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Abstract. Recently, the 1-bit compressive sensing (1-bit CS) has been studied in the field

of sparse signal recovery. Since the amplitude information of sparse signals in 1-bit CS is not

available, it is often the support or the sign of a signal that can be exactly recovered with a

decoding method. In this paper, we first show that a necessary assumption (that has been

overlooked in the literature) should be made for some existing theories and discussions for 1-

bit CS. Without such an assumption, the found solution by some existing decoding algorithms

might be inconsistent with 1-bit measurements. This motivates us to pursue a new direction

to develop uniform and nonuniform recovery theories for 1-bit CS with a new decoding method

which always generates a solution consistent with 1-bit measurements. We focus on an extreme

case of 1-bit CS, in which the measurements capture only the sign of the product of a sensing

matrix and a signal. We show that the 1-bit CS model can be reformulated equivalently as an

`0-minimization problem with linear constraints. This reformulation naturally leads to a new

linear-program-based decoding method, referred to as the 1-bit basis pursuit, which is remark-

ably different from existing formulations. It turns out that the uniqueness condition for the

solution of the 1-bit basis pursuit yields the so-called restricted range space property (RRSP) of

the transposed sensing matrix. This concept provides a basis to develop sign recovery conditions

for sparse signals through 1-bit measurements. We prove that if the sign of a sparse signal can

be exactly recovered from 1-bit measurements with 1-bit basis pursuit, then the sensing matrix

must admit a certain RRSP, and that if the sensing matrix admits a slightly enhanced RRSP,

then the sign of a k-sparse signal can be exactly recovered with 1-bit basis pursuit.
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1 Introduction

Compressive sensing (CS) has attracted plenty of recent attention in the field of signal and image

processing. One of the key mathematical issues addressed in CS is how a sparse signal can be

reconstructed by a decoding algorithm. An extreme case of CS can be cast as the problem of

seeking the sparsest solution of an underdetermined linear system, i.e.,

min{‖x‖0 : Φx = b},

where ‖x‖0 counts the number of nonzero components of x, Φ ∈ Rm×n (m < n) is called a

sensing matrix, and b ∈ Rm is the vector of nonadaptive measurements. It is known that the

reconstruction of a sparse signal from a reduced number of acquired measurements is possible

when the sensing matrix Φ admits certain properties (see, e.g., [17, 37, 10, 11, 12, 16, 14, 40,

41, 19, 42]). Note that measurements must be quantized. Fine quantization provides more

information on a signal, making the signal more likely to be exactly recovered. However, fine

quantization imposes a huge burden on measurement systems, leading to slower sampling rates

and increased costs for hardware systems (see, e.g. [38, 29, 35, 5]). Also, fine quantization

introduces error to measurements. This motivates one to consider sparse signal recovery through

lower bits of measurements. An extreme quantization is only one bit per measurement. As

demonstrated in [6, 4] and [5], it is possible, in some situations, to reconstruct a sparse signal

within certain factors from 1-bit measurements, e.g., the sign of measurements. This motivates

the recent development of CS with 1-bit measurements, called 1-bit compressive sensing (see,

e.g., [6, 4, 23, 26, 27, 28, 31]). An ideal model for 1-bit CS is the `0-minimization with sign

constraints

min{‖x‖0 : sign(Φx) = y}, (1)

where Φ ∈ Rm×n is a sensing matrix and y ∈ Rm is the vector of 1-bit measurements. Through-

out the paper, we assume that m < n. The sign function in (1) is applied element-wise. Due

to the NP-hardness of (1), some relaxations of (1) have been investigated in the literature. A

common relaxation is replacing ‖x‖0 with ‖x‖1 and replacing the constraint of (1) with the

linear system

Y Φx ≥ 0, (2)

where Y = diag(y). In addition, an extra constraint, such as ‖x‖2 = 1 and ‖Φx‖1 = m, is

introduced into this relaxation model in order to exclude some trivial solutions.

Only the acquired 1-bit information is insufficient to exactly reconstruct a sparse signal. For

instance, if sign(Φx∗) = y where y ∈ {1,−1}m, then any small perturbation x∗+ u also satisfies

this equation, making the exact recovery of x∗ almost impossible by whichever decoding algo-

rithms. While the sign information of measurements might not be enough to exactly reconstruct

a signal, it might be adequate to recover the support or the sign of the signal. Thus 1-bit CS

still has found applications in signal recovery [6, 4, 23, 5, 26], imaging processing [7, 8], and

matrix completion [15].

The 1-bit CS was first proposed and investigated by Boufounos and Baraniuk [6]. Since

2008, numerous algorithms have been developed in this direction, including greedy algorithms

(see, e.g., [4, 23, 25, 39, 24, 22, 2]) and convex and nonconvex programming algorithms (see,

e.g., [6, 27, 30, 32, 31, 34, 1]). To find a polynomial-time solver for the 1-bit CS problems, a

linear programming model based on (2) has been formulated, and certain stability results for

reconstruction have been shown in [31] as well.

In classic CS setting, it is well known that when a sensing matrix admits some properties

such as mutual coherence [17, 9], null space property (NSP) [14, 40], restricted isometry property
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(RIP) [10] or range space property (RSP) of ΦT [41, 42], the signals with low sparsity levels

can be exactly recovered by the basis pursuit and other algorithms. This motivates one to

investigate whether similar recovery theories can also be established for 1-bit CS problems. In

[24], the binary iterative hard thresholding (BIHT) algorithm for 1-bit CS problems is discussed

and the so-called binary ε-stable embedding (BεSE) condition is introduced. The BεSE can be

seen as an extension of the RIP. However, at the current stage, the theoretical analysis for the

guaranteed performance of 1-bit CS algorithms is far from complete, in contrast to the classic

CS. Recovery conditions in terms of the property of Φ and/or y are still under development.

The fundamental assumption on 1-bit CS is that any solution x generated by an algorithm

should be consistent with the acquired 1-bit measurements in the sense that

sign(Φx) = y = sign(Φx∗), (3)

where x∗ is the targeted signal. Clearly, it is very difficult to directly solve a problem with

such a constraint if it does not have a tractable reformation. From a computational point of

view, an ideal relaxation or reformulation of the sign constraint is a linear system. The current

algorithms and theories for 1-bit CS (e.g., [6, 5, 31, 34]) have been developed largely based on

the system (2), which is a linear relaxation of (3). In Section II of this paper, we show that

the existing relaxation based on (2) is not equivalent to the original 1-bit CS model. In fact, a

vector satisfying (2) together with a trivial-solution excluder, such as ‖x‖2 = 1 or ‖Φx‖1 = m,

may not be consistent with the acquired 1-bit measurements y. Some necessary conditions must

be imposed on the matrix in order to ensure that the solution of a decoding algorithm based on

(2) is consistent with y. These necessary conditions have been overlooked in the literature (see

the discussion in Section II for details).

Many existing discussions for 1-bit CS do not distinguish between zero and positive measure-

ments. Both are mapped to 1 (or −1) by a nonstandard sign function. In Section II, we point

out that it is beneficial to allow y admitting zero components and to treat zero and nonzero

measurements separately from both practical and mathematical points of view. Failing to dis-

tinguish zero and nonzero magnitude of measurements might yield ambiguity of measurements

when sensing vectors are nearly orthogonal to the signal. Such ambiguity might prevent from

acquiring a correct sign of measurements due to signal noises or errors in computation.

This motivates us to pursue a new direction to establish a recovery theory for 1-bit CS. Our

study is remarkably different from existing ones in several aspects.

(a) The acquired sign measurements y is allowed to admit zero components. When y does

not contain zero components, our model immediately reduces to the existing 1-bit CS model.

(b) We introduce a truly equivalent reformulation of the 1-bit CS model (1). The model (1)

is reformulated equivalently as an `0-minimization problem with linear constraints. Replacing

‖x‖0 with ‖x‖1 leads naturally to a new linear-program-based decoding method, referred to as

the 1-bit basis pursuit. Different from existing formulations, the new reformulation ensures that

the solution of the 1-bit basis pursuit is always consistent with the acquired 1-bit measurements

y.

(c) The sign recovery theory developed in the paper is from the perspective of the restricted

range space properties (RRSP) of transposed sensing matrices. In classic CS, it has been shown

in [41] that any k-sparse signal can be exactly recovered with basis pursuit if and only if the

transposed sensing matrix admits the so-called range space property (RSP) of order k. This

property is equivalent to the well known NSP of order k in the sense that both are the necessary

and sufficient ccondition for the uniform recovery of k-sparse signals. The new reformulation of

the 1-bit CS model proposed in this paper makes it possible to develop an analogous recovery

guarantee for the sign of sparse signals with 1-bit basis pursuit. This development naturally

yields the concept of the restricted range space property (RRSP) which gives rise to some
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necessary and sufficient conditions for the nonuniform and uniform recovery of the sign of sparse

signals from 1-bit measurements.

