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Abstract

We introduce the new concept of d-orientation sequence for continuous func-

tions. It is shown that if there does not exist a d-orientation sequence for a con-

tinuous function, then the corresponding complementarity problem (CP) has a

solution. We believe that such a result characterizes an intrinsic property of CPs. As

the concept of ``exceptional family of elements'', the notion of ``d-orientation se-

quence of a function'' is also a powerful tool for investigating the existence theo-

rems of CPs. We use this new tool to establish, among other things, a new existence

result for a class of P�-mapping CPs. Ó 1999 Published by Elsevier Science Inc. All

rights reserved.

Keywords: Complementarity problems; d-orientation sequence; p-order generalized coercivity;

P*-mapping

1. Introduction

Let f : Rn ! Rn be a continuous function. The well-known complement-
arity problem (CP) is to ®nd a x 2 Rn such that

x P 0; f �x�P 0; xTf �x� � 0: �1�

Such a problem has been studied extensively for several decades due to its
many successful applications in engineering, operations researches and even in
economics [1,5,7]. Given a CP, the existence of a solution is not always assured.
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On the other hand, most algorithms developed to solve CPs often assume the
existence of a solution. Because of these aspects, many authors investigated
di�erent classes of the functions and proposed a variety of existence theorems
[1±10,13±16,21±23,28±30]. Seminally, Isac et al. [8] introduced the notion of
exceptional family of elements associated with a continuous function, this
concept includes as a special case of exceptional sequence due to Smith [23].
Moreover, Isac and Obuchowska [9] proved that many well-known existence
conditions for CPs imply that the functions have no exceptional family of el-
ements. Recently, Zhao et al. [28±30] generalized the Isac's concept to non-
linear variational inequality (VI) problems and introduced the notion of
exceptional family for VI. This concept evinces a deep property of VI/CPs,
actually, it becomes a powerful analysis method for the solvability of the
problems.

In this paper, we will develop a new concept, namely, d-orientation sequence
of a function. This concept, quite di�erent from exceptional family, seems very
important for it provides a new argument method for the solvability of a CP.
By this concept, we will establish several new existence theorems for the
problem (1). One of the existence results is related to P�-mapping CP, which is
very broad and encompasses a large number of interesting special cases, for
instance, the monotone CPs. The concept of linear P�-CP was ®rst de®ned by
Kojima et al. [18]. Recently, the P�-CPs (linear and nonlinear) has been studied
by several authors [18,12,20,25±27,11,31].

In Section 2, we introduce the concept of d-orientation sequence for a
continuous function, and show the main result, that is, for any continuous
function, there exists either a d-orientation sequence for the function or a so-
lution to the corresponding CP. Therefore, ``function is without d-orientation
sequence'' is a su�cient condition for a CP to posses a solution. In Section 3,
we show a new existence condition which includes several well-known condi-
tions as the special cases. An existence theorem for P�-mapping CPs is given in
Section 4.

2. General existence theorems

Let f : Rn ! Rn be a continuous function. Recall that a VI�K; f �; is to ®nd a
solution x� such that

�xÿ x��Tf �x��P 0; for all x 2 K;

where K is a closed convex set in Rn: In particular, if the set K � Rn
� �

fx 2 Rn: x P 0g then VI�K; f � reduces to CP.
Throughout the paper, let d 2 Rn be a ®xed vector in positive orthant, i.e.,

d > 0. For such d, let
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Kr � Rn
� \ fx 2 Rn: xTd 6 rg:

Clearly, Kr is a bounded convex set, so that VI�Kr; f � has at least one solution
[5]. The following results are similar to that in Ref. [17].

Lemma 2.1. Let f be a continuous function from Rn into Rn; then the CP (1) has a
solution if and only if there exists a scalar r > 0 such that the VI�Kr; f � has a
solution xr with �xr�Td < r.

