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Abstract

It is well known that a wide-neighborhood interior-point algorithm for linear programming performs much better in imple-
mentation than its small-neighborhood counterparts. In this paper, we provide a unified way to enlarge the neighborhoods of
predictor–corrector interior-point algorithms for linear programming. We prove that our methods not only enlarge the neigh-
borhoods but also retain the so-far best known iteration complexity and superlinear (or quadratic) convergence of the original
interior-point algorithms. The idea of our methods is to use the global minimizers of proximity measure functions.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Consider the canonical linear programming problem:

min
{
cTx: Ax = b, x � 0

}
,

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n and rank(A) = m. We assume that the problem has an interior-point, i.e., there
exists a point (x0, s0, y0) such that

Ax0 = b, ATy0 + s0 = c, x0 > 0, s0 > 0.

This assumption guarantees the existence of the central path on which most interior-point algorithms are based. There
are two key factors that are closely related to the practical behavior of an interior-point algorithm, i.e., the search di-
rection and the neighborhood of the central path. A large body of implementation shows that interior-point algorithms
using wide neighborhoods perform much better than those counterparts based on small neighborhoods. Thus, how to
enlarge the neighborhood of central path is an interesting and important issue for improving the efficiency of interior-
point algorithms. This is why many authors have been studying the wide-neighborhood interior-point algorithms for
optimization problems (see, e.g. [1,5,6,11,12,16,19,23,24]). A neighborhood of the central path is determined by

✩ This work was partially supported by the National Natural Science Foundation of China under Research Project No. 1067119 “Equivalent
Representation and Complexity for Continuous and Discrete Optimization Problems with Data Uncertainty”. Part of the work was done in 2002
when the author was a research staff of The Fields Institute for Research in Mathematical Sciences, Canada.

E-mail address: ybzhao@amss.ac.cn (Y.B. Zhao).
0168-9274/$30.00 © 2006 IMACS. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.apnum.2006.09.009



1034 Y.B. Zhao / Applied Numerical Mathematics 57 (2007) 1033–1049
some proximity measure function that is used to measure the distance between the point (x, s) > 0 and the central
path. The following proximity measure functions are widely used in the literature of interior-point methods for linear
programming [8,17,20,21]:
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∥∥∥∥xs

μ
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∥∥∥∥
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In general cases, the parameter μ can be calculated at (x, s), and thus we can write μ as μ(x, s). For any given
proximity measure function δ(x, s,μ(x, s)), the neighborhood of the central path can be defined as

N (τ ) = {
(x, s) > 0: δ

(
x, s,μ(x, s)

)
� τ

}
,

where τ is a given positive number. For most interior-point algorithms, the parameter μ > 0 is set to be the duality
gap xTs/n. However, we note that most proximity measure functions used in interior-point algorithms have global
minimizers with respect to μ. For any given (x, s) > 0, let μ∗(x, s) denote the global minimizer of δ(x, s,·), i.e.,

δ
(
x, s,μ∗(x, s)

)
� δ(x, s,μ) for all μ > 0.

Then the corresponding neighborhood is given by

N ∗(τ ) = {
(x, s) > 0: δ

(
x, s,μ∗(x, s)

)
� τ

}
.

Clearly, the neighborhood N ∗(τ ) is larger than N (τ ) for any μ(x, s) �= μ∗(x, s), i.e., for a given proximity measure
function δ(·), the neighborhood N ∗(τ ) is the largest neighborhood. This suggests that we may use the neighborhood
N ∗(τ ) to replace the original neighborhood N (τ ) of interior-point algorithms. The purpose of this paper is to adapt
the predictor–corrector-type interior-point algorithms to use the new neighborhood N ∗(τ ) so that the algorithms can
work in wider neighborhoods. We first give here a brief review on predictor–corrector methods. The primal and dual
predictor–corrector algorithm for linear programming was proposed by Mizuno et al. [10], also see Barnes et al. [2].
This method was later extended to complementarity problems and other optimization problems (see, e.g. [5,7,15,
16,18,19,22]). Some authors also proposed the infeasible version of this method such that the algorithm can start
from an infeasible point (see, for instance, [13,14]). A more practical predictor–corrector algorithm was proposed
by Mehrotra [9], which was based on the power series algorithm in [3]. Other power series (high-order) predictor–
corrector algorithms can be found in [4,16,18], etc. Two neighborhoods are used in predictor–corrector algorithms:
One is used in so-called predictor steps and the other is used in corrector steps. Since the original Mizuno–Todd–Ye
method is actually working in small neighborhoods, several authors tried to modify this algorithm to work in some
wider neighborhoods in order to achieve a faster convergence of the algorithm (see, for example, [5,6,11,12,15,16]).

Let μgap denote the duality gap xTs/n throughout this paper. We note that μgap = xTs/n is the global minimizer
of the proximity measure function δlog (x, s,μ) with respect to μ. Therefore, it is natural for δlog(·)-based interior-
point algorithms to use the duality gap as the updating rule for μ during the course of iteration. However, for other
proximity measure functions, μgap is not a global minimizer. For example, the global minimizer (see [11]) of the
function δΦ(x, s,μ) is

μ∗(x, s) =
√

xTs∑n
i=1(xisi)−1

.

The predictor–corrector algorithms that use δΦ(x, s,μ) as the proximity measure function have been studied by sev-
eral authors [11,15]. Especially, Peng et al. [11] has already studied how designing an interior-point algorithm by
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using the above-mentioned minimizer μ∗(x, s). In this paper, we focus our attention on the cases of 2-norm and ∞-
norm neighborhoods that were commonly used in the literature of interior-point algorithms. We note that the global
minimizer of the 2-norm proximity measure function δ2(x, s,μ) is

μ∗(x, s) = (x2)Ts2

xTs
=

∑n
i=1(xisi)

2

xTs
,

and the global minimizer (see Lemma 3.1 in this paper) of the ∞-norm proximity measure function δ∞(x, s,μ) is

μ∗(x, s) = max1�i�n xisi + min1�i�n xisi

2
.

By using the global minimizers of the proximity measure functions δ2(·) and δ∞(·), we provide in this paper
a unified method to enlarge the neighborhood of the central path, and hence we give a new design for predictor–
corrector algorithms. Also, we prove that our algorithms retain both the so-far best known iteration complexity and
the quadratic convergence of the original algorithms.

