.2, we have the following stability result.

Theorem 4.3. Let f be a P∏-map, and let SOL( f ) be nonempty. Then,
the CP is stable if and only if the CP is strictly feasible. Moreover, if f is a
P∏-map satisfying the co-P0 property, then the CP is stable if and only if
there exists a vector u ∈ Rn such that f (u)H0.

In summary, for P∏-maps, the first three conditions below are equival-
ent. Moreover, if a P∏-map satisfying the co-P0 property, the following four
conditions are equivalent:

(C1) The CP is strictly feasible.
(C2) The solution set of the CP is nonempty and bounded.
(C3) The solution set of the CP is stable.
(C4) There exists a point u ∈ Rn such that f (u)H0.

We end this paper by pointing out an application of the measure func-
tion of strict feasibility defined by (1) in computing a strictly feasible point.
It is well known that some feasible interior-point algorithms for CPs require
that the initial point be a strictly feasible point. It is worth noting that
determining a strictly feasible point is equivalent to locating a solution of
the measure function of strict feasibility given by (1) for some given µH0.
However, φµ(x) is not continuously differentiable at certain points even if f
is. To overcome this drawback of φµ(x), we consider another version of the
measure function of strict feasibility, that is,

Fµ(x)G{(xAµe)A[(xAµe)2]1/2}2C[[ f (x)Aµe]A{[ f (x)Aµe]2}1/2]2.

Clearly, there exists a µH0 such that Fµ(x*)G0 if and only if x* is a strictly
feasible point of the CP satisfying

x*¤µe and f (x*)¤µe.

It is easy to see that, if f is continuously differentiable, then Fµ(x) is also
continuously differentiable. Thus, some algorithms for C1 smooth equations
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can be utilized to solve the above equation. In fact, it suffices to solve this
equation approximately because the solution satisfying

min{x*, f (x*)}¤µe,

and hence any approximate solution close to x*, is also strictly feasible. On
the other hand, if we consider the following problem:

min
x ∈ Rn

��Fµ (x)��2,

then finding a strictly feasible point is equivalent to computing an approxi-
mate global solution of the above problem.

5. Final Remarks

While strict feasibility has been assumed always in many theoretical
and algorithmic development in complementarity problems, to our knowl-
edge, there is no specific paper devoted to the development of criteria check-
ing the validity of strict feasibility. In this paper, we introduce the concept
of µ-exceptional sequence for continuous functions. Using this concept and
the homotopy invariance theorem of degree, we show a useful alternative
result for nonlinear complementarity problems, which claims that any
complementarity problem with a continuous function is either strictly feas-
ible or has a µ-exceptional sequence. Therefore, conditions to identify maps
f that have no µ-exceptional sequence can provide sufficient conditions to
guarantee the strict feasibility of CPs. The analysis method presented in this
paper can be viewed as a general approach in investigating conditions for
the strict feasibility of a CP. Moreover, we have shown that the CP with a
P∏-map is strictly feasible if and only if its solution set is nonempty and
bounded, and hence if and only if the CP is stable. This result extends the
one in monotone CPs. We also indicate that a measure function of strict
feasibility can be used to compute a strictly feasible point.

It is worth mentioning that the feasibility problem of CPs, i.e., x¤0
and f (x)¤0, was studied recently by Isac (Ref. 37), who established an
alternative result for the existence of a feasible point of CP. Also, Isac (Ref.
37) presented an open problem, that is, whether or not an appropriate
notion of exceptional family of elements can be used to study the strict
feasibility of CPs (see also Ref. 10). It is evident that the concept of µ-
exceptional sequence, tailed to the need of the strict feasibility problem, can
be viewed as a modified version of the exceptional family of elements. Thus,
the results presented in this paper actually give a positive answer to the
open problem posed in Ref. 37.
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