Proof. If x� solves the problem (1), then

�xÿ x��Tf �x��P 0 for all x 2 Rn
�:

Let r > �x��Td; from the above we have

�xÿ x��Tf �x��P 0; for all x 2 Kr

which implies that x� solves the problem VI�Kr; f �:
Conversely, suppose that there exists some scalar r > 0 such that VI�Kr; f �

has a solution xr with �xr�Td < r: Then

�xÿ xr�Tf �xr�P 0 for all xr 2 Kr: �2�
It su�ces to show that

�xÿ xr�Tf �xr�P 0 for all x 2 Rn
� n Kr: �3�

Actually, let x be an arbitrary vector in Rn
� n Kr: Since

p�k� � kx� �1ÿ k�xr 2 Rn
� for all k 2 �0; 1�:

Notice that �xr�Td < r; there exists a su�ciently small scalar k� > 0 such that
p�k��Td < r; hence p�k�� 2 Kr and by Eq. (2), we have

06 �p�k�� ÿ xr�Tf �xr� � �k�x� �1ÿ k��xr ÿ xr�Tf �xr�
� k��xÿ xr�Tf �xr�

which implies Eq. (3) holding, hence xr is a solution to the problem (1). �

The following de®nition makes the concept of d-orientation sequence of a
function precise.

De®nition 2.1. Given d > 0, we say that fxrg � Rn
� is a d-orientation sequence

of the function f if kxrk ! 1 as r!1; and for each xr there exists a positive
scalar, denoted by lr, such that

fi�xr� � ÿlrdi if xr
i > 0; �4a�

fi�xr�P ÿ lrdi if xr
i � 0: �4b�
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Remark 2.1. We use the term ``d-orientation sequence'' is the reason that all the
vectors f �xr� corresponding to xr > 0 have the same direction ÿd, i.e., for each
xr > 0; f �xr� � ÿlrd for some scalar lr > 0: This is quite di�erent from the
concept of exceptional family of elements for a function [8], which is de®ned as
follows

fi�xr� � ÿlrxr
i for all xr

i > 0;

fi�xr�P 0 for all xr
i � 0;

where lr > 0 is some positive scalar. It is evident that f �xr� � ÿlrxr for xr > 0:

Remark 2.2. At a glance, the d-orientation sequence seems to be analogous to
the d-regularity of a mapping introduced by Karamardian [15]. However, this
two concepts are quite di�erent. The d-regularity is de®ned as follows: ``A
mapping f �x� ÿ f �0� is said to be d-regular if the following equation has no
solution in f�x; t� 2 Rn�1: x 2 Rn

�; t P 0g with x 6� 0:

fi�x� � ÿtdi � fi�0� if xr
i > 0;

fi�x�P ÿ tdi � fi�0� if xr
i � 0:''

The main results of this section is as follows.

Theorem 2.1. Let f : Rn ! Rn be a continuous function, then there exists either a
solution for the CP (1) or a d-orientation sequence of the function f.

Proof. Assume that there exists no solution for the CP, we show that there
exists a d-orientation sequence of f . Indeed, under this assumption, it follows
from Lemma 2.1 that, for each r > 0, there exists no solution xr of VI�Kr; f �
such that �xr�Td < r: Since Kr is bounded, the solution set of VI�Kr; f � is always
nonempty [5]. Therefore, for any r > 0 the solution xr of VI�Kr; f � must satisfy
�xr�Td � r: We now show that such a sequence fxrg is a d-orientation sequence
of f .

Since xr is a solution to VI�Kr; f �, we have

xr � PKr�xr ÿ f �xr��:
That is, xr is the unique solution to the following convex program which sat-
is®es Slater's constrained quali®cation.

min
1

2
ky ÿ �xr ÿ f �xr��k2

s:t: y 2 fx 2 Rn: x P 0; xTd 6 rg:
Hence xr must satisfy the following Karush±Kuhn±Tucker condition. That is,
there exist a vector kr 2 Rn

� and a scalar lr P 0 such that
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�xr ÿ �xr ÿ f �xr��� ÿ kr � lrd � 0; �5a�

�kr
i �Txr

i � 0 for all i � 1; . . . ; n; �5b�

lr��xr�Td ÿ r� � 0; �5c�

xr P 0; �xr�Td 6 r: �5d�
Notice that xr is a solution to VI�Kr; f � and that �xr�Td � r, the relations (5c)
and (5d) hold trivially. Hence the above conditions reduces to the following

f �xr� � kr ÿ lrd; �kr�Txr � 0;

which can be written as

fi�xr� � ÿlrdi if xr
i > 0;

fi�xr�P ÿ lrdi if xr
i � 0:

We now show lr > 0: Indeed, if lr � 0; then the above relations reduce to

f �xr�P 0; xr P 0; �xr�Tf �xr� � 0;

so that xr is a solution to CP. This is in contradiction with the assumption at
the beginning of the proof. Since d > 0; fxrg � Rn

� and �xr�Td � r; the sequence
kxrkmust tend to �1 as r! �1: By the De®nition 2.1, fxrg is a d-orientation
sequence of f : �

Corollary 2.1. If there exists no d-orientation sequence for the mapping
f : Rn ! Rn, then the corresponding CP has a solution.

We believe that Theorem 2.1 elicits an intrinsic property of any CPs. The
concept of d-orientation sequence of a function, as exceptional family of ele-
ments introduced in [8], seems to be important, because it allows to prove a
number of alternative theorems, and consequently su�cient conditions for the
existence of a solution of CP. The su�cient condition function without
d-orientation sequence is a very weak conditions. To demonstrate this, we
show that the well-known Karamardian's condition (most of known existence
theorems were elicited from this condition), and Isac and Gowda's condition
imply the above su�cient condition.

De®nition 2.2. We say that f : Rn ! Rn satis®es the Karamardian's condition
on Rn

� if there exists D � Rn
� convex compact set such that for all x 2 Rn

� n D;
there exists y 2 D such that �xÿ y�Tf �x�P 0:

Theorem 2.2. If the function f : Rn ! Rn satis®es the Karamardian's condition,
then there exists no d-orientation sequence for f.
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Proof. Suppose that opposite is true, that is, f has a d-orientation sequence for
f . Denote this sequence by fxrg, we will show that the function f does not
satisfy the Karamardian's condition on Rn

�: To this end we will prove that for
every compact convex set D � Rn

� there exists r > 0 such that xr 2 Rn
� n D and

�xr ÿ y�Tf �xr� < 0

for all y 2 D: Let D be such a set. For any xr and y 2 D, if xr
i > 0; by Eq. (4a) we

have

�xr
i ÿ yi�fi�xr� � �xr

i ÿ yi��ÿlrdi�:
If xr

i � 0; by Eq. (4b) and noting that yi P 0; we have

�xr
i ÿ yi�fi�xr� � �0ÿ yi�fi�xr�6 �0ÿ yi��ÿlrdi�:

Hence

�xr ÿ y�Tf �xr�6 �xr ÿ y�T�ÿlrd� � ÿlr��xr�Td ÿ yTd�: �6�
Since D is a compact set, there exists some c > 0 such that yTd 6 c for all y 2 D:
since kxrk ! �1; hence

�xr ÿ y�Tf �xr�6 ÿ lr��xr�Td ÿ yTd� < 0 as r! �1;
which shows that the Karamardian's condition does not hold. �

De®nition 2.3 ([10]). We say that / : Rn ! Rn is monotone decreasing on rays
with respect to Rn

� if there exists t0 > 0 such that for every x 2 Rn
� and every s; t

with s P t P t0, we have

xT�/�tx� ÿ /�sx��P 0:

Lemma 2.2 ([9]). / is monotone decreasing on rays with respect to Rn
�, if and only

if for every a P 1 and every x 2 Rn
�, we have

xT�/�x� ÿ /�ax��P 0:

De®nition 2.4. We say that f : Rn ! Rn satis®es Isac and Gowda's condition if
there exists a positive scalar p > 0 such that /�x� � kxkpÿ1xÿ f �x� is a
monotone decreasing on rays with respect to Rn

�:

Remark 2.3. When p � 1; then /�x� � xÿ f �x�, which was studied in Ref. [9]
by using the concept of exceptional family of elements.

