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Exceptional Families and Existence Theorems
for Variational Inequality Problems1
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Abstract. This paper introduces the concept of exceptional family for
nonlinear variational inequality problems. Among other things, we show
that the nonexistence of an exceptional family is a sufficient condition
for the existence of a solution to variational inequalities. This sufficient
condition is weaker than many known solution conditions and it is also
necessary for pseudomonotone variational inequalities. From the results
in this paper, we believe that the concept of exceptional families of
variational inequalities provides a new powerful tool for the study of
the existence theory for variational inequalities.
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1. Introduction

The finite-dimensional variational inequality problem (VIP) has been
studied extensively in the literature because of its successful applications in
many fields such as the traffic equilibria, spatial price equilibria, prediction of
interregional commodity flows, solution of Nash equilibria, and Walrasian
equilibrium model. A survey of theory, algorithms, and applications of the
problem can be found in the review paper by Harker and Pang (Ref. 1).
The development of existence theorems has played a very important role in
theory, algorithms, and applications of VIP. A large number of existence
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conditions have been developed in the literature including those of Hartman
and Stampacchia (Ref. 2), Cottle (Ref. 3), Eaves (Refs. 4 and 5), Karamard-
ian (Refs. 6-9), More (Refs. 10 and 11), Kojima (Ref. 12), Habetler and
Price (Ref. 13), and Pang (Ref. 14). Because of the diversity of results, it is
not possible to list them all.

In this paper, we investigate the existence of a solution to VIP via a
new analysis method that is quite different from previous methods. Our
method is motivated by the pioneer works of Smith (Ref. 15) and of Isac,
Bulavski, and Kalashnikov (Ref. 16). Smith (Ref. 15) introduced the concept
of exceptional sequence for continuous functions, used it to study the exist-
ence of a solution to the complementarity problem, and applied his results
to spatial price equilibrium. Harker (Ref. 17) gave another application of
the Smith results; he presented an alternative proof of the existence of a
solution to a network equilibrium problem. Independently, Isac also
presented the concept of exceptional sequence under the name of opposite
radial sequence (unpublished note). Recently, Isac, Bulavski, and Kalashni-
kov (Ref. 16) generalized the Smith concept and introduced the concept of
exceptional family of elements for continuous functions, applying it to the
study of explicit, implicit, and general order complementarity problems.
However, it seems difficult to apply the concept of exceptional sequence
(family of elements) for continuous functions to general variational inequal-
ity problems, where the feasible set is a general closed convex set instead of
a closed convex cone.

In this paper, we develop a new concept of exceptional family for VIP.
This concept can be viewed as a generalization of the notions introduced in
Refs. 15 and 16 in connection with complementarity problems. By means
of our concept, we show a deep property of VIP; that is, each VIP has
either a solution or an exceptional family. Therefore, the nonexistence of an
exceptional family for VIP is a sufficient condition for the existence of a
solution to VIP. It is shown that this sufficient condition is weaker than
many well-known sufficient conditions developed in the literature. Some new
sufficient conditions that assure the nonexistence of an exceptional family
are also derived. It is easy to see that, by means of an exceptional family,
the proofs of these results are very simple.

In Section 2, we present some properties of VIP, introduce the concept
of exceptional family, and prove an essential result. In Section 3, we discuss
the conditions under which a VIP does not possess an exceptional family.
Conclusions are drawn in Section 4.