The main results of the paper can be summarized as follows:

• (Theorem 3.6, nonuniform) If the 1-bit basis pursuit can exactly recover the sign of k-

sparse signals consistent with 1-bit measurements y, then Φ must admit the N-RRSP of

order k with respect to y (see Definition 3.5).

• (Theorem 3.9, nonuniform) If Φ admits the S-RRSP of order k with respect to y (see

Definition 3.7), then from 1-bit measurements, the 1-bit basis pursuit can exactly recover

the sign of k-sparse signals which are the sparsest vectors consistent with y.

• (Theorem 4.2, uniform) If the 1-bit basis pursuit can exactly recover the sign of all k-sparse

signals from 1-bit measurements, then Φ must admit the so-called N-RRSP of order k (see

Definition 4.1).

• (Theorem 4.4, uniform) If the matrix admits the S-RRSP of order k (see Definition 4.3),

then from 1-bit measurements, the 1-bit basis pursuit can exactly recover the sign of all

k-sparse signals which are the sparsest vectors consistent with 1-bit measurements.

The above-mentioned definitions and theorems are given in Sections III and VI. Central to the

proof of these results is Theorem 3.2 which provides a full characterization for the uniqueness

of solutions to the 1-bit basis pursuit, and thus yields a fundamental basis to develop recovery

conditions.

This paper is organized as follows. We provide motivations for a new reformulation of the

1-bit CS model in Section II. Based on the reformulation, nonuniform sign recovery conditions

with 1-bit basis pursuit are developed in Section III, and uniform sign recovery conditions are

developed in Section IV. The proof of Theorem 3.2 is given in Section V.

We use the following notation in the paper. Let Rn+ be the set of nonnegative vectors in

Rn. The vector x ∈ Rn+ is also written as x ≥ 0. Given a set S, |S| denotes the cardinality

of S. For x ∈ Rn and S ⊆ {1, . . . , n}, let xS ∈ R|S| denote the subvector of x obtained by

deleting those components xi with i /∈ S, and let supp(x) = {i : xi 6= 0} denote the support of

x. The `0-norm ‖x‖0 counts the number of nonzero components of x, and the `1-norm of x is

defined as ‖x‖1 =
∑n

i=1 |xi|. For a matrix Φ ∈ Rm×n, we use ΦT to denote the transpose of Φ,

N (Φ) = {x : Φx = 0} the null space of Φ, R(ΦT ) = {ΦTu : u ∈ Rm} the range space of ΦT ,

ΦJ,n the submatrix of Φ formed by deleting the rows of Φ which are not indexed by J, and Φm,J

the submatrix of Φ formed by deleting the columns of Φ which are not indexed by J . e with a

suitable dimension is the vector of ones, i.e., e = (1, . . . , 1)T .

2 Reformulation of 1-bit compressive sensing

In this section, we point out that for a given matrix, existing 1-bit CS algorithms based on

the relaxation (2) cannot guarantee the found solution being consistent with the acquired 1-bit

measurements y, unless the matrix satisfies some condition. This motivates one to propose a

new reformulation of the 1-bit CS problem so that the resulting algorithm can automatically

ensure its solution being consistent with 1-bit measurements.

2.1 Consistency conditions for existing 1-bit CS methods

The standard sign function is defined as sign(t) = 1 if t > 0, sign(t) = −1 if t < 0, and

sign(t) = 0 otherwise. In the 1-bit CS literature, many researchers do not distinguish between
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zero and positive values of measurements and thus define sign(t) = 1 for t ≥ 0 and sign(t) = −1

otherwise. The function sign(·) defined this way is referred to as a nonstandard sign function in

this paper. We now point out that no matter a standard or nonstandard sign function is used,

the equation y = sign(Φx) is generally not equivalent to the system (2) even if a trivial-solution

excluder such as ‖x‖2 = 1 or ‖Φx‖1 = m is used, unless certain necessary assumptions are made

on Φ. First, since y = sign(Φx) implies Y Φx ≥ 0 (this fact was observed in [6]), the following

statement is obvious:

Lemma 2.1 If Φ ∈ Rm×n and y ∈ {1,−1}m or y ∈ {1, 0,−1}m, then {x : sign(Φx) = y} ⊆ {x :

Y Φx ≥ 0}.

Without a further assumption on Φ, however, the system (2) does not imply sign(Φx) = y

even if some trivial solutions of (2) are excluded by adding a widely used trivial-solution excluder,

such as ‖x‖2 = 1 or ‖Φx‖1 = m, to the system. In fact, for any given y with J− = {i : yi =

−1} 6= ∅, we see that all vectors 0 6= x̃ ∈ N (Φ) (or more generally, x̃ 6= 0 satisfying ΦJ−,nx̃ = 0

and ΦJ+,nx̃ ≥ 0) satisfy Y Φx̃ ≥ 0, but for these vectors, sign(Φx̃) 6= y no matter sign(·) is

standard or nonstandard. The trivial-solution excluder ‖x‖2 = 1 (e.g., [6]) cannot exclude

vectors satisfying 0 6= x̃ ∈ N (Φ) from the set {x : Y Φx ≥ 0}. The excluder ‖Φx‖1 = m (e.g.,

[31, 34]) cannot exclude x̃ satisfying ΦJ−,nx̃ = 0 and 0 6= ΦJ+,nx̃ ≥ 0 from {x : Y Φx ≥ 0}. This

implies that the solutions of some existing 1-bit CS algorithms such as

min{‖x‖1 : Y Φx ≥ 0, ‖x‖2 = 1}, (4)

min{‖x‖1 : Y Φx ≥ 0, ‖Φx‖1 = m} (5)

may not be consistent with the acquired 1-bit measurements. For example, let

Φ =

[
2 −1 0 2
−1 1 1 0

]
, y =

[
1
−1

]
. (6)

Clearly, for any scalar α > 0, x̃(α) = (α, α, 0, 0)T ∈ {x : Y Φx ≥ 0} , but x̃(α) 6∈ {x : y = sign(Φx)}
no matter a standard or nonstandard sign function is used, and no matter which of the above-

mentioned trivial-solution excluders is used. Clearly, there exists a positive number α∗ such

that x̃(α∗) = (α∗, α∗, 0, 0)T is an optimal solution to (4) or (5). But this optimal solution is not

consistent with y.

The above discussion indicates that when J− 6= ∅, x = 0 and x ∈ N (Φ) are not contained in

the set {x : sign(Φx) = y}. In this case, we see from Lemma 2.1 that

{x : sign(Φx) = y} ⊆ {x : Y Φx ≥ 0, x 6= 0}, (7)

{x : sign(Φx) = y} ⊆ {x : Y Φx ≥ 0,Φx 6= 0}. (8)

We now find a condition to ensure the opposite direction of the above containing relations.

Lemma 2.2 Let sign(·) be the nonstandard sign function. Let Φ ∈ Rm×n and y ∈ {1,−1}m
with J− = {i : yi = −1} 6= ∅ be given. Then

{x : Y Φx ≥ 0, x 6= 0} ⊆ {x : sign(Φx) = y} (9)

if and only if  ⋃
i∈J−

N (Φi,n)

 ∩ {d : ΦJ+,nd ≥ 0,ΦJ−,nd ≤ 0
}

= {0} (10)

where J+ = {i : yi = 1}.
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Proof. Let x be an arbitrary vector in the set {x : Y Φx ≥ 0, x 6= 0}. Note that y ∈ {1,−1}m.
So Y Φx ≥ 0 together with x 6= 0 is equivalent to

ΦJ+,nx ≥ 0, ΦJ−,nx ≤ 0, x 6= 0. (11)

Under the condition (10), we see that for any x satisfying (11), it must hold that x /∈
⋃
i∈J− N (Φi,n)

which implies that Φi,nx 6= 0 for all i ∈ J−. Thus under (10), the system (11) becomes

ΦJ+,nx ≥ 0,ΦJ−,nx < 0, x 6= 0 which, by the definition of the nonstandard sign function,

implies that sign(Φx) = y. Thus (9) holds.
We now assume that the condition (10) does not hold. Then there exists a vector d∗ 6= 0

satisfying that

d∗ ∈

 ⋃
i∈J−

N (Φi,n)

 ∩ {d : ΦJ+,nd ≥ 0,ΦJ−,nd ≤ 0
}
. (12)

The fact d∗ ∈
{
d : ΦJ+,nd ≥ 0,ΦJ−,nd ≤ 0

}
implies that d∗ ∈ {x : Y Φx ≥ 0, x 6= 0}, and

0 6= d∗ ∈
⋃
i∈J− N (Φi,n) implies that there is i ∈ J− such that Φi,nd

∗ = 0. By the definition of

nonstandard sign function, this implies that sign(Φi,nd
∗) = 1 6= yi (since yi = −1 for i ∈ J−).

