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Extended Projection Methods for
Monotone Variational Inequalities1

Y. B. ZHAO2

Communicated by P. Tseng

Abstract. In this paper, we prove that each monotone variational
inequality is equivalent to a two-mapping variational inequality prob-
lem. On the basis of this fact, a new class of iterative methods for
the solution of nonlinear monotone variational inequality problems is
presented. The global convergence of the proposed methods is estab-
lished under the monotonicity assumption. The conditions concerning
the implementability of the algorithms are also discussed. The proposed
methods have a close relationship to the Douglas-Rachford operator
splitting method for monotone variational inequalities.
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1. Introduction

Given a closed convex subset X of Rn and a continuous mapping
F: D(F)^Rn->Rn, where D(F) denotes the domain of definition of F and
X^D(F), the variational inequality problem [denoted by VI(X, F)] is to
find a vector x* eX such that

1The author is indebted to two anonymous reviewers and P. Tseng for suggestions which have
considerably improved the paper.

2Researcher, Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, P. R.
China.

where F(x*)T denotes the transpose of the vector F(x*).
A general iterative approach (see, for example, Refs. 1-2) for solving

VI(X, F) consists of generating a sequence {xk} such that each xk+l1solves
the subproblem VI(X,fk), where fk is some approximation to F(x). One
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where H is a fixed, symmetric, and positive definite n x n matrix. PH,X (•)
denotes the projection operator onto the set X with respect to the H-norm
(Ref. 1).

In the literature on projection-type algorithms, much attention has been
paid to the global convergence of the symmetric projection method; but
most of these global convergence results are established under some strong
assumptions which require in general that the mapping F be strongly mono-
tone and Lipschitz continuous (see, for example, Refs. 1-5). Recently, Mar-
cotte and Wu (Ref. 6) proved the global convergence of the symmetric
projection method for solving a nonlinear variational inequality under the
cocoercive assumption, which implies the Lipschitz continuity and the mono-
tonicity of F. This assumption on F is weaker than strong monotonicity
together with Lipschitz continuity, but stronger than monotonicity. On the
other hand, there exist some examples of monotone affine variational
inequalities on which the symmetric projection method fails to converge
(Refs. 6-7). Therefore, to assure global convergence, the symmetric projec-
tion method has the drawback that it requires other restrictive assumptions
besides the monotonicity on the mapping F.

In fact, there exist a number of projection-type algorithms which are
convergent for monotone VI(X, F), provided that a solution of the problem
exists. The oldest one is the well-known extragradient algorithm proposed
by Korpelevich in Ref. 8,

where the constant B relies on the value of the Lipschitz constant of the
mapping F. By introducing some inexact line searches, Khobotov (Ref. 9)
and Marcotte (Ref. 10) proposed several improved extragradient algorithms;
but global convergence results for these methods still need the Lipschitz
continuity assumption on F. The modified extragradient methods by Solodov
and Tseng (Ref. 11) and by Sun (Ref. 12) overcome this drawback by
introducing an Armijo-type inexact line search. Moreover, the monotonicity
assumption is also removed in Sun's method (Ref. 12). He and Stoer (Ref.
13) and He (Refs. 14-16) proposed a class of projection and contraction
methods (PC methods) for monotone VI(X, F); these methods do not rely
on line searches and Lipschitz continuity. Some of the results of He (Refs.
14-16) and He and Stoer (Ref. 13) were also obtained by Solodov and Tseng
in Ref. 11. It is worth mentioning that projection-type iterative algorithms

of the iterative methods is the well-known symmetric projection method,
which can be written as follows:
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were also proposed to solve a class of quasi-variational inequalities; see, for
example, Refs. 17-18.

In this paper, our focus is on developing a new class of methods for
solving monotone VI(X, F). We show first that each monotone VI(X, F)
can be formulated equivalently as another problem denoted by VI(X, r, G),
see Section 2 for details, so that we can solve the latter problem to obtain
the solution of the original problem. Along this idea, we try to extend the
symmetric projection method to the equivalent problem, and we obtain a
class of iterative methods (extended projection methods) that are different
from the previous approaches for monotone VI(X, F). Also, the proposed
methods do not require line searches and Lipschitz continuity. The algo-
rithms are globally convergent for any affine monotone VI(X, F); in this
case, the algorithms reduce to iterative schemes which include twice projec-
tion operations but they are different from extragradient methods. For a
class of nonlinear functions, i.e., F monotone on D(F), the proposed
approaches are also well defined and globally convergent. In such a case, the
proposed methods have a close relationship with several previous methods
including the PC methods and the Douglas-Rachford operator splitting
method (Refs. 19-20) for monotone VI(X, F). While the proposed methods
are extended versions of the symmetric projection method for VI(X, F), a
key advantage of them over the symmetric projection method is that, to
assure global convergence, they do not require restrictive assumptions on
the mapping F.