2. Exceptional Families for Variational Inequality Problems

To begin, let us state the problem under investigation. A finite-dimen-
sional variational inequality, denoted by VI(X, F), is to find a vector x*eX
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such that

where X is a nonempty closed convex subset of Rn and F is a mapping from
Rn into itself. It is easy to see that, when X is the nonnegative orthant,
denoted by Rn

+, then VI(X, F) reduces to the following nonlinear comple-
mentarity problem (NCP(F)):

In this paper, we restrict the feasible set X to the following form:

where gi and hj are assumed to be convex and affine real-valued differentiable
functions. Let

Then, (3) can be written as

Let Vg(x) and Vh(x) denote the Jacobian matrices of the mappings g and
h. In addition, we assume that the Slater constraint qualification holds for
X; i.e., there exists a vector x°eX such that

It is known that VIP has a solution provided that the set X is bounded.
Therefore, we assume throughout the paper that X is unbounded. In what
follows, we aim at developing a new tool for the existence theory for
VI(X, F) defined by (1) and (3). To accomplish this, we first discuss some
properties of the projection operator on a convex set.

Let

be the closed Euclidean ball with radius a > 0. Unless the contrary is explic-
itly stated, || • || denotes the Euclidean norm. Denote the intersection between
the set X and Ba by Xa, i.e.,

Since X is a closed convex set, Xa is a closed convex compact set provided
that Xa ^ 0. It is easy to see that, if X satisfies the Slater constraint qualifica-
tion, then there is a scalar ac such that, for all a > a0, the set Xa also satisfies
the Slater constraint qualification.
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It is well known that, for any zeRn , the projection P X a ( Z ) on the set
Xa is the unique solution to the following problem:

The following lemma, characterizing some properties of the projection
operator, plays a very important role in introducing the concept of excep-
tional family for VI(X, F).

Lemma 2.1. Let xeXa and zeRn. Then, x = PXa(z) if, and only if,
there exist some scalar y >0 and two vectors A = ( A i , . . . , hm)TeRm

+ and u =
(u1 , . . . , u l)

TeR l such that

Proof. By the property of the projection operator, x = PXa (z) if, and
only if, x is the unique solution to the optimization problem (6), which can
be formulated equivalently as the following convex program:

By the aforementioned assumption on X, the Slater constraint qualification
holds for the above convex program. Hence, the Karush-Kuhn-Tucker con-
ditions completely characterize the solution of this convex program. In a
word, x = PXa(z) if, and only if, x is the Karush-Kuhn-Tucker point of
(10); namely, there exist vectors AeRm

+ and ueR1 and a scalar fi >0 such
that

Note that xeXa ; therefore, (11) through (14) are equivalent to (7) through
(9). This establishes the lemma. D

By Proposition 2.3 in Ref. 1, x* solves problem VI(X, F) if, and only
if, x* is a fixed point to the mapping
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i.e.,

The next result characterizes some property of Px( •). In fact, replacing
Xa by X in the above proof of Lemma 2.1, it is not difficult to obtain the
following result.

Lemma 2.2. Let xeX and zeRn. Then, x = Px(z) if, and only if, there
exist two vectors heRm

+ and ueR1 such that

Let z = x*-F(x* ) and x = x . By (15), an immediate consequence of
the above result is the following corollary.

Corollary 2.1. x* is a solution to the variational inequality problem
VI(X, F) if, and only if, there exist two vectors A*eRm

+ and u*eR1 such that

Similarly, xa solves VI(Xa , F) if and only if

Replacing z and x in Lemma 2.1 by xa - F(xa) and xa, we have the following
result.

Corollary 2.2. xa solves the variational inequality problem V I ( X a , F)
if, and only if, there exist two vectors AaeRm

+ and uaeR1 and a scalar n >0
such that

Motivated by the above observation, we define the concept of excep-
tional family for VI(X, F) as follows.