So d∗ /∈ {x : sign(Φx) = y}, and thus (9) does not hold.

The above proof shows that (9) and (10) are equivalent. �

Replacing x 6= 0 with Φx 6= 0 and using the same argument as above yields the next

statement.

Lemma 2.3 Under the same conditions of Lemma 2.2, the following statement holds: {x :
Y Φx ≥ 0,Φx 6= 0} ⊆ {x : sign(Φx) = y} if and only if ⋃

i∈J−

N (Φi,n)

 ∩ {d : ΦJ+,nd ≥ 0,ΦJ−,nd ≤ 0,Φd 6= 0
}

= ∅. (13)

where ∅ denotes the empty set.

Therefore, we have the following result.

Theorem 2.4 Let sign(·) be the nonstandard sign function, and let Φ ∈ Rm×n and y ∈ {1,−1}m
be given.

(i) If J− = ∅, then {x : sign(Φx) = y} = {x : Y Φx ≥ 0}.

(ii) If J− 6= ∅, then {x : sign(Φx) = y} = {x : Y Φx ≥ 0, x 6= 0} if and only if (10) holds.

(iii) If J− 6= ∅, then {x : sign(Φx) = y} = {x : Y Φx ≥ 0,Φx 6= 0} if and only if (13) holds.

The result (i) above is obvious. Results (ii) and (iii) follow by combining (7), (8) and Lemmas

2.2 and 2.3. It is easy to verify that the example (6) does not satisfy (10) and (13).

We now consider the standard sign function. In this case, for y = 0, the set {x : Y Φx ≥ 0} =

Rn and {x : 0 = sign(Φx)} = {x : Φx = 0} = N (Φ) 6= Rn provided that Φ 6= 0; for y 6= 0, we see

that N (Φ) ⊆ {x : Y Φx ≥ 0} but any vector in N (Φ) fails to satisfy the equation sign(Φx) = y.

Thus we have following observation:

Lemma 2.5 For standard sign function and any nonzero Φ ∈ Rm×n, we have {x : Y Φx ≥ 0} 6=
{x : sign(Φx) = y}.
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In general, the set {x : Y Φx ≥ 0} can be significantly larger than {x : sign(Φx) = y}. In

what follows, we only focus on the nontrivial case y 6= 0. For a given 0 6= y ∈ {1,−1, 0}m, when

J0 = {i : yi = 0} 6= ∅, the vectors in N (Φ) and the vectors x satisfying ΦJ0,nx 6= 0 do not satisfy

the constraint sign(Φx) = y. These vectors must be excluded from {x : Y Φx ≥ 0} in order to

get a tighter relaxation for the sign equation. In other words, only vectors satisfying Φx 6= 0

and ΦJ0,nx = 0, i.e., x ∈ N (ΦJ0,n)\N (Φ), should be considered. (Note that N (Φ) ⊆ N (ΦJ0,n)

due to the fact ΦJ0,n being a submatrix of Φ.) Thus we have the following result.

Theorem 2.6 Let Φ ∈ Rm×n and 0 6= y ∈ {1, 0,−1}m be given. For the standard sign function,

the following statements hold:

(i) {x : y = sign(Φx)} ⊆ {x : Y Φx ≥ 0,ΦJ0,nx = 0,Φx 6= 0}.
(ii) {x : Y Φx ≥ 0,ΦJ0,nx = 0,Φx 6= 0, } ⊆ {x : sign(Φx) = y} if and only if ⋃

i∈J+∪J−

N (Φi,n)

 ⋂
{d : ΦJ+,nd ≥ 0,ΦJ−,nd ≤ 0,

ΦJ0,nd = 0,Φd 6= 0} = ∅. (14)

Proof. The statement (i) follows from Lemma 2.1 and the discussion before Theorem 2.6.

We now prove the statement (ii). First we assume that (14) holds, and let x̂ be an arbitrary

vector in the set {x : Y Φx ≥ 0,ΦJ0,nx = 0,Φx 6= 0}. Then

ΦJ+,nx̂ ≥ 0, ΦJ−,nx̂ ≤ 0, ΦJ0,nx̂ = 0, Φx̂ 6= 0. (15)

As y 6= 0, the set J+ ∪ J− 6= ∅. It follows from (14) and (15) that x̂ /∈
⋃
i∈J+∪J− N (Φi,n),

which implies that the inequalities ΦJ+,nx̂ ≥ 0 and ΦJ− x̂ ≤ 0 in (15) must hold strictly, i.e.,

ΦJ+,nx̂ > 0, ΦJ−,nx̂ < 0, ΦJ0,nx̂ = 0, Φx̂ 6= 0, and hence sign(Φx̂) = y. So

{x : Y Φx ≥ 0,ΦJ0,nx = 0,Φx 6= 0} ⊆ {x : sign(Φx) = y}. (16)

We now further prove that if (14) does not hold, then (16) does not hold. Indeed, assume

that (14) is not satisfied. Then there exists a vector d̂ satisfying

ΦJ+,nd̂ ≥ 0, ΦJ−,nd̂ ≤ 0, ΦJ0,nd̂ = 0, Φd̂ 6= 0

and

d̂ ∈
⋃

i∈J+∪J−

N (Φi,n).

This implies that d̂ ∈ {x : Y Φx ≥ 0,ΦJ0,nx = 0,Φx 6= 0} and that there exists i ∈ J+ ∪ J− such

that Φi,nd̂ = 0. Thus sign(Φi,nd̂) = 0 6= yi where yi = 1 or −1 (since i ∈ J+ ∪ J−). Thus (16)

does not hold. �

Therefore, under the conditions of Theorem 2.6, the set {x : sign(Φx) = y} coincides with

{x : Y Φx ≥ 0,ΦJ0,nx = 0,Φx 6= 0} if and only if condition (14) holds. Recall that the 1-bit CS

problem ([6, 4, 31]) can be cast as the `0-minimization problem (1), which admits the relaxation

min{‖x‖0 : Y Φx ≥ 0, ‖x‖2 = 1}, (17)

min{‖x‖0 : Y Φx ≥ 0, ‖Φx‖1 = m}, (18)

where m is not essential and can be replaced with any positive constant. Replacing ‖x‖0 by

‖x‖1 immediately leads to (4) and (5) which are linear programming models.
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To guarantee that problems (17) and (18) are equivalent to (1) and that problems (4) and

(5) are equivalent to the problem

min{‖x‖1 : sign(Φx) = y}, (19)

as shown in Theorems 2.4 and 2.6, the conditions (10), (13) or (14), depending on the definition

of the sign function, must be imposed on the matrix. These conditions have been overlooked

in the literature. If (10), (13) or (14) is not satisfied, the feasible sets of (17), (18), (4) and (5)

are larger than that of (1) and (19), and thus their solutions might not satisfy the sign equation

sign(Φx) = y. In other words, the constructed signal through the algorithms for solving (17),

(18), (4) and (5) might be inconsistent with the acquired 1-bit measurements.

2.2 Allowing zero in sign measurements y

The 1-bit CS model with a nonstandard sign function does not cause any inconvenience or diffi-

culty when the magnitude of all components of |Φx∗| is relatively large, in which case sign(Φx∗)

is stable in the sense that any small perturbation of Φx∗ does not affect its sign. However, when

|Φx∗| admits a very small components (this case does happen in some situations, as we point out

later), the nonstandard sign function might introduce certain ambiguity into the 1-bit CS model

since Φx∗ > 0, Φx∗ = 0 and 0 6= Φx∗ ≥ 0 yield the same measurements y = (1, 1, . . . , 1)T . Once

y is acquired, the information concerning which of the above cases yields y in 1-bit CS models

is lost. In this situation, through sign information only, it might be difficult to reconstruct the

information of the targeted signal no matter what 1-bit CS algorithms are used.

When the magnitude of |Φi,nx
∗| is very small, errors or noises do affect the reliability of

the measurements y. The reliability of y is vital since the unknown signal is expected to be

partially or fully reconstructed from y. Suppose that x∗ is the signal to recovery. We consider a

sensing matrix Φ ∈ Rm×n whose rows are uniformly drawn from the surface of the n-dimensional

unit ball {u ∈ Rn : ‖u‖2 = 1}. Note that for any small positive number ε > 0, with positive

probability, a drawn vector lies in the region of the unit surface

{u ∈ Rn : ‖u‖2 = 1, |uTx∗| ≤ ε}.