Section 2 presents some fundamental facts concerning VI(X, F) and
develops the algorithm and global convergence result. The conclusions are
stated in Section 3.

here, Px( •) denotes the projection operator onto the set X with respect to
the Euclidean norm and b > 0 is a constant. It is well known that r(x*) = 0
if and only if x*eX solves problem VI(X, F). In what follows, we develop
first several fundamental consequences which will be used to show the global
convergence of the proposed methods.
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2. Extended Projection Methods

Let F: D(F)^Rn-*Rn be a continuous mapping and set



The desired result is obtained by adding (7) and (8). D

Setting

Equivalently,

Lemma 2.1. For any variational inequality problem (1), we have

for all xeD(F) and yeX.

Proof. For any vectors yeX and zeR", by the property of the projec-
tion operator Px, we have
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where xeD(F), and using (4), the conclusion of the lemma is straight-
forward. D

The following result is similar to the one obtained by He (Ref. 14). For
the sake of completeness, we also give a proof of it.

Corollary 2.1. If the mapping F is monotone on the set X, i.e.,

where X^X^D(F), then we have

where X*(F) denotes the solution set of VI (X, F).

Proof. Let x* be an arbitrary solution of problem VI (X, F). Setting
y = x* in (5), we have

Since F is monotone on X and x* is a solution of VI(X, F),

Rewriting the above inequality and rearranging terms, we have



In order to show the next property of monotone VI(X, F), we will make
use of the following definition.

Definition 2.1. Let F1 and F2 be two functions from the set D into Rn,
where D is a closed subset of Rn. The two-mapping variational inequality
problem, denoted by VI (D, F1, F2), is to find a vector x*eD such that
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That is, solving the monotone problem VII(X, F) is equivalent to finding a
vector x*eX such that

Proof. Let x*eX*(F). Then, r(x*) = 0, which implies that (10) holds
trivially, hence x*eX*(r, G). Conversely, suppose that u*eX*(r, G); by
Definition 2.1, we have

In particular, setting x = x*(x*eX*(F)) in the above inequality, we have

Since F is a monotone mapping on the set X, by Corollary 2.1 and the above
inequality, we obtain

Therefore, r(u*) = 0, which implies that u*eX*(F). D

It is evident that VI(X, F) is a special case of problem VI(D, F1, F2).
In fact, when F2 is the identity mapping and X = D, problem II (D ,F1,F 2 )
reduces to VI(X,F). Therefore, VI(D,F1,F2) can be viewed as the gen-
eralization of VI(X, F).

The following theorem shows that each monotone variational inequality
problem is equivalent to a two-mapping variational inequality problem.

Theorem 2.1. Assume that the mapping F is monotone on the set X,
where X^XsD(F). Let X*(F) and X*(r, G) denote the solution sets of
VI(X, F) and the two-mapping variational inequality VI(X, r, G), respec-
tively. Suppose that the set X*(F) is nonempty. Then, we have



If A (x k ) =H, a fixed symmetric, positive definite matrix, the above algorithm
can be called the extended projection method. This method can be viewed
as a generalization of the symmetric projection method for problem
VIX, F). This paper does not discuss how to solve a general two-mapping
problem VI(D, F1, F2). Our attention is focused on the extended projection
method for the special two-mapping problem VI (X, r, G) which has the
same solution set as VI(X, F); i.e., we find a solution of VI(X, F) via solving
its equivalent problem VI(X, r, G).