This paper is organized as follows. In Section 2, we describe the algorithm based on 2-norm neighborhood, and
prove that the algorithm retains the best known O(

√
n log(xT

0 s0/ε))-iteration complexity for small-neighborhood al-
gorithms. In Section 3, we study the case of ∞-norm neighborhood, and prove that the algorithm retains the best
known O(n log(xT

0 s0/ε))-iteration complexity for ∞-norm neighborhood algorithms. Finally, we point out that both
algorithms in the paper are quadratically convergent in the sense that the duality gap sequences converge to zero
quadratically.

We use the following notation throughout the paper. e denotes the vector with all components equal to 1. For any
positive vectors x, s ∈ Rn and a real number q , the symbols xs and xq denote the vector whose components are xisi
and x

q
i (i = 1, . . . , n), respectively. For any vector x ∈ Rn, we denote min(x) and max(x) denote the smallest and the

largest components of x, respectively, i.e., min(x) = min1�i�n xi and max(x) = max1�i�n xi .

2. Algorithms based on 2-norm neighborhoods

In this section, we consider the predictor–corrector algorithm based on the small neighborhood determined by the
2-norm proximity measure function:

δ2(x, s,μ) =
∥∥∥∥xs

μ
− e

∥∥∥∥
2
,

which was used in the original Mizuno–Todd–Ye method. As we pointed out in the last section, for a given vector
(x, s) > 0 it is easy to verify that the global minimizer of δ2(x, s,μ) with respect to μ is

μ∗(x, s) = (x2)Ts2

xTs
.

In what follows, we denote μ∗(x, s) by μ∗ for simplicity. We first give two constants τ and τ̄ in (0,1) satisfying

rτ̄ � τ < τ̄ where r := (1 + 3τ̄ )2

2(1 + τ̄ )3
. (1)

Since τ̄ ∈ (0,1), it is easy to verify that r < 1. The idea of predictor–corrector methods is very natural. Roughly
speaking, the predictor–corrector method follows the central path of linear programming by alternating predictor steps
and corrector steps. Starting from a point in certain neighborhood N (τ ) and moving along a predictor search director,
the predictor step produces a predicted point in N (τ̄ ) that is larger than N (τ ). At the predicted point, a corrector
director is calculated, and a suitable stepsize along the corrector direction yields the next iterate that is back inside
the neighborhood N (τ ). In our algorithm, the predictor search direction is the same as the one in Mizuno–Todd–Ye
method [10], i.e., the solution to the following system:

A�x = 0,

AT�y + �s = 0,

s�x + x�s = −xs. (2)
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We denote by

x(θ) = x + θ�x, s(θ) = s + θ�s.

The steplength θ∗ is determined by the following rule

θ∗ = max
{
t ∈ (0,1]: (

x(θ), s(θ)
)
> 0, δ2

(
x(θ), s(θ),μ∗(θ)

)
� τ̄ , ∀θ ∈ (0, t]}, (3)

where

μ∗(θ) := μ∗
(
x(θ), s(θ)

) = [x(θ)2]Ts(θ)2

x(θ)Ts(θ)
.

Different from traditional methods, our corrector search direction is the solution to the system

A�x = 0,

AT�y + �s = 0,

s�x + x�s = xs − x2s2

μ∗
. (4)

A characteristic of system (4) is that the duality gap remains invariant along the direction (�x,�s). Actually, since
�xT�s = 0, we have

(x + θ�x)T(s + θ�s) = xTs + θ
(
xT�s + sT�x

) + θ2�xT�s

= xTs + θ
(
xT�s + sT�x

)
= xTs + θ

(
xTs − (x2)Ts2

μ∗

)
= xTs.

The last equality above follows from the fact μ∗ = (x2)Ts2/xTs. We now describe the algorithm as follows.

Algorithm 2.1. Given two positive numbers τ and τ̄ in (0,1) satisfying (1), and an initial feasible point (x0, s0) > 0

such that δ2(x
0, s0,μ0∗) � τ where μ0∗ = ((x0)2)T(s0)2

(s0)Ts0 . Set k := 0, and do the following steps:

Step 1 (Predictor). Solve system (2) with (x, s) := (xk, sk) for the search direction (�xk,�sk). Compute the
steplength θk∗ according to (3), and set(

x̄k, s̄k
) = (

xk + θk∗�xk, sk + θk∗�sk
)
, and μ̄k∗ = [(x̄k)2]T(s̄k)2

(x̄k)Ts̄k
.

Step 2 (Corrector). Solve system (4) with (x, s,μ∗) = (x̄k, s̄k, μ̄k∗) for the corrector direction (�x̄k,�s̄k). Set(
xk+1, sk+1) = (

x̄k + αk�x̄k, s̄k + αk�s̄k
)
,

where

αk =
min(x̄k s̄k)

(
1 −

√
1 − 2(1 − r)

μ̄k∗ max(x̄k s̄k)

min(x̄k s̄k)2

)
max(x̄k s̄k)

.

Set k := k + 1. Repeat the above steps until certain stopping criterion, for instance μk
gap = (xk)Tsk/n � ε, is satisfied.

At each step if (xk, sk) > 0, the positivity of (x̄k, s̄k) follows directly from the choice of θk∗ . Later, we will see that
the positivity of (xk+1, sk+1) follows from the choice of αk (see the proof of Theorem 2.1). Thus, Algorithm 2.1 is

well-defined. We now aim at proving that the algorithm has an O(
√

n log (x0)Ts0

ε
)-iteration complexity. First, we have

several technical results.
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Lemma 2.1. [10] Let (x, s) > 0 be given. For any given u ∈ Rn, if (�̃x, �̃s) is the solution to the system

A�̃x = 0,

AT�̃y + �̃s = 0,

s�̃x + x�̃s = u,

then (�̃x, �̃s) satisfies the following inequalities∑
i∈I+

�̃xi�̃si =
∑
i∈I−

|�̃xi�̃si | � 1

4

∥∥(xs)−1/2u
∥∥2

2,

where I+ = {i: �̃xi�̃si > 0} and I− = {i: �̃xi�̃si < 0}. Hence, ‖�̃x�̃s‖∞ � 1
4‖(xs)−1/2u‖2

2.

For the sake of convenience, we suppress the iteration index k and denote (xk, sk), (x̄k, s̄k) by (x, s) and (x̄, s̄), re-
spectively, if there is no confusion arising. Similarly, denote (�xk,�sk) and (�x̄k,�s̄k) by (�x,�s) and (�x̄,�s̄),
respectively. We also denote by p = xs

μ∗ and w = �x�s
μ∗ .