Definition 2.1. Let F be a mapping from X into Rn; the feasible set X
is defined by (3). We say that a set of points {xa}a->xc.X is an exceptional
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family for the variational inequality VI(X, F), if \\xa\\ -» oo as a -» oo, and
for each « there exist some positive scalar ^">0 and two vectors AaeRm

+

and uaeR1 such that

Remark 2.1. It is not difficult to see that the above concept is a gen-
eralization of that introduced by Smith (Ref. 15) and by Isac, Bulavski, and
Kalashnikov (Ref. 16). Indeed, when g(x) = -x and there exists no system
h(x) = 0, (24) and (25) reduce to

This is the concept introduced in Ref. 15 under the name of exceptional
sequence and that introduced in Ref. 16 under the name of exceptional family
of elements. It is shown (Refs. 15 and 16) that a nonlinear complementarity
problem has either a solution or an exceptional family. The following
Theorem 2.1 extends this result to general VIP by using the new notion of
exceptional family for VI(X, F). To show the result, we make use of the
following lemma, which describes a relation between the variational inequal-
ity V I ( X , F) on the unbounded set X and VI(Xa , F) on Xa cX.

Lemma 2.3. See Ref. 18. Let F be a continuous mapping from X into
Rn. Then, VI(X, F) has a solution if, and only if, there exists some a > 0
such that x aeX a is a solution to V I ( X a , F ) with ||x°|| <a.

Theorem 2.1. Suppose that F is a continuous mapping from X into
Rn. Then, the nonlinear variational inequality VI(X, F), has either a solution
or an exceptional family.

Proof. Suppose that problem VI(X, F) has no solution. We show that
VI(X, F) has an exceptional family. In fact, since VI(X, F) has no solution,
from Lemma 2.3, there exists no a>0 such that xaeXa is a solution to
VI(Xa , F) and \\xa\\ <a. Since Xa is a closed convex compact set, problem
V I ( X a , F ) has at least one solution by Theorem 3.1 in Ref. 1. Therefore,
there exists a sequence {xa}a_00 with the following property: For each a, xa

solves problem VI(Xa, F) and ||xa|| = a. We show that {xa }a->x is an excep-
tional family for VI(X, F).

Since xa solves V I (X a ,F ) , by Corollary 2.2, there exists two vectors
X*eRm

+ and uaeR1 and a scalar na>0 such that (21) and (22) hold. By



JOTA: VOL. 101, NO. 2, MAY 1999 481

Definition 2.1, it suffices to show that / / a >0 holds for all a. If ^" = 0 for
some a >0, then (21) and (22) reduce to

By Corollary 2.1, xa is a solution to the variational inequality problem
VI(X, F). This is in contradiction with our assumption at the beginning of
the proof. D

The following corollary is an immediate consequence of the above
result.

Corollary 2.3. Let F be a continuous function from X into Rn. If the
variational inequality VI(X, F) has no exceptional family, then VI(X, F)
has at least one solution.

The above corollary presents a new sufficient condition for the existence
of a solution to VI(X, F). The concept of exceptional family makes it pos-
sible for us to investigate the existence property of VI.(X, F) via studying
the nonexistence of an exceptional family for VI(X, F). From the above
results, it is of interest and important to know when VI(X, F) has no excep-
tional family. The next section is devoted to discussing this question. Our
results show that this sufficient condition is weaker than many well-known
conditions developed in the literature.

3. Conditions for Nonexistence of an Exceptional Family

Theorem 3.1. Let F be a continuous mapping from X into Rn. If there
exists some x°eX such that the set

is bounded (possibly empty), then the variational inequality problem
VI(X, F) has no exceptional family.

Proof. Since g i ( x ) , i= 1 , . . . , m and hj(x), j= 1 , . . . , l, are convex and
affine differentiable functions, the following inequalities hold:
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We now assume that problem VI(X, F) has an exceptional family
{x a} a - > 0 0<=X. We show that the set X(x°) is unbounded. By Definition 2.1,
we have that \\xa\\ -> oo, as a -»• oo, and that, for each a, there exist a scalar
//">0 and two vectors VeRm and M°er1 such that (24) and (25) hold.
Noting that g(x°) <0 and h(x°) = 0, by (28) and (25), we have

Therefore, by (24), (29), and (30), we have

Since n" >0 and \\xa\\ -> oo, it follows that there exists a scalar c0 such that,
for all a ^«0, we have

which implies that the unbounded sequence { x a } a > a 0 is contained in the set
X(x°). The proof is complete.