The main computing work of the extended projection method is to
solve the subproblem V I (D ,F k 1 ,F 2 ) defined by (11)-(12). We now point
out that the subproblem can be written as an affine variational inequality
and a nonlinear equation. Suppose that the range

is a closed set in Rn and fk1 (y) is an affine mapping from F2(D) into Rn,
where

From (11)-(12), it is evident that we may find first a vector y*eF2(D) such
that

Next, we solve the nonlinear equation

Let

then, xk+l is the solution of subproblem (11)-(12). It is not necessary to
compute the set F2(D), which is quite difficult to compute and in general is
not a closed convex set. In fact, we can replace F2(D) by a closed convex
set K; see the following algorithm for details.

where
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Motivated by the above observation, we can solve the two-mapping
variational inequality problem to obtain a solution of the original problem.
The general iterative method for the two-mapping variational inequality
VI( D, FI , F2) can be defined as follows: Given xk and the n x n matrix A(xk),
let xk+l solve the subproblem VI(D, Fk1, F2); i.e., let xk+1 be such that



Let xk+1eG -1(A:) be a solution to G(x)=y*.

Step 2. If xk+l satisfies a prescribed stopping rule, terminate. Other-
wise, return to Step 1 with k replaced by k+ 1.

Remark 2.1. If F is monotone on the set G - 1 ( K ) , the mapping

is strongly monotone on the same set; actually,

Therefore, the mapping G: G - 1(K)^K is injective and the inverse mapping
G-l exists and is Lipschitz continuous on the set K (Ref. 21, Theorem 4.3.8).
Therefore, the equation G(x)=y* has a unique solution in the closed set
G - 1 (K) .

In what follows, we establish a global convergence result for the above
algorithm.

Theorem 2.2. Let K be a closed convex set satisfying G(X)£
K^G(D(F)). Suppose that F is monotone on the set G - 1 ( K ) . Let H be an
arbitrary symmetric, positive definite n x n matrix; let r(x) and G(x) be
defined by (3) and (4). Let the positive number a be strictly less than
2Amin(H), where Amin (H) denotes the minimum eigenvalue of the matrix H.
Suppose that the solution set X*(F) ¥>0. Then, the sequence {xk} generated
by Algorithm 2.1 converges to a solution of Vl(X, F).

be the range of the mapping G on the feasible set X. From the above
observation, replacing the mappings FI and F2 by r(x) and G(x), respectively,
we obtain the following basic extended projection method.

Algorithm 2.1.

Step 0. Let x°eD(F), and let K be a closed convex set such that
G(X)<=K; set k = 0.

Step 1. Given xk, let y* e K be such that
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Let A(xk) = H/a, where a is a fixed positive number, and let



for all xeG -1 (K) . Let x* be a solution of problem VI(X, F). Setting x=x*
in (17), rearranging the terms, and using Corollary 2.1, we have

Therefore,

Since a is strictly less than 2Amin(H), the sequence {|| G(xk) - G(x*) || 2
H} is

nonincreasing. There exists a nonnegative number m such that

and hence,
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Proof. By the construction of Algorithm 2.1, xk+1 satisfies the follow-
ing inequality:



Noting that G is an injective mapping and G-1 is Lipschitz continuous on
the set K (see Remark 2.1), there exists a constant L > 0 such that

Hence, in the case X = G - 1 ( K ) ^X, x solves VI(X, F) by Theorem 2.1. Notice
that (19) holds for any solution x*; replacing x* by x in (19), we see that
the entire sequence G(xk)-*G(x). Hence,

This establishes the theorem. D

Remark 2.2. In some special cases, G(X) is a closed convex set and
can be obtained precisely; thus, we can set K= G(X) in the above algorithm.
To demonstrate the fact, we consider the case where X is a rectangle, that is,
the Cartesian product of n arbitrary intervals such as [a, b], [a, oo), (-00, b],
(-00, +00). So, X can be represented by f l n i = 1 Xi, where Xi is an interval in
R. Clearly, the nonnegative orthant X=Rn+ is also a rectangle. If X1 and X2

are two intervals in R, we denote by Xt vX2 the smallest interval that con-
tains X1 and X2. For instance,

The following Proposition 2.1 points out that the range G(X) is convex and
can be represented explicitly under suitable assumptions.

Let

where Gi: Rn >R, i= 1 , . . . , n . We denote by Gi(Xl,..., Xn) the natural
interval extension of Gi(x) on the rectangle X = Y n i = 1 Xi (Ref. 22); that is,
Gi(Xi,..., Xn) is an interval which is obtained by replacing each compo-
nent xi by the domain X, and evaluating the expression using interval
arithmetic operators. If f is a continuous, monotone function from R to R,
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Thus, xk is bounded. Let x be a cluster point of {xk}; there exists a subse-
quence xk'+x. It is evident that xeG-1 (K) , since G - 1 (K) is closed and
xkeG-1(A:) for all k ̂  1.