Consider the interval [0, η̂) where η̂ = minwi<0
pi

|wi | . Clearly, there exists a unique θ̂ ∈ (0,1) such that the transfor-

mation η = θ2/(1 − θ) is a bijection from [0, θ̂ ) to [0, η̂). For any given (x, s) > 0, since μ∗ = (x2)Ts2/xTs, it is easy
to verify that[

δ2(x, s,μ∗)
]2 = n − xTs

μ∗
= n − [xTs]2

(x2)Ts2
, (5)

and
n∑

i=1

pi =
n∑

i=1

p2
i , (6)

where pi = xisi/μ∗ for i = 1, . . . , n. We recall that(
x(θ), s(θ)

) = (x + θ�x, s + θ�s) and μ∗(θ) = (x(θ)2)Ts(θ)2

x(θ)Ts(θ)
.

From system (2), it is evident that

x(θ)Ts(θ) = (1 − θ)xTs and xi(θ)si(θ) = (1 − θ)xisi + θ2�xi�si. (7)

We now prove the next result.

Lemma 2.2. Let η = θ2/(1 − θ). Then for any η ∈ [0, η̂), we have[
δ2

(
x(θ), s(θ),μ∗(θ)

)]2 − [
δ2(x, s,μ∗)

]2 � f (η)

where

f (η) = 1

2
η
(
1 + η‖w‖∞

) n∑
i=1

1

(pi + ηwi)2
.

Proof. By (5), (6) and (7), we have[
δ2

(
x(θ), s(θ),μ∗(θ)

)]2 − [
δ2(x, s,μ∗)

]2 =
(

n − x(θ)Ts(θ)

μ∗(θ)

)
−

(
n − xTs

μ∗

)
= xTs

μ∗
− [x(θ)Ts(θ)]2

(x(θ)2)Ts(θ)2

= xTs − [(1 − θ)xTs]2∑n 2 2
μ∗ i=1[(1 − θ)xisi + θ �xi�si]
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= xTs

μ∗
− (xTs)2∑n

i=1(xisi + η�xi�si)2

=
n∑

i=1

pi

(
1 −

∑n
i=1 pi∑n

i=1(pi + ηwi)2

)

= (
∑n

i=1 pi)
∑n

i=1(2ηpiwi + η2w2
i )∑n

i=1(pi + ηwi)2
. (8)

Since xi�si + si�xi = −xisi for all i = 1, . . . , n, we have

x2
i (�si)

2 + s2
i (�xi)

2 + 2xisi�xi�si = x2
i s2

i

for all i = 1, . . . , n. Thus, 4xisi�xi�si � x2
i s2

i which implies that
n∑

i=1

xisi�xi�si � 1

4

(
x2)T

s2.

Note that equality (5) implies that xTs/μ∗ � n, i.e.,
∑n

i=1 pi � n. Dividing both sides of the inequality above by μ2∗,
we have

n∑
i=1

piwi � (x2)Ts2

4μ2∗
= xTs

4μ∗
� n

4
. (9)

Since �xT�s = 0, we have
∑n

i=1 wi = 0, which implies that∑
i∈I+

wi =
∑
i∈I−

|wi |,

where I+ = {i: wi > 0} and I− = {i: wi < 0}. Setting u = −xs in Lemma 2.1 and by using (9), we can easily see that∑
i∈I+

wi � xTs

4μ∗
� n

4
and ‖w‖∞ � xTs

4μ∗
� n

4
. (10)

Therefore, by (9) and (10), we have
n∑

i=1

(
2piwi + ηw2

i

)
� 2

n∑
i=1

piwi + η‖w‖∞
n∑

i=1

|wi |

� n

2
+ 2η‖w‖∞

n∑
i∈I+

wi

� n

2

(
1 + η‖w‖∞

)
. (11)

By harmonic inequality, we have
n∑

i=1

(pi + ηwi)
2

n∑
i=1

1

(pi + ηwi)2
� n2. (12)

Thus, by (8), (11) and (12), we have[
δ2

(
x(θ), s(θ),μ∗(θ)

)]2 − [
δ(x, s,μ∗)

]2 �
η(

∑n
i=1 pi)[n

2 (1 + η‖w‖∞)]
n2

n∑
i=1

1

(pi + ηwi)2

� ηn2(1 + η‖w‖∞)

2n2

n∑
i=1

1

(pi + ηwi)2

= 1

2
η
(
1 + η‖w‖∞

) n∑
i=1

1

(pi + ηwi)2

=: f (η).
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The second inequality above follows from the fact
∑n

i=1 pi � n. �
Let θ∗ be the steplength given by (3), and let η∗ = (θ∗)2

1−θ∗ . Therefore,

θ∗ = 2η∗
η∗ + √

(η∗)2 + 4η∗
. (13)

To prove the iteration complexity of Algorithm 2.1, we need an estimate of the lower bound of θ∗. From (13), it is
sufficient to estimate the lower bound of η∗ since the function ζ(t) = 2t

t+
√

t2+4t
is an increasing function in (0,∞).

Lemma 2.3. Let θ∗ be the steplength in predictor step, determined by (3), and let η∗ = (θ∗)2

1−θ∗ . Then we have

η∗ � min

{
β min(p)

‖w‖∞
,

2(1 − β)2 min(p)2(τ̄ 2 − τ 2)

n(1 + β min(p))

}
,

where β ∈ (0,1) is a given number independent of n, for instance, β = 0.9.

Proof. We first note that f (η) satisfies the properties: f (0) = 0 and f (η) → ∞ as η → η̂. Thus, there exists an η̃

such that

f (η̃) = τ̄ 2 − τ 2 > 0.

Let η̃ be the smallest solution to the above equation. If η̃ � β min(p)
‖w‖∞ , then we have

τ̄ 2 − τ 2 = f (η̃) = 1

2
η̃
(
1 + η̃‖w‖∞

) n∑
i=1

1

(pi + η̃wi)2

� 1

2
η̃
(
1 + β min(p)

) n∑
i=1

1

(min(p) − η̃‖w‖∞)2

� 1

2
η̃
(
1 + β min(p)

) n

(1 − β)2 min(p)2
,

i.e.,

η̃ � 2(1 − β)2 min(p)2(τ̄ 2 − τ 2)

n(1 + β min(p))
.

Since either η̃ � β min(p)
‖w‖∞ or η̃ � β min(p)

‖w‖∞ , we conclude that

η̃ � min

{
β min(p)

‖w‖∞
,

2(1 − β)2 min(p)2(τ̄ 2 − τ 2)

n(1 + β min(p))

}
.