Theorem 2.3. If the continuous function f : Rn ! Rn satis®es the Isac and
Gowda's condition, then there exists no d-orientation sequence for f (hence the
problem (1) has a solution).
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Proof. Assume the contrary, that is, there exists a d-orientation sequence for f .
We denote this d-orientation sequence by fxrg: Since /�x� � kxkpÿ1xÿ f �x� is
monotone decreasing on rays with respect to Rn

�; by Lemma 2.2, we have

xT�/�x� ÿ /�ax��P 0; for all x 2 Rn
� and aP 1: �7�

Notice that kxrk ! �1 as r!1; there exists a scalar r0 > 0 such that for all
r P r0, we have kxrkP 1: Setting a � kxrk and x � xr=kxrk in Eq. (7), we have

xr

kxrk
� �T

�/�xr=kxrk� ÿ /�xr��P 0

which is equivalent to

�xr�T�/�xr=kxrk� ÿ kxrkpÿ1xr � f �xr��P 0: �8�
Since fxrg is a d-orientation sequence for f , i.e., there exists flrg > 0 such that
Eqs. (4a) and (4b) holds, hence

�xr�Tf �xr� � ÿlr
X
i2I�

xr
i di � ÿlr�xr�Td

where I� � fi: xr
i > 0g: Substituting this into Eq. (8), we have

�xr�T�/�xr=kxrk�� ÿ kxrkp�1 ÿ lr�xr�Td P 0:

Moreover

�xr�T�/�xr=kxrk��P kxrkp�1:

Since T ��� is a continuous function, it is bounded on the set
B�0; 1� � fx: kxk6 1g, therefore, there exists some M > 0 such that

MkxrkP �xr�T�/�xr=kxrk��P kxrkp�1

which implies that

M P kxrkp ! �1 as r !1:
A contradiction. �

It is possible that there exists a d-orientation sequence for f and a solution
for the corresponding CP. See the following example.

Example 2.1. Let f : R2
� ! R2 be de®ned by

f �x� � �1ÿ x2; 2ÿ x1�T; x � �x1; x2�T:
It may readily be veri®ed that �0; 0� is a solution to the problem (1). Let d �
�1; 1�T > 0; then it is evident that the sequence fxr � �2� r; 1� r�Tg is a
d-orientation sequence for this function, actually,
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f1�xr� � �1ÿ xr
2� � ÿr; f2�xr� � ÿr:

Since xr
i > 0�i � 1; 2�; we have

fi�xr� � ÿlrdi for i � 1; 2;

where lr � r; di � 1:
This example also shows that while ``f without d-orientation sequence'' is a

su�cient condition for the existence of a solution to CPs, however, it is not
necessary in general. An interesting problem is when this su�cient condition is
also necessary, the following result makes an a�rmative answer to this ques-
tion.

Theorem 2.4. If f : Rn ! Rn is a pseudo-monotone mapping, i.e., for each
distinct pair x; y 2 Rn.

f �x�T�y ÿ x�P 0 implies f �y�T�y ÿ x�P 0;

then the CP (1) has a solution if and only if there exists no d-orientation sequence
for f.

Proof. It su�ces to show that if the CP has a solution, then there exists no
d-orientation sequence for f . Actually, suppose x� is such a solution for the
problem, i.e.,

x�P 0; f �x��P 0; �x��Tf �x��P 0:

Equivalently

�xÿ x��Tf �x��P 0 for all x 2 Rn
�:

Since f is pseudo-monotone mapping, from the above we have

�xÿ x��f �x�P 0 for all x 2 Rn
�: �9�

Suppose that f has a d-orientation sequence, denoted by fxrg, then by the
same argument as Eq. (6), we have

�xr ÿ x��f �xr�6 ÿ lr��xr�Td ÿ �x��Td�:
Since kxrk ! 1 as r !1, the above inequality implies that

�xr ÿ x��Tf �xr� < 0 for all sufficiently large r

which is in contradiction with Eq. (9). �

The similar result concerning exceptional family for VI problems has been
proved by Zhao et al. [28±30].
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3. p-Order generalized coercivity

The above results indicate that de®ning the conditions under which a con-
tinuous function does not posses a d-orientation sequence would provide new
practical existence results of CPs. Along this idea, in the remainder of the
paper, we will show two new existence theorems, one is related to so-called
p-order generalized coercivity, the other is related to so-called P�-mapping
which is de®ned in Section 4. The two new existence theorems include several
previous existence results as the special cases.