From the above proof, the conclusion of the above theorem remains
valid if the condition of the theorem is replaced by "the set X ( x 0 ) =
{xeX: (x -x° ) T F(x)<0} is bounded." Since all the solutions are contained
in the set X(x°), the solution set of VI(X, F) is compact in this case. By
Theorems 2.1 and 3.1, we rederived the existence theorem due to Harker
and Pang (Ref. 1, Theorem 3.3).

It is not difficult to see that Theorem 3.1 can be stated equivalently as
follows.

Corollary 3.1. Let F: X -»Rn be a continuous function. If there exists
a vector x°eX such that, for each sequence {xa}a>0<X with the property
||xa|| -» I, F satisfies the condition

then VI(X, F) has no exceptional family.



JOTA: VOL. 101, NO. 2, MAY 1999 483

Definition 3.1. We say that F: Rn -> Rn satisfies the Karamardian con-
dition on X if there exists a nonempty bounded subset D of X such that,
for every xeX\D, there is a yeD such that

The following result shows that the Karamardian condition implies the
nonexistence of an exceptional family.

Theorem 3.2. Let F be a continuous mapping from Rn -> Rn. If F
satisfies the Karamardian condition on X, then the variational inequality
VI(X, F) has no exceptional family.

Proof. Suppose that VI(X, F) has an exceptional family {xa} a _> <= X.
We show that, for every bounded set DcX, there exists a scalar a >0 such
that xa eX \D and

That is, the function F does not satisfy the Karamardian condition on X.
Let D be an arbitrary bounded subset of X. For each xa and yeD,

replacing x° by y and via the same proof of Theorem 3.1, we have

Since D is a bounded set, there exists a positive scalar /3 > 0 such that

Since {xa}a - > x is an exceptional family of VI(X, F),

Therefore, there exists some xaeX\D such that \\xa\\ >0. For this x°, (32)
implies that

The proof is complete. D

Definition 3.2. See Refs. 9, 19. A map F is said to be:

(a) pseudomonotone on the set X if, for every distinct pair x, yeX,
we have that
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(b) quasimonotone on X if, for every distinct pair x,yeX, we have
that

It should be noted that, among the monotone concepts, the quasimono-
tone property is the weakest. A pseudomonotone map is quasimonotone,
but the converse is not true; for example, when X = R, F(x) = x4 is quasi-
monotone, but not pseudomonotone. Other examples can be found in Ref.
19. Under a pseudomonotonicity assumption on F, Karamardian (Ref. 9)
developed an existence result for complementarity problems where X is a
solid closed convex cone in Rn. This result was extended to a Hilbert space
by Cottle and Yao (Ref. 23) and was stated for a variational inequality by
Harker and Pang (Ref. 1, Theorem 3.4). Furthermore, Hadjisavvas and
Schaible (Ref. 20) generalized this result to a quasimonotone variational
inequality in a Banach space. The next theorem proves that the Hadjisavvas
and Schaible condition, restricted to VI(X, F), implies the condition
"without an exceptional family." Let X* denote the dual cone of X, i.e.,

Let int( •) denote the interior of a set.

Theorem 3.3. Let F be a continuous mapping from X into Rn. Suppose
that F is quasimonotone on the feasible set X. If there exists a vector x°eX
such that F(x°)emt(X*), then problem VI(X, F) has no exceptional family.

Proof. Let

i.e., con(X) is the cone generalized by X. We denote by cl[con(X)] the closure
of the set con(X). We now show that the condition F(x°)eint(X*) supports
the following two assertions:

(Al) for all nonzero vector xecl[con(X)], we have xTF(x°)>0;
(A2) the set

is bounded.