To prove the desired result, it suffices to show that η∗ � η̃. Actually, since f (0) = 0 and since η̃ is the smallest solution
to the equation f (t) = τ̄ 2 − τ 2 > 0 in the interval (0, η̂), we deduce that

f (η) � τ̄ 2 − τ 2 for all η ∈ [0, η̃].
Thus, for any θ ∈ [0, θ̃ ] where θ̃ satisfies that (θ̃ )2/(1 − θ̃ ) = η̃, it follows from Lemma 2.2 that[

δ2
(
x(θ), s(θ),μ∗(θ)

)]2 � τ̄ 2 + [
δ2(x, s,μ∗)

]2 − τ 2 � τ̄ 2.

The last inequality follows from that δ2(x, s,μ∗) � τ . Thus, for any θ ∈ [0, θ̃ ], we have

δ2(x(θ), s(θ),μ∗(θ)) � τ̄ < 1.

which also implies that (x(θ), s(θ)) > 0. By definition of θ∗, we conclude that θ∗ � θ̃ , and hence η∗ � η̃. The proof is
complete. �
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We are ready to prove the following result.

Theorem 2.1. Let (xk, sk,μk∗) be generated by Algorithm 2.1. Then the following properties hold.

(i) δ2(x
k, sk,μk∗) � τ for all k � 0; δ2(x̄

k, s̄k, μ̄k∗) � τ̄ for all k � 0.
(ii) The duality gap μk+1

gap = (1 − θk∗ )μk
gap for all k � 0.

(iii) There exists a constant σ ∈ (0,1) independent of n such that θk∗ � σ√
n

for all k � 0, which implies that Algo-

rithm 2.1 has an O(
√

n log (x0)Ts0

ε
)-iteration complexity.

Proof. Result (i) can be proved by deduction. We assume that δ2(x
k, sk,μk∗) � τ . By the choice of θk∗ , the inequal-

ity δ2(x̄
k, s̄k, μ̄k∗) � τ̄ holds trivially. It suffices to prove that δ2(x

k+1, sk+1,μk+1∗ ) � τ . Note that for any constant
τ̄ ∈ (0,1) we have

r := (1 + 3τ̄ )2

2(1 + τ̄ )3
< 1.

Since δ2(x̄
k, s̄k, μ̄k∗) � τ̄ , we have (1 − τ̄ )μ̄k∗ � x̄k

i s̄k
i � (1 + τ̄ )μ̄k∗. Thus,

[min(x̄k s̄k)]2

2 max(x̄k s̄k)μ̄k∗

(
1 −

(
τ̄

1 + τ̄

)2)
� (1 − τ̄ )2

2(1 + τ̄ )

(
1 −

(
τ̄

1 + τ̄

)2)
= (1 + 2τ̄ )(1 − τ̄ )2

2(1 + τ̄ )3

= 1 − r.

The above inequality can be written as

(1 + τ̄ )

(
1 −

√
1 − 2(1 − r)

μ̄k∗ max(x̄k s̄k)

[min(x̄k s̄k)]2

)
� 1.

Therefore,

αk =
min(x̄k s̄k)

(
1 −

√
1 − 2(1 − r)

μ̄k∗ max(x̄k s̄k)

[min(x̄k s̄k)]2

)
max(x̄k s̄k)

�
μ̄k∗(1 + τ̄ )

(
1 −

√
1 − 2(1 − r)

μ̄k∗ max(x̄k s̄k)

[min(x̄k s̄k)]2

)
max(x̄k s̄k)

� μ̄k∗
max(x̄k s̄k)

.

Noting that for any 0 < t � μ̄k∗
max(x̄k s̄k)

,∥∥∥∥1 − t
x̄k s̄k

μ̄k∗

∥∥∥∥∞
= max

1�i�n

∣∣∣∣1 − t
x̄k
i s̄k

i

μ̄k∗

∣∣∣∣ = 1 − t
min(x̄k s̄k)

μ̄k∗
.

In particular, setting t = αk , we have∥∥∥∥1 − αk x̄ks̄k

μ̄k∗

∥∥∥∥∞
= 1 − αk min(x̄k s̄k)

μ̄k∗
. (14)

On the other hand, by Lemma 2.1, we have
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∥∥w̄k
∥∥

2 � 1

4μ̄k∗

∥∥∥∥(
x̄k s̄k

)− 1
2

(
x̄k s̄k − (x̄k)2(s̄k)2

μ̄k∗

)∥∥∥∥2

2

� 1

2μ̄k∗

∥∥∥∥(
x̄k s̄k

) 1
2

(
e − x̄k s̄k

μ̄k∗

)∥∥∥∥2

2

� max(x̄k s̄k)

2μ̄k∗

∥∥∥∥e − x̄k s̄k

μ̄k∗

∥∥∥∥2

2
. (15)

We also note that αk is the solution to the following quadratic equation with respect to t :

1 − t
min(x̄k s̄k)

μ̄k∗
+ t2 max(x̄k s̄k)

2μ̄k∗
= r.

Therefore, by (14) and (15) and noting that ‖x̄k s̄k/μ̄k∗ − e‖ � τ̄ , we have∥∥∥∥xk+1sk+1

μ̄k∗
− e

∥∥∥∥
2
=

∥∥∥∥ x̄k s̄k + αk(x̄k s̄k − (x̄k)2(s̄k)2/μ̄∗) + (αk)2�x̄k�s̄k

μ̄k∗
− e

∥∥∥∥
2

=
∥∥∥∥(

x̄k s̄k

μ̄k∗
− e

)(
e − αk x̄ks̄k

μ̄k∗

)
+ (

αk
)2

w̄k

∥∥∥∥
2

�
∥∥∥∥(

x̄k s̄k

μ̄k∗
− e

)(
e − αk x̄ks̄k

μ̄k∗

)∥∥∥∥
2
+ (

αk
)2∥∥w̄k

∥∥
2

�
∥∥∥∥e − αk x̄ks̄k

μ̄k∗

∥∥∥∥∞

∥∥∥∥ x̄k s̄k

μ̄k∗
− e

∥∥∥∥
2
+ (

αk
)2∥∥w̄k

∥∥
2

=
(

1 − αk min(x̄k s̄k)

μ̄k∗

)∥∥∥∥ x̄k s̄k

μ̄k∗
− e

∥∥∥∥
2
+ (

αk
)2∥∥w̄k

∥∥
2

�
[

1 − αk min(x̄k s̄k)

μ̄k∗
+ (αk)2 max(x̄k s̄k)

2μ̄k∗

∥∥∥∥ x̄k s̄k

μ̄k∗
− e

∥∥∥∥
2

]∥∥∥∥ x̄k s̄k

μ̄k∗
− e

∥∥∥∥
2

�
[

1 − αk min(x̄k s̄k)

μ̄k∗
+ (αk)2 max(x̄k s̄k)

2μ̄k∗

]∥∥∥∥ x̄k s̄k

μ̄k∗
− e

∥∥∥∥
2

� rτ̄

� τ.