De®nition 3.1. f : Rn ! Rn is said to be a p-order generalized coercive function,
if there exists some point x̂ 2 Rn

� and a scalar p 2 �ÿ1; 1� such that for each
sequence fxag � Rn

� with kxak ! �1

limsup
xa2Rn

� ;kxak!1

f �xa�T�xa ÿ x̂�
kxakp > 0: �10�

Theorem 3.1. If f is a p-order generalized coercive function, then there exists no
d-orientation sequence for the function f.

Proof. We show this results by contradiction, suppose that fxrg be a
d-orientation sequence for f . For any p 2 �ÿ1; 1�; replacing y by x̂ in
Eq. (6) and by using kxrk ! 1, we have

f �xr��xr ÿ x̂�
kxrkp 6 ÿlr��xr�Td ÿ x̂Td�

kxrkp 6 0

which implies that f cannot be a p-order generalized coercive function. �

The two corollaries below are immediate consequences of Theorem 3.1.

Corollary 3.1. If f is a coercive function ([22,17,5]), i.e., there exists a x̂ 2 Rn
� such

that

lim
x2Rn

� ;kxk!1
f �x�T�xÿ x̂�
kxk � �1; �11�

then there exists no d-orientation sequence for f.

Corollary 3.2. If f satis®es the following condition (Guo and Yao [4])

liminf
kxk!�1;x2Rn

�
xTf �x� > 0; �12�

then there exists no d-orientation sequence for f.
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It is easy to see that the p-order generalized coercivity Eq. (10) is strictly
weaker than the well-known coercive condition (11) and Guo and Yao's
condition (12). See the following example.

Example 3.1. Given b > 0, we consider the function f : Rn ! Rn, where

f � x

1� kxk2�b :

We show this function is a �ÿb�-order generalized coercive mapping, but it is
not a coercive function, and this function does not satisfy Guo and Yao's
condition. Indeed, for any x̂ 2 Rn

�; since

lim
x2Rn

� ;kxk!�1
f �x�T�xÿ x̂�
kxk � lim

x2Rn
� ;kxk!�1

xT�xÿ x̂�
kxk�1� kxkb�2� � 0:

Thus f is not a coercive function. Noting that

liminf
x2Rn

� ;kxk!1
xTf �x� � lim

x2Rn
� ;kxk!�1

kxk2

1� kxkb�2
� 0:

so that f does not satisfy Guo and Yao's condition. However, for any b > 0 this
function is a �ÿb�-order generalized coercive mapping, since for any x̂ 2 Rn

�

lim
x2Rn

� ;kxk!�1
f �x�T�xÿ x̂�
kxkÿb � lim

x2Rn
� ;kxk!�1

kxkb�kxk2 ÿ xTx̂�
1� kxkb�2

� lim
x2Rn

� ;kxk!�1
kxkb�2�1ÿ xTx̂=kxk2�

1� kxkb�2
� 1:

which implies that for any sequence fxag 2 Rn
� with kxak ! 1

limsup
kxak!1

f �xa�T�xa ÿ x̂�
kxakÿb � 1 > 0:

It should be noted that the p-order generalized coercivity is not a necessary
condition to assure the CP having a solution.

Example 3.2. Consider the function f : R2 ! R2, where

f �x� � �x1 sin�x1 � x2�; x2 sin�x1 � x2��T; x � �x1; x2�T:
Obviously, (0,0) is a solution to the corresponding CP. However, for any
p 2 �ÿ1; 1�, this function is not a p-order generalized coercive mapping. In-
deed for any x̂ � �x̂1; x̂2�T 2 Rn

�, let fxk � �kp; kp�Tg; then

limsup
kxkk!�1

f �xk��xk ÿ x̂�
kxkkp � 0:
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It is evident that Guo and Yao's condition implies the condition below:

There exits b > 0 such that xTf �x�P 0

for all x 2 Rn
� with kxkP b: �13�

It is easy to see that such a condition is strictly weaker than Guo and Yao's
condition. An implication of the following result is that the condition (13) also
implies that there exists no d-orientation sequence for f .