It is easy to see that

X* = (cl[con(X)])*;
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hence,

Let

We have that

for sufficiently small ft > 0. Assume that

Then,

a contradiction. Hence, assertion (Al) holds. Now, we assume that the set
L(x°, X) is unbounded. Then, there exists a sequence {xk} <=L(x°, X) with
the property ||xk || -»oo. Without loss of generality, we suppose that
[x*/||x*||-»x. Since

we have that

From assertion (Al) and ||x|| = 1, we have

a contradiction. Hence, assertion (A2) also holds.
Since the set L(x°, X) is bounded, for each sequence {xa}a>0<=X with

the property \\x"\\ -» oo as a -» oo, there is an index a0>0 such that, for all
a>«o, we have

By the quasimonotonicity of F, we have

which implies that problem VI(X, F) has no exceptional family by using
Corollary 3.1. D
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Definition 3.3.

(Dl) A point x° is said to be strictly feasible to VI(X, F) if x°eX and
F(x°)eimt(X*).

(D2) A mapping F: X -> Rn is said to be proper at the point x°eX if
the set

is bounded.

From the proof of Theorem 3.3, it is shown that the strictly feasibility
condition implies that the set L(x°, X) is bounded; i.e., F is proper at x°.
In fact, from the end of the proof of Theorem 3.3, we have shown the next
result.

Theorem 3.4. Let F: X -> Rn be a continuous and quasimonotone func-
tion. If there exists a point x°eX such that F is proper at x°, then problem
VI(X, F) has no exceptional family.

Definition 3.4. The mapping F:X->R n is said to be weakly proper at
the point x°eX if, for each sequence {xa} <=X with the property \\xa\\ -» oo
as a -» oo, there exists some a such that

The properness condition implies the weakly properness condition, but
the converse is, in general, not true. In fact, when x°eX such that F(x°) =
0, then

therefore, F is weakly proper at x°. However, in this case, L(x°, X)=X,
which is unbounded. The following example shows that the properness con-
dition in Theorem 3.4 cannot be replaced by the weak properness condition.

Example 3.1. Consider VI(X, F) with

F is quasimonotone and continuous on X, F is weakly proper at x° = 0.
However, it is easy to show that VI(X, F) has an exceptional family {xa},
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where

We have the following result concerning pseudomonotone problems
under the weak properness assumption.

Theorem 3.5. Let F be a continuous pseudomonotone mapping from
X into Rn. If there exists a point x°eX such that F is weakly proper at x°,
then VI(X, F) has no exceptional family.

Proof. Since F is weakly proper at x°, for each sequence {xa} <=• X with
the property \\x°\\ -> oo as a -» oo, there exists some a such that \\xa\\ > \\x°\\
and

By the pseudomonotonicity of F, we have

which implies that VI(X, F) has no exceptional family by Corollary 3.1. D

While the strict feasibility condition implies the weak properness condi-
tion, it should be noted that feasibility [namely, x°eX such that F(x°)eX*]
does not. Indeed, even for a monotone mapping F, feasibility cannot assure
the existence of a solution to VI(X, F). Megiddo (Ref. 21) gave the following
example to show that this is the case.

Consider the function F: R2 -»R2 defined by

and the set X = R 2+. F is monotone on R2
+ and the set of feasible solutions

is

but the complementarity problem has no solution, since F1 (x) = 1.
Now, we point out that the above example does not satisfy the afore-

mentioned weak properness condition (35). It suffices to show that, for any
x° = (x1, x 2 ) e R 2 , there exists a sequence { x a } < R 2 such that

i.e., to show that the function (36) has no weakly proper point x0. Actually,
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Then,

Then,

Ifx01=l ,let

Hence, this example does not satisfy our weak properness condition. In fact,
the weak properness condition is also a necessary condition for a pseudo-
monotone variational inequality to possess a solution (see Corollary 3.4).