Since τ < 1, the inequality above also implies that (xk+1, sk+1) > 0. Since μk+1∗ is the global minimizer of the
function δ2(x

k+1, sk+1,μ) with respect to μ > 0, we conclude that

δ2
(
xk+1, sk+1,μk+1∗

) =
∥∥∥∥xk+1sk+1

μk+1∗
− e

∥∥∥∥
2
�

∥∥∥∥xk+1sk+1

μ̄k∗
− e

∥∥∥∥
2
� τ.

Result (i) is proved.
Note that μ̄k

gap = (1 − θk∗ )μk
gap and(

xk+1)T
sk+1 = (

x̄k + αk�x̄k
)T(

s̄k + αk�s̄k
)

= (
x̄k

)T
s̄k + αkeT

(
x̄k s̄k − (x̄k)2(s̄k)2

μ̄k∗

)
+ (

αk
)2(

�x̄k
)T

�s̄k

= (
x̄k

)T
s̄k.

It follows that

μk+1
gap = μ̄k

gap = (
1 − θk∗

)
μk

gap.

Result (ii) follows.
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We now prove (iii). Since
∑n

i=1 pi � n and δ2(x, s,μ∗) � τ , it follows that 1 � min(p) � 1−τ . Note that ‖w‖∞ �
n/4. From Lemma 2.3, we conclude that ηk∗ � ρ

n
, where

ρ = min

{
4β(1 − τ),

2(1 − β)2(1 − τ)2(τ̄ 2 − τ 2)

1 + β

}
.

Since the function ξ(t) := 2t

t+
√

t2+4t
is an increasing function on (0,∞), we obtain

θk∗ = 2ηk∗
ηk∗ + √

(ηk∗)2 + 4ηk∗
� 2(ρ/n)

ρ/n + √
(ρ/n)2 + 4ρ/n

� σ√
n

where 0 < σ = 2
1+√

1+4/ρ
< 1. As a result, the iteration complexity of the algorithm is O(

√
n log (x0)Ts0

ε
). �

3. Algorithms based on ∞-norm neighborhoods

Since the original Mizuno–Todd–Ye method is actually working in small neighborhoods of the central path, many
investigators tried to adapt this method to work in some wider neighborhoods such as the ∞-norm neighborhood in
order to achieve a faster convergence of the algorithms. See, for example, [5,11,12,15,18]. In this section, we consider
the predictor–corrector algorithm working in ∞-norm neighborhoods. We discuss how to further enlarge the ∞-norm
neighborhood by using the global minimizer of the ∞-norm proximity measure function, and prove that the proposed
algorithm retains the best known iteration complexity for ∞-norm-neighborhood interior-point algorithms. First, we
have the following result.

Lemma 3.1. For any given (x, s) > 0, the unique global minimizer of the function δ∞(x, s,μ) = ‖ xs
μ

− e‖∞ with
respect to μ is given by

μ∞ = max(xs) + min(xs)

2
,

and the least value of δ∞(x, s,·) is given by

δ∞(x, s,μ∞) = max(xs) − min(xs)

max(xs) + min(xs)
.

Proof. For any given vector (x, s) > 0 and scalar t > 0, it is easy to verify that

δ∞(x, s, t) = max
1�i�n

∣∣∣∣xisi

t
− 1

∣∣∣∣
= max

{∣∣∣∣max(xs)

t
− 1

∣∣∣∣, ∣∣∣∣min(xs)

t
− 1

∣∣∣∣}
= max

{
max(xs)

t
− 1, 1 − min(xs)

t

}
.

When 0 < t � max(xs)+min(xs)
2 , it follows that

δ∞(x, s, t) = max(xs)

t
− 1,

which is decreasing in the interval (0,
max(xs)+min(xs)

2 ]. When t � max(xs)+min(xs)
2 , it follows that

δ∞(x, s, t) = 1 − min(xs)

t
,

which is increasing in the interval [max(xs)+min(xs)
2 ,∞). Thus for any given (x, s) > 0, the global minimizer of δ(x, s,·)

in (0,∞) is t∗ = max(xs)+min(xs)
2 , at which the least value of the proximity measure function is given by

δ∞(x, s, t∗) = max(xs)

t∗
− 1 = 1 − min(xs)

t∗
= max(xs) − min(xs)

max(xs) + min(xs)
.

The proof is complete. �
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In this section, all notation is similar to those in Section 2 except for μ∗ being replaced by μ∞. For instance, we
still use θ∗ to denote the stepsize in predictor steps, and (�x,�s) is the search direction in the predictor step. θ∗ is
given by

θ∗ = max
{
t ∈ (0,1]: x(θ) > 0, s(θ) > 0, δ∞

(
x(θ), s(θ),μ∞(θ)

)
� τ̄ , ∀θ ∈ (0, t]}, (16)

where x(θ) = x + θ�x, s(θ) = s + θ�s and

μ∞(θ) = max(x(θ)s(θ)) + min(x(θ)s(θ))

2
.

Denote by

θmax = max
{
t ∈ (0,1]: x(θ) > 0, s(θ) > 0, ∀θ ∈ (0, t]}. (17)

Clearly, θ∗ � θmax. We now specify the algorithm as follows.

Algorithm 3.1. Given a constant τ̄ such that 0 < τ̄ � 1
2 , and given τ such that τ̄ − 1

n
(1 − τ̄ ) = τ < τ̄ , and given an

initial feasible point (x0, s0) > 0 such that δ∞(x0, s0,μ0∞) � τ where μ0∞ = max(x0s0)+min(x0s0)
2 . Set k := 0, and do

the following steps:
Step 1 (Predictor). Solve system (2) with (x, s) := (xk, sk) for the search direction (�xk,�sk). Compute the

damping parameter θk∗ according to (16), and set(
x̄k, s̄k

) = (
xk + θk∗�xk, sk + θk∗�sk

)
, μ̄k∞ = max(x̄k s̄k) + min(x̄k s̄k)

2
.

Step 2 (Corrector). Solve the following system for the corrector direction (�x̄k,�s̄k):

A�x̄k = 0,

AT�ȳk + �s̄k = 0,

s̄k�x̄k + x̄k�s̄k = μ̄k∞e − x̄k s̄k.

Set (xk+1, sk+1) = (x̄k + αk�x̄k, s̄k + αk�s̄k), where

αk = 2(τ̄ − τ)

n(1 + √
1 − (τ̄ − τ)nμ̄k∞/min(x̄k s̄k))

.