Theorem 3.2. If there exists a constant b > 0 such that for all x 2 Rn
� with

kxkP b, there exists a y 2 Rn
� such that kyk < b and �xÿ y�Tf �x�P 0, then the

function f is without d-orientation sequence.

Proof. We suppose that f has an d-orientation sequence fxrg, by Eq. (6)

�xr ÿ y�Tf �xr�6 ÿ lr��xr�Td ÿ yTd�:
Since kxrk ! �1 and kyk < b, the above inequality implies �xr ÿ y�Tf �xr� < 0
for all su�ciently large r, this is in contradiction with the assumption of the
theorem.

Remark 3.1. When y � 0, the condition of Theorem 3.2 reduces to the
condition (13). Theorem 3.2 also shows that when reduced to CP, the condition
``quasimonotone'' of (Theorem 3.1, [6]) due to Hadjisavvas and Schaible is not
necessary.

De®nition 3.2. We say the mapping f : Rn ! Rn is nonnegative at in®nity if for
any y 2 Rn

�; there exists a positive real number b�y� such that �xÿ y�Tf �x�P 0
for every x 2 Rn

� such that kykP b�y�:

Remark 3.2. If we substitute the term ``�xÿ y�Tf �x�P 0'' by
``�xÿ y�Tf �x� > 0'' in the above de®nition, then the above concept reduces
to concept positive at in®nity introduced by Schaible and Yao [24].

Theorem 3.3. If f : Rn ! Rn is nonnegative at in®nity then there exists no
d-orientation sequence for f.

Proof. Along the same idea of proof of Theorem 5 in Ref. [9] and by using
Eq. (6), it is easy to verify the result.

4. Generalized P�-complementarity problems

In this section, we will de®ne a new class of nonlinear mappings, which is
broad enough to encompass the monotone mappings as the special cases. We
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show the corresponding CP has a solution under strictly feasibility condition
(i.e., there exists some u P 0 such that f �u� > 0�:

De®nition 4.1. A mapping f : Rn ! Rn is said to be a P�-mapping, if there exists
a nonnegative constant c such that the following inequality holds for any
distinct point x; y 2 Rn:

�1� c�
X

j2I��x;y;f �
�xj ÿ yj��fj�x� ÿ fj�y�� � min

16 j6 n
�xj ÿ yj��fj�x� ÿ fj�y��P 0;

�14�
where

I��x; y; f � � fj: �xj ÿ yj��fj�x� ÿ fj�y��P 0g:
Let j0 denotes a min index, i.e.,

�xj0
ÿ yj0

��fj0
�x� ÿ fj0

�x�� � min
16 j6 n

�xj ÿ yj��fj�x� ÿ fj�y�� �15�
then Eq. (14) can be written as

�xÿ y�T�f �x� ÿ f �y��P ÿ c
X

j2I��x;y;f �
�xj ÿ yj��fj�x� ÿ fj�y��

�
X

j2Iÿ�x;y;f �nfj0g
�xj ÿ yj��fj�x� ÿ fj�y��;

where

Iÿ�x; y; f � � fj: �xj ÿ yj��fj�x� ÿ fj�y�� < 0g:
It is easy to see that a monotone mapping must be a P�-mapping. The linear
P�-mapping (i.e., Mx� q, where M is P�-matrix) was ®rst de®ned by Kojima
et al. [18], then V�aliaho [26,27] pointed out that the class of P�-matrices are
just the class of su�cient matrices. Recently the CP with P�-mapping has
been studied in the ®eld of interior-point algorithm, see for example, [12,25,
20,11,31], etc.

The following is our main result in this section.

Theorem 3.1. For any P�-mapping f : Rn ! Rn, if there exists a point u 2 Rn
�

such that f �u� > 0, then the function f has no d-orientation sequence (hence the
problem (1) has at least a solution.)