Definition 3.5. See Ref. 22. A mapping F:X->Rn is said to be:

(a) a P-function on X if

(b) a uniform P-function on X if there exists a scalar c > 0 such that

For nonlinear P-functions, VI(X, F) is possibly unsolvable. More (Ref.
10) gave an example to show that this is the case. Therefore a P-function
cannot assure the nonexistence of an exceptional family. In the next section,
among other things we show that a uniform P-function implies the nonexist-
ence of an exceptional family if some conditions are imposed on g(x) and
h(x); see Theorem 3.6.

Let || • II oo denote the max norm, i.e.,

We now introduce the concept of uniform diagonally dominant function.

Definition 3.6. F:X ->Rn is said to be a uniform diagonally dominant
function with respect to X if, for any distinct x, y in X and any index k with
\ X k - y k \ — \\x—y\\x, there exists a positive scalar c such that
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It is not difficult to show that the above concept is a generalization of
the linear map F(x) = MX, where M is a strictly diagonally dominant matrix
with positive diagonal entries (Ref. 24).

Let gi, i= 1 , . . . , m, be a convex function from R into R and let hj,j=
1 , . . . , l , be a linear function from R into R. Given the indexes ki and ji,
satisfying

for any x = (x 1 , . .., xn)TeRn, let g(x): Rn->Rm, h(x); Rn->R1 be defined
as follows

Then, it is easy to see that

is a rectangular set in Rn, that is, the Cartesian product of n intervals [ t 1 , t2]
in R, where t1 or t2 can be chosen as oo. When m = n and g(x) = —x, K is
the nonnegative orthant. Conversely, it is easy to see that each rectangular
set in Rn can be formulated in the form of (40) and (41).

Lemma 3.1. Let g: Rn->Rm and h:R1->R1be given as (40) and (41).
Then, for any Ae/?m, ueR1, zeRn , xeRn , we have

Proof. Let g's denote the derivative of gi. It is obvious that

for p = 1 , . . . , n , and

for p = 1 , . . . , n .
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Therefore,

Equation (43) can be shown by the same proof as above. D

Theorem 3.6. Let F: X - Rn be a continuous function and let X be a
rectangular set in Rn. Let one of the following conditions hold:

(Cl) F is a uniform diagonally dominant function with respect to X;
(C2) F is a uniform P-function with respect to X and 0eX.

Then, the variational inequality VI(X, F) has no exceptional family.

Proof. Since each rectangular set can be represented in the form of
(40) and (41), without loss of generality, we assume that X is given by (40)
and (41).

(Cl) Let y be a fixed vector in X. Suppose that there exists an excep-
tional family {xa}a->,« • By Definition 2.1, for each a, there are two vectors
AaeRm and u"eR1 and a scalar n">0 such that (24) and (25) hold. For
such a, by using (28) and (25), we have

for all i= 1, .. ., m, and

for all i = 1 , . . . , l. By (44), (45), and Lemma 3.1, we deduce that

Since {xa} is an infinite sequence, there exists a subsequence { x a J } a j - > c a such
that, for some fixed index k,

Noticing that F is a uniform diagonally dominant function, we have
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By using (24), (46), and (47), we have

Combining (48) and the above inequality yields

However since ||xaj || -> I, the above inequality cannot hold, and we obtain
a contradiction.

(C2) Suppose that there exists an exceptional family {x°} a - > I . Let
y-0; there is a subsequence { x a J } such that, for some fixed index k, we
have

From (38), we have

Then, we derive a contradiction by the same argument as in (C1). We do
not repeat this verification.

The theorems established above are general enough to include as special
cases nonlinear complementarity problems (NCP). Specializing the conse-
quence of Theorem 3.6 to NCP(F), we have the following corollary.

Corollary 3.2. If F is a uniform P-function or a uniform diagonally
dominant function, then NCP(F) has no exceptional family.