Replacing x* by xk> in (17), taking the limit kj-*ao, and using (20), we
have



The above result is an immediate consequence of Lemmas 3.7 and 3.8
in Ref. 22.

In most cases, the range G(X) is difficult to obtain even if X is a
rectangle. Therefore, a convex inclusion K of the range G(X) is needed in
Algorithm 2.1. In the last three decades, a great deal of work has been done
on the problem of computing good convex inclusions of the range of a
function over a rectangle. A comprehensive survey of the theory and comput-
ing methods for the inclusion of the range of a function is given in Ref. 22.

Remark 2.3. If F is monotone over Rn, G(x) = x + b F ( x ) is a homeo-
morphic mapping from Rn to Rn by the continuity and strong monotonicity
of G (Ref. 21, Theorem 6.4.4). Therefore, G(D(F)) = Rn. Thus, for an arbi-
trary closed convex inclusion K2 G(X), Algorithm 2.1 is always well defined
and globally convergent. In particular, let K=Rn. It is easy to see that
Algorithm 2.1 is reduced to the following iterative scheme:

Moreover, let H=aI, where / is the identity matrix. Then, the iterative
scheme (21) reduces to the Douglas-Rachford operator splitting method for
monotone VI(X, F) (Refs. 19-20), i.e.,

On the other hand, introducing the steplength pk, from (21) we have

then for any [a, b],

The following proposition generalizes this simple fact to an n-dimensional
monotone mapping G(x).

Proposition 2.1. Let X=l\ni=1 Xi be a rectangle, and let G(x) =
(G1 ( x ) , . .., G n (x ) ) T eR n be monotone on X. Suppose that Xi = [a i , bt], i=
1 , . . . , n , where ai = -oo or bi =+00 is permitted. Assume that, for each
fixed scalar ateXi, the (n-l)-dimensional function Gi(x1,. . . , x t - 1 ,
ai, x i + 1 , . . . , xn), i=1, . . . ,n , is a rational function with respect to the
variables xjt j= 1 , . . . , n, j = i , and that each variable x j , j ¥ = i , occurs in the
expression at most once and of one order. Then, the range G(X) =
0"_i Gj(X) is also a rectangle and, for each i,
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which is an iterative scheme for the linear equation Mx + q = 0.

Remark 2.5. For the affine problem (24), there exists another equiva-
lent two-mapping problem VI(X, R, W) on which the aforementioned
methods and related results can be applied. Actually, replacing F(x) by
Mx + q in (6), we have (see also Ref. 14)
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where

The iteration (23) characterizes the PC-type methods for linear and non-
linear variational inequalities, which have been studied extensively, for
instance, in Refs. 13-16.

Remark 2.4. For the affine variational inequality problem,

where qeRn and M is a n x « positive semidefinite matrix. We can set K=
G(X) and Algorithm 2.1 can be written as a simple iterative scheme. Actu-
ally, since

where Pp*,,x is the projection on X with respect to the P*-norm.
In particular, if X = Rn, we have

and let K=G(X); it is easy to show that Algorithm 2.1 is reduced to the
following iteration:

Let

is an affine mapping, the range G(X) is a closed convex set, and the solution
of the equation G(x)=y* is given by

Therefore,



3. Conclusions

Theorem 2.1 established in this paper characterizes an inherent property
for any monotone VI(X, F), that is, each monotone VI(X, F) is equivalent
to a two-mapping variational inequality problem. Developing algorithms to
solve the equivalent problem efficiently may provide alternative methods
that are different from the previous approaches for monotone VI (X, F). The
proposed algorithm can be viewed as such a method for the equivalent
problem. It should be pointed out that, except for the aforementioned several
cases (Remark 2.2 through Remark 2.5), our algorithms need further
improvement with respect to implementability. We believe that it is worth-
while to find more efficient algorithms for the equivalent problem.

where
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Let

then, the above inequality can be written as

It is obvious that, besides VI(X, r, G), problem VI (X, R, W) is also equiva-
lent to problem (24). Replacing G(x) and r (x ) by W(x) and R(x), respec-
tively, we obtain the following iteration:

Such an iterative scheme is similar to projection-type methods for affine
variational inequalities (Refs. 14-16).
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