Proof. Assume that contrary, let fxrg � Rn
� be the d-orientation sequence for f ,

then by the De®nition 2.1, there exists a positive sequence flrg > 0 such that
Eqs. (4a) and (4b) hold, hence

�fi�xr� ÿ fi�u���xr
i ÿ ui�

� ÿ�lrdi � fi�u���xr
i ÿ ui� if xr

i > 0;

6 ÿ �lrdi � fi�u���xr
i ÿ ui� if xr

i � 0:

�
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That is, for all i � 1; . . . ; n, we have

�fi�xr� ÿ fi�u���xr
i ÿ ui�6 ÿ �lrdi � fi�u���xr

i ÿ ui�: �16�
Since kxrk ! 1; there exists at least one component index i0 such that xr

i0
!1

as r! �1: Notice that lr > 0 and di > 0, it is evident that

�fi0�xr� ÿ fi0�u���xr
i0
ÿ ui0�6 ÿ �lrdi0 � fi0�u���xr

i0
ÿ ui0�

6 ÿ fi0�u��xr
i0
ÿ ui0� ! ÿ1 �17�

which implies the index set Iÿ�xr; u; f � 6� ;, thus by the de®nition of P�-map-
ping, the set I��xr; u; f � 6� ;. There exists a subsequence of fxrg; denoted by
fxrjg �j � 1; 2; . . .� such that for some ®xed index p and q

�fp�xrj� ÿ fp�u���xrj
p ÿ up� � min

16 j6 n
�xrj

i ÿ ui��fi�xrj� ÿ fi�u�� �18�
and

�fq�xrj� ÿ fq�u���xrj
q ÿ uq� � max

16 j6 n
�xrj

i ÿ ui��fi�xrj� ÿ fi�u�� > 0; �19�
hold for all the sequence fxrjg: Since f is a P�-mapping, and by using Eqs. (18),
(14) and (19), we have

�fi0�xr� ÿ fi0�u���xr
i0
ÿ ui0�P �fp�xrj� ÿ fp�u���xrj

p ÿ up�
P ÿ �1� c�

X
I��x;u;f �

�xrj
i ÿ ui��fi�xrj� ÿ fi�u��

P ÿ �1� c��nÿ 1� max
16 j6 n

�xrj
i ÿ ui��fi�xrj� ÿ fi�u��

� ÿ�1� c��nÿ 1��fq�xrj� ÿ fq�u���xrj
q ÿ uq�: �20�

When xrj
i > ui; then

�xrj
i ÿ ui��fi�xrj� ÿ fi�u�� � ÿ�lrdi � fi�u���xrj

i ÿ ui� < 0:

Hence from Eq. (19), we conclude that 06 xrj
q 6 uq: If xrj

q � 0; then

�fq�xrj� ÿ fq�u���xrj
q ÿ uq�6 �lrj dq � fq�u��uq:

If 0 < xrj
q 6 uq; then

�fq�xrj� ÿ fq�u���xrj
q ÿ uq� � �lrj dq � fq�u���uq ÿ xrj

q �
6 �lrj dq � fq�u��uq:

Therefore, Eq. (20) can be written as follows

�fi0�xr� ÿ fi0�u���xr
i0
ÿ ui0�P ÿ �1� c��nÿ 1��lrj dq � fq�u��uq:

That is

ÿ �lrj di0 � fi0�u���xrj
i0 ÿ ui0�P ÿ �1� c��nÿ 1��lrj dq � fq�u��uq:

Multiplying both sides by 1=�xrj
i0 ÿ ui0�; and rearranging the terms, we have
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ÿ lrj di0 ÿ
�1� c��nÿ 1�dq

xrj
i0 ÿ ui0

" #
P fi0�u� ÿ

�1� c��nÿ 1�fq�u�uq

xrj
i0 ÿ ui0

:

Notice that xrj
i0 ! �1; the above inequality is impossible to hold for su�-

ciently large rj; since in the case, the left-hand side of the above inequality is
negative, however, the right-hand side tends to fi0�u� which is a positive
number. �.

Remark 4.1. For nonlinear monotone mapping f , the feasible condition, i.e.,
``there exists a point u 2 Rn

� such that f �u�P 0'' cannot assure the existence of
a solution to the corresponding nonlinear CP. Megiddo [19] gave an example
to show the case. Notice that a monotone mapping must be a P�-mapping,
therefore, we conclude that the strictly feasible condition, i.e. ``there exists a
point u 2 Rn

� such that f �u� > 0'' of Theorem 4.1 cannot be replaced by
feasibility condition to assure the same result.
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