A function F : X - R n is said to be coercive with respect to X if there
exists some x°eX such that

Coercivity has played a very important role in the existence theory of
VI(X, F); see Refs. 1, 2, 11, and 12. It is well-known (Ref. 1, Theorem 3.3)
that VI(X, F) has a nonempty compact solution set if F is coercive with
respect to X. In what follows, we will show that the sufficient condition
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"nonexistence of an exceptional family" for VI(X, F) is weaker than the
coercivity condition. The result below can also be viewed as a generalization
of Proposition 4.7 in Ref. 15 and Proposition 4 in Ref. 16.

Theorem 3.7. If F is a continuous and coercive function with respect
to X, then there exists no exceptional family for the variational inequality
problem V I ( X , F).

Proof. Let x°eX satisfy (49). Assume that there is an exceptional
family {xa}a_>oo for problem VI(X, F). Let Aa eRm

+ and uaeR1 and the scalar
/i">0 be defined as in Definition 2.1. From the proof of Theorem 3.1, we
have that

Also,

Then, for sufficiently large a, we have

This is a contradiction, since / is coercive with respect to X.

For complementarity problems, Isac, Bulavski, and Kalashnikov (Ref.
16) gave an example to show that the condition "nonexistence of an excep-
tional family" cannot imply the coercivity condition.

Corollary 3.3. Assume that F satisfies one of the following conditions:

(Cl) F is strongly monotone over X; i.e., there is a scalar a >0 such
that

(C2) 0eX and F is strongly copositive over X; i.e., there exists some
scalar a > 0 such that

Then, VI(X, F) has no exceptional family.
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Proof. If F satisfies one of the conditions (1) and (2), then F is coercive
with respect to X. The corollary is an immediate consequence of Theorem
3.7. D

It should be noted that, while the condition "without an exceptional
family" is a very weak sufficient condition for the existence of a solution to
VI(X, F), in general, it is not necessary. Smith (Ref. 15) gave an example
to show that NCP(F) can have both a solution and an exceptional family.
We end this paper by pointing out that the condition "without an exceptional
family" is also necessary for pseudomonotone VI(X, F) to have a solution
and we prove that it is equivalent to the weak properness condition.

Theorem 3.8. Let F: X ->Rn be a continuous pseudomonotone map-
ping. Then one and only one of the following alternatives holds:

(A 1) VI(X, F) has a solution;
(A2) VI(X, F) has an exceptional family.

Proof. If (Al) holds, let x* be a solution to VI(X, F). Then,

Since F is pseudomonotone, it follows that

Let x° = x*. Then, the above relation implies that the condition of Corollary
3.1 holds; hence, VI(X, F) has no exceptional family; i.e., (A2) does not
hold.

Conversely, if (Al) does not hold, then (A2) holds through Theorem
2.1. D

The following result establishes two new equivalent conditions for a
pseudomonotone variational inequality VI(X, F) to have a solution. These
conditions are quite different from the equivalent conditions developed by
Cottle and Yao (Ref. 23), but restricted to VI(X, F).

Corollary 3.4. Let F: X -»Rn be a continuous pseudomonotone map-
ping. Then, the following three conditions are equivalent:

(C1) VI(X, F) has a solution;
(C2) There exists a point x°eX such that F is weakly proper at x°;
(C3) VI(X, F) has no exceptional family.
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Proof. Suppose that VI(X, F) has a solution, denoted by x*.
Obviously, F is weakly proper at x*. Hence, condition (C1) implies (C2).
Condition (C2), implying (C3), is the consequence of Theorem 3.5. Condi-
tion (C3), implying (C1), follows from Corollary 2.1. D

4. Conclusions

The concept of an exceptional family for VI (X, F) introduced in this
paper provides a new method for investigating the existence of a solution
to VI(X, F). The nonexistence of an exceptional family implies the existence
of a solution to VI(X, F). This new sufficient condition is shown to be
weaker than many known sufficient conditions developed in the literature.
We think that the concept of an exceptional family for VI(X, F) is a new
interesting research direction in variational inequality problems.
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