The sensing row vector Φi,n drawn in this region yields a very small product Φi,nx
∗ ≈ 0, at

which sign(Φi,nx
∗) becomes sensitive or uncertain in the sense that any small error in measuring

Φi,nx
∗ can totally flip its sign, leading to an opposite of the correct sign measurement. In this

situation, not only the acquired information yi might be unreliable to be used for the recover of

the sign of a signal, but also the measured value yi = 1 or −1 does not reflect the fact Φi,nx
∗ ≈ 0,

which indicates that x∗ is nearly orthogonal to the known sensing vector Φi,n. The information

Φi,nx
∗ ≈ 0 is particularly useful to help locate the position of the unknown vector x∗. Using only

1 or −1 as the sign of Φi,nx
∗, however, the information Φi,nx

∗ ≈ 0 is completely lost in the 1-bit

CS model. Allowing yi = 0 in this case can correctly reflect the relation of Φi,n and x∗ when

they are nearly orthogonal. Taking into account the small magnitude of |Φi,nx
∗| and allowing

y to admit zero components provides a practical means to avoid the aforementioned ambiguity

of sign measurements resulting from the nonstandard sign function. By using the standard sign

function to distinguish the three different cases Φx∗ > 0, Φx∗ = 0, and 0 6= Φx∗ ≥ 0, the

resulting sign measurements y would carry more information of the signal, which might increase

the chance for the sign recovery of the signal.

Thus we consider the 1-bit CS model with the standard sign function in this paper. In fact,

the standard sign function was already used by some authors (e.g., [31]) but their discussions

are based on the linear relaxation of (2).
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2.3 Reformulation of 1-bit CS model

From the above discussions, the system (2) is generally a loose relaxation of the sign constraint

of (1). The 1-bit CS algorithms based on this relaxation might generate a solution inconsistent

with 1-bit measurements if a sensing matrix does not satisfy the conditions specified in Theorems

2.4 and 2.6. We now introduce a new reformulation of the 1-bit CS model, which can ensure that

the solution of our 1-bit CS algorithm is always consistent with the acquired 1-bit measurements.
In the remainder of the paper, we focus on the 1-bit CS problem with standard sign function.

For a given y ∈ {−1, 1, 0}m, we use J+, J− and J0 to denote the indices of positive, negative,
and zero components of y, respectively, i.e.,

J+ = {i : yi = 1}, J− = {i : yi = −1}, J0 = {i : yi = 0}. (20)

Since these indices are determined by y, we also write them as J+(y), J−(y) and J0(y) when
necessary. By using (20), the constraint sign(Φx) = y can be written as

sign(ΦJ+,nx) = eJ+ , sign(ΦJ−,nx) = −eJ− ,ΦJ0,nx = 0. (21)

Thus the model (1) with y ∈ {−1, 1, 0}m can be stated as

min ‖x‖0
s.t. sign(ΦJ+,nx) = eJ+ , sign(ΦJ−,nx) = −eJ− ,

ΦJ0,nx = 0.
(22)

Consider the system in u ∈ Rn

ΦJ+,nu ≥ eJ+ , ΦJ−,nu ≤ −eJ− , ΦJ0,nu = 0. (23)

Clearly, if x satisfies (21), then there exists a positive number α > 0 such that u = αx satisfies

the system (23); conversely, if u satisfies the system (23), then x = u satisfies the system (21).

Note that ‖x‖0 = ‖αx‖0 for any α 6= 0. Thus (22) can be reformulated as the `0-minimization

problem

min ‖x‖0
s.t. ΦJ+,nx ≥ eJ+ , ΦJ−,nx ≤ −eJ− , ΦJ0,nx = 0.

(24)

From the relation of (21) and (23), we immediately have the following observation.

Proposition 2.7 If x∗ is an optimal solution to the 1-bit CS model (22), then there exists a

positive number α > 0 such that αx∗ is an optimal solution to the `0-problem (24); conversely,

if x∗ is an optimal solution to the `0-problem (24), then x∗ must be an optimal solution to (22).

As a result, to study the 1-bit CS model (22), it is sufficient to investigate the model (24).

This makes it possible to use the CS methodology to study the 1-bit CS problem (22). Motivated

by (24), we consider the `1-minimization

min ‖x‖1
s.t. ΦJ+,nx ≥ eJ+ , ΦJ−,nx ≤ −eJ− , ΦJ0,nx = 0,

(25)

which can be seen as a natural decoding method for the 1-bit CS problems. In this paper, the

problem (25) is referred to as the 1-bit basis pursuit. It is worth stressing that the optimal

solution of (25) is always consistent with y as indicated by Proposition 2.7. More importantly,

the later analysis indicates that our reformulation makes it possible to develop a sign recovery

theory for sparse signals from 1-bit measurements.
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For the convenience of analysis, we define the sets A(·), Ã+(·) and Ã−(·) which are used

frequently in this paper. Let x∗ ∈ Rn satisfy the constraints of (25). At x∗, let

A(x∗) = {i : (Φx∗)i = 1} ∪ {i : (Φx∗)i = −1}, (26)

Ã+(x∗) = J+ \ A(x∗), Ã−(x∗) = J− \ A(x∗). (27)

Clearly, A(x∗) is the index set of active constraints among the inequality constraints of (25),

Ã+(x∗) is the index set of inactive constraints in the first group of inequalities of (25) (i.e.,

ΦJ+,nx
∗ ≥ eJ+), and Ã−(x∗) is the index set of inactive constraints in the second group of

inequalities of (25) (i.e., ΦJ−,nx
∗ ≤ −eJ−). Thus we see that

(Φx∗)i = 1 for i ∈ A(x∗) ∩ J+,

(Φx∗)i > 1 for i ∈ Ã+(x∗),

(Φx∗)i = −1 for i ∈ A(x∗) ∩ J−,
(Φx∗)i < −1 for i ∈ Ã−(x∗).

We also need symbols π(·) and %(·) defined as follows. Denote the elements in J+ by ik ∈
{1, ...,m}, k = 1, . . . , p, i.e., J+ = {i1, i2, . . . , ip} where p = |J+|. Without loss of generality, we

let the elements be sorted in ascending order i1 < i2 < · · · < ip. Then we define the bijective

mapping π : J+ → {1, . . . , p} as

π(ik) = k for all k = 1, . . . , p. (28)

Similarly, let J− = {j1, j2, . . . , jq}, where q = |J−|, jk ∈ {1, . . . ,m} for k = 1, . . . , q and j1 <

j2 < · · · < jq. We define the bijective mapping % : J− → {1, . . . , q} as

%(jk) = k for all k = 1, . . . , q. (29)

By introducing variables α ∈ R|J+|+ and β ∈ R|J−|+ , the problem (25) can be written as

min ‖x‖1,
s.t. ΦJ+,nx− α = eJ+ ,

ΦJ−,nx+ β = −eJ− , (30)

ΦJ0,nx = 0,

α ≥ 0, β ≥ 0.

Note that for any optimal solution (x∗, α∗, β∗) of (30), we have α∗ = ΦJ+,nx
∗ − eJ+ and β∗ =

−eJ− − ΦJ−,nx
∗. Using (26)–(29), we immediately have the following observation.

Lemma 2.8 (i) For any optimal solution (x∗, α∗, β∗) to the problem (30), we have
α∗π(i) = 0, for i ∈ A(x∗) ∩ J+,

α∗π(i) = (Φx∗)i − 1 > 0, for i ∈ Ã+(x∗),

β∗%(i) = 0, for i ∈ A(x∗) ∩ J−,
β∗%(i) = −1− (Φx∗)i > 0, for i ∈ Ã−(x∗).

(31)

(ii) x∗ is the unique optimal solution to the 1-bit basis pursuit (25) if and only if (x∗, α∗, β∗) is

the unique optimal solution to the problem (30), where (α∗, β∗) is determined by (31).
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2.4 Recovery criteria

When y = sign(Φx∗) ∈ {1,−1}m, any small perturbation x∗+u is also consistent with y. When

y ∈ {1,−1, 0}m, any small perturbation x∗ + u with u ∈ N (ΦJ0,n) is also consistent with y.

Thus a 1-bit CS problem generally has infinitely many solutions and the sparsest solution of

a sign equation is also not unique in general. Since the amplitude of signals is not available,

the recovery criteria in 1-bit CS scenarios can be sign recovery, support recovery or others,

depending on signal environments. The exact sign recovery of a signal means that the found

solution x̃ by an algorithm satisfies

sign(x̃) = sign(x∗).