Set k := k + 1. Repeat the above steps until certain stopping criterion, for instance μk
gap � ε, is satisfied.

Later, we will see that the steplength αk is well-defined. We now start to analyze the algorithm and prove that the

algorithm has an O(n log (x0)Ts0)
ε

)-iteration complexity. For simplicity, we suppress the iteration index k when there
is no confusion arising.

Lemma 3.2. Let (�x,�s) be the predictor search direction. Let θmax be defined as (17) and

η̂ = min
�xi�si<0

xisi

|�xi�si | = min
wi<0

pi

|wi | ,

where p := xs
μ∞ and w := �x�s

μ∞ . If θmax < 1, then η̂ � ηmax := (θmax)
2/(1 − θmax).

Proof. By definition of θmax, it follows that

θmax = min

{
min

�xi<0

xi

|�xi | , min
�si<0

si

|�si |
}
.

Thus, there exists some i0 such that either xi0 + θmax�xi0 = 0 or si0 + θmax�si0 = 0. Hence,

0 = (xi + θmax�xi )(si + θmax�si ) = (1 − θmax)xi si + (θmax)
2�xi �si . (18)
0 0 0 0 0 0 0 0
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Since θmax < 1 and xi0si0 > 0, equality (18) implies that �xi0�si0 < 0. Dividing both sides of (18) by 1 − θmax, we
have

xi0si0 + ηmax�xi0�si0 = 0,

where ηmax = (θmax)
2/(1 − θmax). By definition of η̂, we conclude that ηmax � η̂. �

We now prove that η∗ = (θ∗)2/(1 − θ∗) has a lower bound.

Lemma 3.3. Let η∗ = (θ∗)2/(1 − θ∗), where θ∗ is the steplength in the predictor step. Then

η∗ � min

{
4(1 − τ)0.9

1 + τ
,

4(τ̄ − τ)

1 + τ

}
1

n
.

Proof. Noting that the predictor step starts from the point (x, s) that satisfies δ∞(x, s,μ∞) � τ . There are only two
cases.

Case 1. δ∞(x(θ), s(θ),μ∞(θ)) − δ∞(x, s,μ∞) < τ̄ − τ for all 0 < θ < θmax. In this case, by definition of θ∗, we
have that θ∗ = θmax. There are only two sub-cases.

Sub-case 1. θmax = 1. For this case, η = θ2/(1 − θ) → ∞ as θ → θmax = 1. Thus,

η∗ > 0.9 min(p)/‖w‖∞ (19)

holds trivially, since η∗ = ∞ in this case.
Sub-case 2. θmax < 1. Since θ∗ = θmax < 1, it follows that η∗ = ηmax := (θmax)

2/(1 − θmax). By Lemma 3.2, we
have ηmax � η̂ � 0.9 min(p)/‖w‖∞. Therefore, for this sub-case, inequality (19) remains valid.

Case 2. There exists a point θ̃ ∈ (0, θmax) such that

δ∞
(
x(θ̃), s(θ̃ ),μ∞(θ̃)

) − δ(x, s,μ∞) � τ̄ − τ > 0.

Since δ∞(x(0), s(0),μ∞(0)) − δ(x, s,μ∞) = 0, by continuity, there must exist a point θ ′ ∈ (0, θmax) such that

δ∞
(
x(θ ′), s(θ ′),μ∞(θ ′)

) − δ(x, s,μ∞) = τ̄ − τ.

Let θ ′ be the smallest solution to the above equation. Let η′ = (θ ′)2/(1 − θ ′). We now prove that η′ is bounded from
below. Since either η′ � 0.9 min(p)/‖w‖∞ or η′ � 0.9 min(p)/‖w‖∞, it is sufficient to prove that η′ has a lower
bound if η′ � 0.9 min(p)/‖w‖∞. We first note that

max(xs + η�x�s) � max(xs) + η‖�x�s‖∞, (20)

and that for all η � 0.9 min(p)/‖w‖∞ we have

min(xs + η�x�s) � min(xs) − η‖�x�s‖∞ > 0. (21)

It is easy to see that for any given number c > 0, the function ϕ(t) = t−c
t+c

is increasing with respect to t , and the
function χ(t) = c−t

c+t
is decreasing with respect to t . Thus, by (20), (21) and Lemma 3.1, for any η � 0.9 min(p)/‖w‖∞

we have

δ∞
(
x(θ), s(θ),μ∞(θ)

) = max(x(θ)s(θ)) − min(x(θ)s(θ))

max(x(θ)s(θ)) + min(x(θ)s(θ))

= max((1 − θ)xs + θ2�x�s) − min((1 − θ)xs + θ2�x�s)

max((1 − θ)xs + θ2�x�s) + min((1 − θ)xs + θ2�x�s)

= max(xs + η�x�s) − min(xs + η�x�s)

max(xs + η�x�s) + min(xs + η�x�s)

� max(xs) + η‖�x�s‖∞ − (min(xs + η�x�s)

max(xs) + η‖�x�s‖∞ + (min(xs + η�x�s)

� max(xs) + η‖�x�s‖∞ − (min(xs) − η‖�x�s‖∞)

max(xs) + η‖�x�s‖∞ + (min(xs) − η‖�x�s‖∞)

= max(xs) − min(xs)

max(xs) + min(xs)
+ 2η‖�x�s‖∞

max(xs) + min(xs)

= δ∞(x, s,μ∞) + η‖w‖∞ (22)
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where w = �x�s/μ∞. The first inequality above follows from (20) and the increasing property of ϕ(t), and the
second inequality follows from (21) and decreasing property of χ(t). The last equality above follows from the fact

max(xs) + min(xs)

2
= μ∞.

Since δ∞(x, s,μ∞) � τ , we have 1 − τ � pi = xisi/μ∞ � 1 + τ . Thus, by Lemma 2.1, we have

‖w‖∞ � 1

4μ∞
∥∥(xs)−1/2xs

∥∥2
2 = xTs

4μ∞
� n(1 + τ)

4
. (23)

Noting that (22) holds for any η � 0.9 min(p)/‖w‖∞. Thus, if η′ � 0.9 min(p)/‖w‖∞, from (22) and (23), it follows
that

η′ � (δ∞(x(θ ′), s(θ ′),μ∞(θ ′) − δ∞(x, s,μ∞))

‖w‖∞
� 4(τ̄ − τ)

n(1 + τ)
.

Therefore, we have

η′ � min

{
0.9 min(p)

‖w‖∞
,

4(τ̄ − τ)

n(1 + τ)

}
.