The support recovery, i.e., the found solution x̃ satisfying supp(x̃) = supp(x∗) is a relaxed

version of the sign recovery. It is worth mentioning that the following criterion∥∥∥∥ x

‖x‖2
− x∗

‖x∗‖2

∥∥∥∥ ≤ ε
has been widely used in the 1-bit CS literature, where ε > 0 is a certain small number.

In the remainder of the paper, we work toward developing some necessary and sufficient

conditions for the exact recovery of the sign of sparse signals from 1-bit measurements.

3 Nonuniform sign recovery

We assume that the measurements y = sign(Φx∗) is available. From this information, we use

the 1-bit basis pursuit (25) to recover the sign of x∗. We ask when the optimal solution of (25)

admits the same sign of x∗. The recovery of the sign of an individual sparse signal is referred

to as the nonuniform sign recovery. In this section, we develop certain necessary and sufficient

conditions for the nonuniform sign recovery from the perspective of the range space property of

a transposed sensing matrix.

Assume that y ∈ {1,−1, 0}m is given and (J+, J−, J0) is specified as (20). We first introduce

the concept of the RRSP.

Definition 3.1 (RRSP of ΦT at x∗) Let x∗ ∈ Rn satisfy y = sign(Φx∗). We say that ΦT

satisfies the restricted range space property (RRSP) at x∗ if there exist vectors η ∈ R(ΦT ) and

w ∈ F(x∗) such that η = ΦTw and

ηi = 1 for x∗i > 0, ηi = −1 for x∗i < 0, |ηi| < 1 for x∗i = 0,

where F(x∗) is the set defined as

F(x∗) = {w ∈ Rm : wi > 0 for i ∈ A(x∗) ∩ J+,

wi < 0 for i ∈ A(x∗) ∩ J−, (32)

wi = 0 for i ∈ Ã+(x∗) ∪ Ã−(x∗)}.

The RRSP of ΦT at x∗ is a natural condition for the uniqueness of optimal solutions to the

1-bit basis pursuit (25), as shown by the following theorem.

Theorem 3.2 (Necessary and sufficient condition) x∗ is the unique optimal solution to

the 1-bit basis pursuit (25) if and only if the RRSP of ΦT at x∗ holds and the matrix

H(x∗) =

 ΦA(x∗)
⋂
J+,S+

ΦA(x∗)
⋂
J+,S−

ΦA(x∗)
⋂
J−,S+

ΦA(x∗)
⋂
J−,S−

ΦJ0,S+ ΦJ0,S−

 (33)

has a full-column rank, where S+ = {i : x∗i > 0} and S− = {i : x∗i < 0}.
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The proof of Theorem 3.2 requiring some fundamental facts for linear programs is given in

Section V. The uniqueness of solutions to a decoding method like (25) is an important property

required in signal reconstruction. As indicated in [20, 33, 19, 41], the uniqueness conditions

often lead to certain criteria for the nonuniform and uniform recovery of sparse signals. Later,

we will see that Theorem 3.2, together with the matrix properties N-RRSP and S-RRSP of order

k that will be introduced in this and next sections, provides a fundamental basis to develop a

sign recovery theory for sparse signals from 1-bit measurements. Let us begin with the following

lemma.

Lemma 3.3 Let x∗ be a sparsest solution of the `0-problem (24) and let S+ and S− be defined

as in Theorem 3.2. Then

H̃(x∗) =


ΦA(x∗)∩J+,S+

ΦA(x∗)∩J+,S−
ΦA(x∗)∩J−,S+

ΦA(x∗)∩J−,S−
ΦJ0,S+ ΦJ0,S−

ΦÃ+(x∗),S+
ΦÃ+(x∗),S−

ΦÃ−(x∗),S+
ΦÃ−(x∗),S−

 (34)

has a full-column rank. Furthermore, at any sparsest solution x∗ of (24), which admits the

maximum cardinality |A(x∗)| = max{|A(x)| : x ∈ F ∗}, where F ∗ is the set of optimal solutions

of (24), H(x∗) given by (33) has a full-column rank.

Proof. Note that x∗ is a sparsest solution to the system

ΦJ+,nx
∗ ≥ eJ+ , ΦJ−,nx

∗ ≤ −eJ− , ΦJ0,nx
∗ = 0. (35)

Including α∗ and β∗, given by (31), into (35) leads to

ΦJ+,nx
∗ − α∗ = eJ+ , ΦJ−,nx

∗ + β∗ = −eJ− , ΦJ0,nx
∗ = 0. (36)

Eliminating the zero components of x∗ from (36) leads to
ΦJ+,S+x

∗
S+

+ ΦJ+,S−x
∗
S−
− α∗ = eJ+ ,

ΦJ−,S+x
∗
S+

+ ΦJ−,S−x
∗
S−

+ β∗ = −eJ− ,
ΦJ0,S+x

∗
S+

+ ΦJ0,S−x
∗
S−

= 0.

(37)

Since x∗ is a sparsest solution of (24), it is not very difficult to see that the coefficient matrix

Ĥ =

 ΦJ+,S+ ΦJ+,S−

ΦJ−,S+ ΦJ−,S−

ΦJ0,S+ ΦJ0,S−


has a full-column rank, since otherwise at least one column of Ĥ can be linearly represented by
its other columns, the system (37), which is equivalent to (35), has a solution sparser than x∗.
From (26) and (27), we see that

J+ = (A(x∗) ∩ J+) ∪ Ã+(x∗), J− = (A(x∗) ∩ J−) ∪ Ã−(x∗). (38)

Performing row permutations on Ĥ, if necessary, yields H̃(x∗) given as (34). Since row permu-

tations do not affect the column rank of Ĥ, H̃(x∗) must have a full-column rank.

We now show that H(x∗) has a full-column rank if A(x∗) admits the maximum cardinality

in the sense that |A(x∗)| = max{|A(x)| : x ∈ F ∗}, where F ∗ is the set of optimal solutions of
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(24). We prove this by contradiction. Assume that the columns of H(x∗) are linearly dependent.

Then there is a nonzero vector d = (u, v) ∈ R|S+| ×R|S−| such that

H(x∗)d = H(x∗)

[
u
v

]
= 0.

Since d 6= 0 and H̃(x∗), given by (34), has a full-column rank, we see that[
ΦÃ+(x∗),S+

ΦÃ+(x∗),S−

ΦÃ−(x∗),S+
ΦÃ−(x∗),S−

] [
u
v

]
6= 0. (39)

Let x(λ) be the vector with components x(λ)S+ = x∗S+
+ λu, x(λ)S− = x∗S− + λv and x(λ)i =

0 for all i /∈ S+ ∪ S−, where λ ∈ R. Clearly, we have supp(x(λ)) ⊆ supp(x∗) for any λ ∈ R. By

(31) and (38), the system (37) is equivalent to

ΦA(x∗)∩J+,S+
x∗S+

+ ΦA(x∗)∩J+,S−x
∗
S−

= eA(x∗)∩J+ ,

ΦA(x∗)∩J−,S+
x∗S+

+ ΦA(x∗)∩J−,S−x
∗
S−

= −eA(x∗)∩J− ,

ΦJ0,S+x
∗
S+

+ ΦJ0,S−x
∗
S−

= 0,

ΦÃ+(x∗),S+
x∗S+

+ ΦÃ+(x∗),S−
x∗S− > eÃ+(x∗),

ΦÃ−(x∗),S+
x∗S+

+ ΦÃ−(x∗),S−
x∗S− < −eÃ−(x∗),

(40)

From the above system and the definition of x(λ), we see that for any sufficiently small |λ| 6= 0,
the vector (x(λ)S+ , x(λ)S−) satisfies the system

H(x∗)

[
x(λ)S+

x(λ)S−

]
=

 eA(x∗)∩J+
−eA(x∗)∩J−

0

 , (41)

[
ΦÃ+(x∗),S+

,ΦÃ+(x∗),S−

] [
x(λ)S+

x(λ)S−

]
> eÃ+(x∗), (42)[

ΦÃ−(x∗),S+
,ΦÃ−(x∗),S−

] [ x(λ)S+

x(λ)S−

]
< −eÃ−(x∗). (43)

Equality (41) actually holds for any λ ∈ Rn. Starting from λ = 0, we continuously increase the

value of |λ|. In this process, if one of the components of the vector (x(λ)S+ , x(λ)S−) satisfying

(41)–(43) becomes zero, then a sparser solution than x∗ is found, leading to a contradiction.