Notice that

δ∞
(
x(θ ′), s(θ ′),μ∞(θ ′)

)
� τ̄ + δ(x, s,μ∞) − τ � τ̄ ,

which also implies that (x(θ ′), s(θ ′)) > 0. By definition of θ∗, we conclude that θ ′ � θ∗. This in turn implies that
η∗ � η′. Therefore, both cases 1 and 2 imply that

η∗ � min

{
0.9 min(p)

‖w‖∞
,

4(τ̄ − τ)

n(1 + τ)

}
� min

{
4(1 − τ)0.9

1 + τ
,

4(τ̄ − τ)

1 + τ

}
1

n
.

The last inequality follows from (23) and 1 + τ � min(p) � 1 − τ . �
In what follows, we consider only the case n � 2.

Lemma 3.4. Suppose that n � 2. Let τ̄ be given as in Algorithm 3.1. There exists a constant 0.25 � γ � 1 − (1+τ̄ )τ̄
2(1−τ̄ )

independent of n such that

(1 − θ∗)
(

1 − α + α
μ̄∞
μ̄gap

)
� 1 − γ θ∗,

where θ∗ and α are the steplength in predictor and corrector steps in Algorithm 3.1, respectively.

Proof. By choice of τ̄ and τ , we have

τ̄ − τ <
1 − τ̄

n
� min(x̄s̄)

nμ̄∞
,

i.e.,

1 � (τ̄ − τ)nμ̄∞
min(x̄s̄)

.

This implies that the steplength α used in the corrector step is well-defined. First we note that

α = 2(τ̄ − τ)

n(1 + √
1 − (τ̄ − τ)nμ̄∞/min(x̄k s̄k))

� 2(τ̄ − τ)

n
.

On the other hand, since n � 2 and τ̄ − 1−τ̄
n

= τ < τ̄ < 1, it is easy to see that 0.9(1 − τ) � τ̄ − τ . As a result, by
Lemma 3.3 we have

η∗ � 4(τ̄ − τ)
.

n(1 + τ)
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Since 0 < τ̄ � 1
2 , we have

4

3
� 2(1 − τ̄ )

(1 + τ̄ )τ̄
< ∞.

Therefore, there exists a constant 0.25 � γ � 1 − (1+τ̄ )τ̄
2(1−τ̄ )

such that

2(1 − τ̄ )(1 − γ )

(1 + τ̄ )τ̄
� 1.

Since τ < τ̄ , it follows that

2(1 − τ̄ )(1 − γ )

(1 + τ)τ̄
> 1.

Thus, we have

α <
2(τ̄ − τ)

n

2(1 − τ̄ )(1 − γ )

(1 + τ)τ̄
� η∗(1 − τ̄ )(1 − γ )

τ̄

= θ2∗ (1 − τ̄ )(1 − γ )

(1 − θ∗)τ̄
� θ∗(1 − τ̄ )(1 − γ )

(1 − θ∗)τ̄
,

i.e.,

(1 − θ∗)
ατ̄

1 − τ̄
� θ∗(1 − γ ).

Adding both sides of the above inequality by 1 − θ∗ yields

(1 − θ∗)
(

1 + ατ̄

1 − τ̄

)
� 1 − γ θ∗.

Since ‖x̄s̄/μ̄∞ − e‖∞ � τ̄ , which implies that 1 − τ̄ � x̄i s̄i/μ̄∞ � 1 + τ̄ , we have

μ̄gap

μ̄∞
= x̄Ts̄

nμ̄∞
� min(x̄s̄)

μ̄∞
� 1 − τ̄ ,

i.e., μ̄∞/μ̄gap � 1/(1 − τ̄ ). Therefore, we have

(1 − θ∗)
(

1 − α + α
μ̄∞
μ̄gap

)
� (1 − θ∗)

(
1 − α + α

1 − τ̄

)
= (1 − θ∗)

(
1 + ατ̄

1 − τ̄

)
� 1 − γ θ∗.

The proof is complete. �
We now prove the main result in this section.

Theorem 3.1. Suppose that n � 2. Let τ̄ and τ be given as in Algorithm 3.1, and let (xk, sk,μk∞) and (x̄k, s̄k, μ̄
k∞) be

generated by Algorithm 3.1. Then the following properties hold.

(i) δ∞(xk, sk,μk∞) � τ and δ∞(x̄k, s̄k, μ̄k∞) � τ̄ for all k.
(ii) μk+1

gap � (1 − γ θk∗ )μk
gap for all k, where γ is given as in Lemma 3.4.

(iii) There exists a constant σ ∈ (0,1) independent of n such that θk∗ � σ
n

, and hence the algorithm has an

O(n log (x0)Ts0)
ε

)-iteration complexity.

Proof. (i) can be proved by deduction. It is sufficient to show that if δ∞(xk, sk,μk∞) � τ , then δ∞(x̄k, s̄k, μ̄k∞) �
τ̄ and δ∞(xk+1, sk+1,μk+1∞ ) � τ . We now assume that δ∞(xk, sk,μk∞) � τ . The fact δ∞(x̄k, s̄k, μ̄k∞) � τ̄ follows
immediately from the choice of the steplength θk∗ . Since τ̄ < 1, this also implies that (x̄k, s̄k) is positive. We now
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prove that the next iterate (xk+1, sk+1) is back inside the original neighborhood, i.e., δ∞(xk+1, sk+1,μk+1∞ ) � τ . Note
that ∥∥∥∥�x̄k�s̄k

μ̄k∞

∥∥∥∥∞
� 1

4μ̄k∞

∥∥(x̄s̄)−1/2(μ̄k∞e − x̄k s̄k
)∥∥2

2

� μ̄k∞
4

∥∥(x̄s̄)−1/2
∥∥2

2

∥∥∥∥e − x̄k s̄k

μ̄k∞

∥∥∥∥2

∞

� μ̄k∞
4

n

min(x̄k s̄k)

∥∥∥∥e − x̄k s̄k

μ̄k∞

∥∥∥∥2

∞
.

Therefore,∥∥∥∥xk+1sk+1

μ̄k∞
− e

∥∥∥∥∞
=

∥∥∥∥ x̄k s̄k + αk(μ̄k∞e − x̄k s̄k) + (αk)2�x̄k�s̄k

μ̄k∞
− e

∥∥∥∥∞

=
∥∥∥∥(

1 − αk
)( x̄k s̄k

μ̄k∞
− e

)
+ (

αk
)2 �x̄k�s̄k

μ̄k∞

∥∥∥∥∞

�
(
1 − αk

)∥∥∥∥ x̄k s̄k

μ̄k∞
− e

∥∥∥∥∞
+ (

αk
)2

∥∥∥∥�x̄k�s̄k

μ̄k∞

∥∥∥∥∞

�
(
1 − αk

)∥∥∥∥ x̄k s̄k

μ̄k∞
− e

∥∥∥∥∞
+ (αk)2μ̄k∞

4

n

min(x̄k s̄k)

∥∥∥∥e − x̄k s̄k

μ̄k∞

∥∥∥∥2

∞

=
(

1 − αk + (
αk

)2 nμ̄k∞
4 min(x̄k s̄k)

∥∥∥∥ x̄k s̄k

μ̄k∞
− e

∥∥∥∥∞

)∥∥∥∥ x̄k s̄k

μ̄k∞
− e

∥∥∥∥∞

�
(

1 − αk + (
αk

)2 nτ̄ μ̄k∞
4 min(x̄k s̄k)

)
τ̄ . (24)

From the beginning of the proof of Lemma 3.4, we have

1 � (τ̄ − τ)nμ̄k∞/min
(
x̄k s̄k

)
.

Thus, the following quadratic equation in t has at least one solution

1 − t + t2 nτ̄ μ̄k∞
4 min(x̄k s̄k)

= τ

τ̄
. (25)

It is easy to see that

αk = 2(τ̄ − τ)

n(1 + √
1 − (τ̄ − τ)nμ̄k∞/min(x̄k s̄k)

is the least solution to Eq. (25). Thus, it follows from (24) that∥∥∥∥xk+1sk+1

μ̄k∞
− e

∥∥∥∥∞
�

(
τ

τ̄

)
τ̄ = τ.

This also implies that (xk+1, sk+1) > 0. Since

μk+1∞ = (
max

(
xk+1sk+1) + min

(
xk+1sk+1))/2

is the global minimizer of the proximity measure function δ∞(xk+1, sk+1,·), we conclude that

δ∞
(
xk+1, sk+1,μk+1∞

) =
∥∥∥∥xk+1sk+1

μk+1∞
− e

∥∥∥∥∞
� τ,

as desired.
We now prove (ii). Notice that (�x̄k)T�s̄k = 0. By using that fact that μ̄k

gap = (1 − θk∗ )μk
gap and by Lemma 3.4,

we have
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μk+1
gap = (xk+1)Tsk+1

n
= (x̄k + αk�x̄k)T(s̄k + αk�s̄k)

n

= (x̄k)Ts̄k + αk((x̄k)T�s̄k + (s̄k)T�x̄k)

n

= (
1 − αk

)
μ̄k

gap + αkμ̄k∞

= μ̄k
gap

(
1 − αk + αk μ̄k∞

μ̄gap

)
�

(
1 − θk∗

)(
1 − αk + αk μ̄k∞

μ̄gap

)
μk

gap

�
(
1 − γ θk∗

)
μk

gap.

Finally, we prove that θk∗ � σ
n

where σ ∈ (0,1) is a constant independent of n. Actually, in the proof of Lemma 3.4,
we have pointed out that ηk∗ � 4(τ̄ − τ)/n(1 + τ). Notice that τ̄ − τ = 1−τ̄

n
. We conclude that ηk∗ � ν

n2 for some

constant ν independent of n. Observe that the function ξ(t) := 2t

t+
√

t2+4t
is increasing function on (0,∞). Thus, we

obtain

θk∗ = 2ηk∗
ηk∗ + √

ηk∗ + 4ηk∗
� 2(ν/n2)

ν/n2 + √
(ν/n2)2 + 4ν/n2

� σ

n

where 0 < σ = 2
√

ν√
ν+√

ν+4
< 1. Therefore, the algorithm has an O(n log (x0)Ts0

ε
)-iteration complexity. �

Before closing this section, we point out that both Algorithms 2.1 and 3.1 are quadratically convergent in the sense
that the duality gap sequences generated by these algorithms converge to zero quadratically. Actually, by a proof
similar to that of Theorem 4.1 in [11], we can easily obtain the following result.

Theorem 3.2. Let (xk, sk) be generated by Algorithm 2.1 or Algorithm 3.1. Then the algorithm is quadratically
convergent in the sense that μk+1

gap = O((μk
gap)

2). Moreover, every accumulation point of the sequence (xk, sk) is a
strictly complementary solution of the problem.

4. Conclusions and future work

Most numerical experiments demonstrate that interior-point algorithms working in wider neighborhoods perform
better than those counterparts using smaller neighborhoods. Inspired by this fact, we present in this paper a unified
method to enlarge the neighborhoods of interior-point algorithms. As an example, we consider so-called predictor–
corrector methods, and show how to use the least value of a proximity measure function to enlarge the neighborhoods
of the original methods. We also prove that the proposed algorithms in this paper retain the best known iteration
complexity and local superlinear convergence of the original algorithms. Our methods can be viewed as a new design
for interior-point methods.

It is worth mentioning that the following proximity function is also widely used in interior-point algorithms:

δ−∞(x, s,μ) =
∥∥∥∥(

xs

μ
− e

)−∥∥∥∥∞
,

where the operation (·)− performs componentwise, i.e., for any vector y ∈ Rn, the ith component of the vector (y)−
is min(0, yi), i = 1, . . . , n. In Rn++, we note that δ−∞(x, s,μ) = 0 for all μ ∈ (0,min(xs)], and δ−∞(x, s,μ) > 0 for all
μ > min(xs). This implies that the global minimum point of δ−∞(x, s,μ) with respect to μ is not unique. In fact, any
μ ∈ (0,min(xs)] is the global minimum point and the least value of the proximity function is zero. Therefore, if we
take μ to be one of these minimum points, the neighborhood is enlarged to be the whole positive orthant, i.e., Rn++.
In this case, we can say that the interior-point algorithms do not need a particular neighborhood of central path, and
thus the algorithms do not require any proximity measure function. The analysis for such an interior-point algorithm
is a worthwhile and interesting future work.



Y.B. Zhao / Applied Numerical Mathematics 57 (2007) 1033–1049 1049
It should be mentioned that in [5] the convergence of a predictor–corrector algorithm with ∞-norm-neighborhood
with parameter α (corresponding to τ̄ under consideration in this paper) was chosen to be in the open interval (0,1).
However, we prove only the convergence of Algorithm 3.1 in this paper with the parameter τ̄ in the interval (0, 1

2 ].
At the present, we do not know whether Algorithm 3.1 with parameter τ̄ in ( 1

2 ,1) is convergent or not. We leave this
important question as a future research topic.
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