Thus without loss of generality, we assume that supp(x(λ)) = supp(x∗) is maintained when |λ| is
continuously increased. It follows from (39) that there exists λ∗ 6= 0 such that (x(λ∗)S+ , x(λ∗)S−)

satisfies (41)–(43) and at this vector, one of the inactive constraints in (42) and (43) becomes

active. Therefore |A(x(λ∗))| > |A(x∗)|. This contradicts the fact |A(x∗)| has the maximal

cardinality amongst the sparsest solutions. Thus we conclude that H(x∗) must have a full-

column rank. �

From Lemma 3.3, we see that the full-rank property of (33) can be guaranteed if x∗ is a

sparsest solution consistent with 1-bit measurements and |A(x∗)| is maximal. Thus by Theorem

3.2, the central condition for x∗ to be the unique optimal solution to (25) is the RRSP described

in Definition 3.1. From the above discussions, we obtain the following connection between 1-bit

CS and 1-bit basis pursuit.

Theorem 3.4 (i) Suppose that x∗ is an optimal solution to the `0-problem (24) with maximal

|A(x∗)|. Then x∗ is the unique optimal solution to (25) if and only if the RRSP of ΦT at x∗

holds. (ii) Suppose that x∗ is an optimal solution to the problem (22) or (24). Then the sign

of x∗ coincides with the sign of the unique solution of (25) if and only if there exists a weight
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z ∈ Rn satisfying zi > 0 for i ∈ supp(x∗) and zi = 0 for i /∈ supp(x∗) such that Zx∗, where

Z = diag(z), is feasible to (25) and H(Zx∗) has a full-column rank and the RRSP of ΦT at Zx∗

holds.

Proof. Result (i) follows directly from Lemma 3.3 and Theorem 3.2. We now prove result

(ii). If the sign of x∗ coincides with the sign of the unique optimal solution x̃ of (25), then x̃

can be written as x̃ = Zx∗ for a certain weight satisfying that zi > 0 for i ∈ supp(x∗) and

zi = 0 for i /∈ supp(x∗). It follows from Theorem 3.2 that H(Zx∗) has a full-column rank and

the RRSP of ΦT at Zx∗ holds. Conversely, if there exists a weight z ∈ Rn satisfying zi > 0 for

i ∈ supp(x∗) and zi = 0 for i /∈ supp(x∗) such that x̃ = Zx∗, where Z = diag(z), is feasible to

(25) and H(Zx∗) has a full-column rank and the RRSP of ΦT at Zx∗ holds, then by Theorem

3.2 again x̃ = Zx∗ is the unique optimal solution to (25). Clearly, by the definition of Z, we

have sign(x̃) = sign(Zx∗) = sign(x∗). �

The above result provides some insight into the nonuniform recovery of the sign of an indi-

vidual sparse signal via the 1-bit measurements and 1-bit basis pursuit. This result indicates

that central to the sign recovery of x∗ is the RRSP of ΦT at x∗. However, this property is defined

at x∗, which is unknown in advance. Thus we need to further strengthen this concept in order

to develop certain recovery conditions independent of the specific signal x∗. To this purpose, we

introduce the notion of N- and S-RRSP of order k with respect to 1-bit measurements, which

turns out to be a necessary condition and a sufficient condition, respectively, for the nonuniform

sign recovery.

For given measurements y ∈ {1,−1, 0}m, let P (y) denote the set of all possible partitions of

the support of signals consistent with y:

P (y) = {(S+(x), S−(x)) : y = sign(Φx)}

where S+(x) = {i : xi > 0} and S−(x) = {i : xi < 0}.

Definition 3.5 (N-RRSP of order k with respect to y) The matrix ΦT is said to satisfy

the necessary restricted range space property (N-RRSP) of order k with respect to y if there

exist a pair (S+, S−) ∈ P (y) with |S+ ∪ S−| ≤ k and a pair (T1, T2) with T1 ⊆ J+, T2 ⊆ J−,

T1 ∪ T2 6= J+ ∪ J− and

 ΦJ+\T1,S
ΦJ−\T2,S

ΦJ0,S

 , where S = S+ ∪ S−, having a full-column rank such that

there is a vector η ∈ R(ΦT ) satisfying the following properties:

(i) ηi = 1 for i ∈ S+, ηi = −1 for i ∈ S−, |ηi| < 1 otherwise;

(ii) η = ΦTw for some w ∈ F(T1, T2), where

F(T1, T2) = {w ∈ Rm : wJ+\T1 > 0, wJ−\T2 < 0,

wT1∪T2 = 0}. (44)

The above matrix property turns out to be a necessary condition for the nonuniform recovery

of the sign of a k-sparse signal, as shown by the next theorem.

Theorem 3.6 Let x∗ be an unknown k-sparse signal (i.e., ‖x∗‖0 ≤ k) and assume that the

measurements y = sign(Φx∗) are known. If the 1-bit basis pursuit (25) admits a unique optimal

solution x̃ satisfying sign(x̃) = sign(x∗) (i.e., the sign of x∗ can be exactly recovered by (25)),

then ΦT has the N-RRSP of order k with respect to y.
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Proof. Suppose that the measurements y = sign(Φx∗) are given, where x∗ is an unknown

k-sparse signal. By the definition of P (y), we see that (S+(x∗), S−(x∗)) ∈ P (y). Denote by

S = S+(x∗) ∪ S−(x∗). Suppose that (25) has a unique optimal solution x̃ satisfying sign(x̃) =

sign(x∗), which implies that (S+(x̃), S−(x̃)) = (S+(x∗), S−(x∗)). By Theorem 3.2, the uniqueness

of x̃ implies that the RRSP of ΦT at x̃ holds and H(x̃) has a full-column rank. Let

T1 = Ã+(x̃) = J+ \ A(x̃), T2 = Ã−(x̃) = J− \ A(x̃). (45)

Note that at any optimal solution of (25), at least one of the inequality constraints of (25)

must be active. Thus A(x̃) 6= ∅, which implies that T1 ∪ T2 6= J+ ∪ J−. We also note that

J+ \ T1 = J+ ∩ A(x̃) and J−\T2 = J− ∩ A(x̃). Hence the matrix

 ΦJ+\T1,S
ΦJ−\T2,S

ΦJ0,S

 , coinciding

with H(x̃), has a full-column rank. The RRSP of ΦT at x̃ implies that properties (i) and (ii)

of Definition 3.5 are satisfied with (S+, S−) = (S+(x̃), S−(x̃)) = (S+(x∗), S−(x∗)) and (T1, T2)

being given as (45). This implies that the N-RRSP of order k with respect to y must hold. �

A slight enhancement of the N-RRSP property by varying the choices of (S+, S−) and

(T1, T2), we obtain the next property which turns out to be a sufficient condition for the exact

recovery of the sign of a k-sparse signal.

Definition 3.7 (S-RRSP of order k with respect to y) The matrix ΦT is said to satisfy

the sufficient restricted range space property (S-RRSP) of order k with respect to y if for any

(S+, S−) ∈ P (y) with |S+ ∪ S−| ≤ k, there exists a pair (T1, T2) such that T1 ⊆ J+, T2 ⊆ J−,

T1 ∪ T2 6= J+ ∪ J−and

 ΦJ+\T1,S
ΦJ−\T2,S

ΦJ0,S

 , where S = S+ ∪ S−, has a full-column rank, and for any

such a pair (T1, T2), there is a vector η ∈ R(ΦT ) satisfying the following properties:

(i) ηi = 1 for i ∈ S+, ηi = −1 for i ∈ S−, |ηi| < 1 otherwise;

(ii) η = ΦTw for some w ∈ F(T1, T2) defined by (44).

Note that when

 ΦJ+\T1,S
ΦJ−\T2,S

ΦJ0,S

 has a full-column rank, so does Φm,S . Thus we have the next

lemma.

Lemma 3.8 If ΦT satisfies the S-RRSP of order k with respect to y, then for any (S+, S−) ∈
P (y) with |S+ ∪ S−| ≤ k, Φm,S must have a full-column rank, where S = S+ ∪ S−.

For a given y, the equation y = sign(Φx) might possess infinitely many solutions. We now

prove that if x∗ is a sparsest solution to this equation, then its sign can be exactly recovered by

(25) if ΦT has the S-RRSP of order k with respect to y.

Theorem 3.9 Let measurements y ∈ {−1, 1, 0}m be given and assume that ΦT has the S-RRSP

of order k with respect to y. Then the 1-bit basis pursuit (25) admits a unique optimal solution

x′ satisfying supp(x′) ⊆ supp(x∗) for any k-sparse signal x∗ consistent with the measurements

y, i.e., y = sign(Φx∗). Furthermore, if x∗ is a sparsest signal consistent with y, then sign(x′) =

sign(x∗), and thus the sign of x∗ can be exactly recovered by (25).
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Proof. Let x∗ be a k-sparse signal consistent with y, i.e., sign(Φx∗) = y. Denote by S+ =

{i : x∗i > 0}, S− = {i : x∗i < 0} and S = supp(x∗) = S+ ∪ S−. Clearly, (S+, S−) ∈ P (y)

and |S+ ∪ S−| ≤ k. Consistency implies that (Φx∗)i > 0 for all i ∈ J+, (Φx
∗)i < 0 for all i ∈ J−

and (Φx∗)i = 0 for all i ∈ J0. This implies that there is a scalar α > 0 such that α(Φx∗)i ≥
1 for all i ∈ J+ and α(Φx∗)i ≤ −1 for all i ∈ J−. Thus αx∗ is feasible to (25), i.e.,

ΦJ+,n(αx∗) ≥ eJ+ , (46)

ΦJ−,n(αx∗) ≤ −eJ− , (47)

ΦJ0,n(αx∗) = 0. (48)

We see that α ≥ 1
(Φx∗)i

for i ∈ J+ and α ≥ 1
−(Φx∗)i

for i ∈ J−. Let α∗ be the smallest α satisfying

these inequalities, i.e.

α∗ = max

{
max
i∈J+

1

(Φx∗)i
,max
i∈J−

1

−(Φx∗)i

}
= max
i∈J+∪J−

1

|(Φx∗)i|
.

By the choice of α∗, at α∗x∗ one of the inequalities in (46) and (47) becomes an equality. Let
T ′0 and T ′′0 be the set of indices for active constraints in (46) and (47), i.e.,

T ′0 = {i ∈ J+ : Φ(α∗x∗)i = 1} , T ′′0 = {i ∈ J− : Φ(α∗x∗)i = −1}

If the null space N (

 ΦT ′0,S

ΦT ′′0 ,S

ΦJ0,S

) 6= {0}, then let d 6= 0 be a vector in this null space. It follows

from Lemma 3.8 that Φm,S has a full-column rank. This implies that[
ΦJ+\T ′0,S
ΦJ−\T ′′0 ,S

]
d 6= 0. (49)

Consider the vector x(λ) with components x(λ)S = α∗x∗S + λd and x(λ)i = 0 for i /∈ S, where

λ ∈ R. By the choice of d, we see that supp(x(λ)) ⊆ supp(x∗) for any λ ∈ R. For all sufficiently

small |λ|, the vector x(λ) is feasible to the problem (25) and the active constraints at α∗x∗ in

(46) and (47) are still active at x(λ) and the inactive constraints at α∗x∗ are still inactive at

x(λ). Due to (49), if letting |λ| continuously vary from zero to a positive number, there exists

λ∗ 6= 0 such that x(λ∗) is still feasible to (25) and one of the above-mentioned inactive constraints

becomes active at x(λ∗). Let x′ = x(λ∗) and

T ′ =
{
i ∈ J+ : (Φx′)i = 1

}
, T ′′ =

{
i ∈ J− : (Φx′)i = −1

}
.

By the construction of x′, we see that T ′0 ⊆ T ′ and T ′′0 ⊆ T ′′. So we obtain an augmented set of

active constraints at x′.

Now replace the role of α∗x∗ by x′ and repeat the above process. If N (

 ΦT ′,S

ΦT ′′,S

ΦJ0,S

) 6= {0},

pick a vector d′ 6= 0 from this null space. Since Φm,S has a full-column rank, we must have that[
ΦJ+\T ′,S
ΦJ−\T ′′,S

]
d′ 6= 0. So we can continue to update the components of x′ by setting x′S ← x′S+λ′d′

and keeping x′i = 0 for i /∈ S, where λ′ is chosen such that x′S + λ′d′ is still feasible to (25) and

one of the inactive constraints at the current point x′ becomes active at x′S + λ′d′. Thus the

index sets T ′ and T ′′ for active constraints are further augmented.

Since Φm,S has a full-column rank, after repeating the above process a finite number of times,

we stop at a point, denoted still by x′, at which N (

 ΦT ′,S

ΦT ′′,S

ΦJ0,S

) = {0}, i.e.,

 ΦT ′,S

ΦT ′′,S

ΦJ0,S

 has a
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full-column rank. Note that supp(x′) ⊆ supp(x∗) is always maintained in the above process.

Define the sets

T1 = Ã+(x′), T2 = Ã−(x′). (50)

Thus T1 ⊆ J+ and T2 ⊆ J−. By the construction of x′, we see that A(x′) 6= ∅. Thus (T1, T2)

given by (50) satisfies that T1 ∪ T2 6= J+ ∪ J−.
We now further prove that x′ must be the unique optimal solution to the 1-bit basis pursuit

(25). By Theorem 3.2, it is sufficient to prove that ΦT has the RRSP at x′ and the matrix

H(x′) =

 ΦA(x′)∩J+,S′+ ΦA(x′)∩J+,S′−
ΦA(x′)∩J−,S′+ ΦA(x′)∩J−,S′−

ΦJ0,S′+
ΦJ0,S′−


has a full-column rank, where S′+ = {i : x′i > 0} and S′− = {i : x′i < 0}.

Indeed, let S′+, S
′
−, T1 and T2 be defined as above. Since x′ is consistent with y and satisfies

that supp(x′) ⊆ supp(x∗), we see that (S′+, S
′
−) ∈ P (y) satisfying S′ = S′+ ∪ S′− ⊆ S. Since ΦT ′,S

ΦT ′′,S

ΦJ0,S

 has a full-column rank,

 ΦT ′,S′

ΦT ′′,S′

ΦJ0,S′

 must have a full-column rank. Note that

T ′ = J+ \ T1 = A(x′) ∩ J+, T ′′ = J− \ T2 = A(x′) ∩ J−. (51)

Thus H(x′) =

 ΦJ+\T1,S′

ΦJ−\T2,S′

ΦJ0,S′

 has a full-column rank.

Since ΦT has the S-RRSP of order k with respect to y, there exists a vector η ∈ R(ΦT )

and w ∈ F(T1, T2) satisfying that η = ΦTw and ηi = 1 for i ∈ S′+, ηi = −1 for i ∈ S′−, and

|ηi| < 1 otherwise. The set F(T1, T2) is defined as (44). From (50), we see that the conditions

wT1∪T2 = 0 in (44) coincides with the condition wi = 0 for i ∈ Ã+(x′) ∪ Ã−(x′). This, together

with (51), implies that F(T1, T2) coincides with F(x′) defined as (32). Thus the RRSP of ΦT at

x′ holds (see Definition 3.1). This, together with the full-column-rank property of H(x′), implies

that x′ is the unique optimal solution to (25).

Furthermore, suppose that x∗ is a k-sparse signal and x∗ is a sparsest signal consistent with y.

Since x′ is also consistent with y, it follows from supp(x′) ⊆ supp(x∗) that supp(x′) = supp(x∗).

So x′ is also a sparsest vector consistent with y. From the aforementioned construction process

of x′, it is not difficult to see that the updating scheme x′S ← x′S + λ′d′ does not change the

sign of nonzero components of the vectors. In fact, when we vary the parameter λ in x′S + λd′

to determine the critical value λ′ which yields new active constraints, this value λ′ still ensures

that the new vector x′S + λ′d′ is feasible to (25). If there is a nonzero component of x′S + λ′d′,

say the ith component, holds a different sign from the corresponding nonzero component of x′S ,

then by continuity and by convexity of the feasible set of (25), there is a suitable λ lying between

zero and λ′ such that the ith component of x′S + λd′ is equal to zero. Thus x′S + λd′ is sparser

than x∗. Since x′S + λd′ is also feasible to (25), it is consistent with y. This is a contradiction as

x∗ is a sparsest signal consistent with y. Therefore, we must have sign(x′) = sign(x∗). �

4 Uniform sign recovery

Theorems 3.6 and 3.9 provide some conditions for the nonuniform recovery of the sign of an

individual k-sparse signal. In this section, we develop some necessary and sufficient conditions
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for the uniform recovery of the sign of all k-sparse signals through a sensing matrix Φ. Let us

first define

Y k = {y : y = sign(Φx), x ∈ Rn, ‖x‖0 ≤ k}.

For any two disjoint subsets S1, S2 ⊆ {1, . . . , n} satisfying |S1 ∪ S2| ≤ k, there exists a k-sparse

signal x such that S1 = S+(x) and S2 = S−(x). Thus any such disjoint subsets (S1, S2) must be

in the set P (y) for some y ∈ Y k. We now introduce the notion of the N-RRSP of order k which

turns out to be a necessary condition for uniform sign recovery.

Definition 4.1 (N-RRSP of order k) The matrix ΦT is said to satisfy the necessary re-

stricted range space property (N-RRSP) of order k if for any disjoint subsets S+, S− of {1, . . . , n}
with |S| ≤ k, where S = S+ ∪ S−, there exist y ∈ Y k and (T1, T2) such that (S+, S−) ∈ P (y),

T1 ⊆ J+(y), T2 ⊆ J−(y), T1 ∪ T2 6= J+(y) ∪ J−(y) and

 ΦJ+(y)\T1,S

ΦJ−(y)\T2,S

ΦJ0,S

 has a full-column rank,

and there is a vector η ∈ R(ΦT ) satisfying the following properties:

(i) ηi = 1 for i ∈ S+, ηi = −1 for i ∈ S−, |ηi| < 1 otherwise;

(ii) η = ΦTw for some w ∈ F(T1, T2) defined by (44)

The N-RRSP of order k is a necessary condition for the uniform recovery of the sign of all

k-sparse signals via 1-bit measurements and basis pursuit.

Theorem 4.2 Let Φ ∈ Rm×n be a given matrix and assume that for any k-sparse signal x∗, the

sign measurements sign(Φx∗) can be acquired. If the sign of any k-sparse signal x∗ can be exactly

recovered by the 1-bit basis pursuit (25) with J+ = {i : sign(Φx∗)i = 1}, J− = {i : sign(Φx∗)i =

−1} and J0 = {i : sign(Φx∗)i = 0} in the sense that (25) admits a unique optimal solution x̃

satisfying sign(x̃) = sign(x∗), then ΦT must admit the N-RRSP of order k.

Proof. Let x∗ be an arbitrary k-sparse signal with S+ = {i : x∗i > 0}, S− = {i : x∗i < 0}
and S = S+ ∪ S−. Clearly, |S| ≤ k. Let y = sign(Φx∗) be the acquired measurements. Assume

that x̃ is the unique optimal solution to (25) and sign(x̃) = sign(x∗). Then we see that y ∈ Y k,

(S+, S−) ∈ P (y), and

(S+(x̃), S−(x̃)) = (S+, S−). (52)

It follows from Theorem 3.2 that the uniqueness of x̃ implies that the matrix H(x̃) admits a

full-column rank and there exists a vector η ∈ R(ΦT ) such that

(a) ηi = 1 for i ∈ S+(x̃), ηi = −1 for i ∈ S−(x̃), and |ηi| < 1 otherwise;

(b) η = ΦTw for some w ∈ F(x̃) given as

F(x̃) = {w ∈ Rm : wi > 0 for i ∈ A(x̃) ∩ J+(y),

wi < 0 for i ∈ A(x̃) ∩ J−(y),

wi = 0 for i ∈ Ã+(x̃) ∪ Ã−(x̃)}.

Let T1 = Ã+(x̃) ⊆ J+(y) and T2 = Ã−(x̃) ⊆ J−(y). Since x̃ is an optimal solution to (25), we

must have that A(x̃) 6= ∅, which implies that T1 ∪ T2 6= J+(y) ∪ J−(y). Clearly,

A(x̃) ∩ J+(y) = J+(y)\T1, A(x̃) ∩ J−(y) = J−(y)\T2. (53)
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Therefore, the full-column-rank property of H(x̃) implies that

 ΦJ+(y)\T1,S

ΦJ−(y)\T2,S

ΦJ0,S

 has a full-column

rank. By (52) and (53), the above properties (a) and (b) coincide with the properties (i) and

(ii) described in Definition 4.1. By considering all possible k-sparse signals x∗, which yield all

possible disjoint subsets S+, S− of {1, . . . , n} satisfying |S+ ∪ S−| ≤ k. Thus ΦT admits the

N-RRSP of order k. �

It should be pointed out that for random matrices Φ, with probability 1 the optimal solution

to the linear program (25) is unique. In fact, the non-uniqueness of optimal solutions happens

only if the optimal face of the feasible set (which is a polyhedron) is parallel to the objective hy-

perplane, and the probability for this event is zero. This means that the uniqueness assumption

for the optimal solution of (25) is very mild and it holds almost for sure. Thus when the sensing

matrix Φ is randomly generated according to a probability distribution, with probability 1 the

RRSP of ΦT at its optimal solution x̃ holds and the associated matrix H(x̃) has a full-column

rank. The N-RRSP of order k is defined based on such a mild assumption. Theorem 4.2 has

indicated that the N-RRSP of order k is a necessary requirement for the uniform recovery of

the sign of all k-sparse signals from 1-bit measurements with the linear program (25). Using

linear programs as decoding methods will necessarily and inevitably yield a certain range space

property like the RRSP (since this property results directly from the fundamental optimality

condition of linear programs). From the study in this paper, we conclude that if the sign of

k-sparse signals can be exactly recovered from 1-bit measurements with a linear programming

decoding method, then ΦT must satisfy the N-RRSP of order k or its variants. At the moment,

it is not clear whether this necessary condition is also sufficient for the exact sign recovery in

1-bit CS setting.

In classic CS, a sensing matrix is required to admit a general positioning property in order

to achieve the uniform recovery of k-sparse signals. This property is reflected in all concepts

such as RIP, NSP and RSP. Similarly, in order to the achieve the uniform recover of the sign

of k-sparse signals in 1-bit CS setting, the matrix should admit a certain general positioning

property as well. Since N-RRSP is a necessary property for uniform sign recovery, a sufficient

sign recovery condition can be developed by slightly enhancing this necessary property, i.e., by

considering all possible sign measurements y ∈ Y k together with the pairs (T1, T2) described in

Definition 4.1. This naturally leads to the next definition.

Definition 4.3 (S-RRSP of order k) The matrix ΦT is said to satisfy the sufficient restricted

range space property (S-RRSP) of order k if for any disjoint subsets (S+, S−) of {1, . . . , n} with

|S| ≤ k, where S = S+ ∪ S−, and for any y ∈ Y k such that (S+, S−) ∈ P (y), there exist T1

and T2 such that T1 ⊆ J+(y), T2 ⊆ J−(y), T1 ∪ T2 6= J+(y) ∪ J−(y) and

 ΦJ+(y)\T1,S

ΦJ−(y)\T2,S

ΦJ0,S

 has a

full-column rank, and for any such a pair (T1, T2), there is a vector η ∈ R(ΦT ) satisfying the

following properties:

(i) ηi = 1 for i ∈ S+, ηi = −1 for i ∈ S−, |ηi| < 1 otherwise;

(ii) η = ΦTw for some w ∈ F(T1, T2) defined by (44).

The above concept taking into account all possible vectors y is stronger than Definition 3.7.

If a matrix has the S-RRSP of order k, it must have the S-RRSP of order k with respect to any

individual vector y ∈ Y k. The S-RRSP of order k makes it possible to recover the sign of all

k-sparse signals from 1-bit measurements with (25), as shown in the next theorem.
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Theorem 4.4 Suppose that ΦT has the S-RRSP of order k and that for any k-sparse signal

x∗, the sign measurements sign(Φx∗) can be acquired. Then the 1-bit basis pursuit (25) with

J+ = {i : sign(Φx∗)i = 1}, J− = {i : sign(Φx∗)i = −1} and J0 = {i : sign(Φx∗)i = 0} has

a unique optimal solution x̃ satisfying that supp(x̃) ⊆ supp(x∗). Furthermore, for any k-sparse

signal x∗ which is a sparsest signal satisfying

sign(Φx) = sign(Φx∗), (54)

the sign of x∗ can be exactly recovered by (25), i.e., the unique optimal solution x̃ of (25) satisfies

that sign(x̃) = sign(x∗).

Proof. Let x∗ be an arbitrary k-sparse signal, and let measurements y = sign(Φx∗) be taken,

which determines a partition (J+, J−, J0) of {1, . . . ,m} as (20). Since ΦT has the S-RRSP of

order k, this implies that ΦT has the S-RRSP of order k with respect to this vector y. By

Theorem 3.9, the problem (25) has a unique optimal solution, denoted by x̃, which satisfies that

supp(x̃) ⊆ supp(x∗). Furthermore, if x∗ is a sparsest signal satisfying the system (54), then by

Theorem 3.9 again, we must have that sign(x̃) = sign(x∗), and hence the sign of x∗ can be

exactly recovered by (25). �

The above theorem indicates that under the S-RRSP of order k if x∗ is a sparsest solution

to (54), then the sign of x∗ can be exactly recovered by (25). If x∗ is not a sparsest solution to

(54), then at least part of the support of x∗ can be exactly recovered by (25) in the sense that

supp(x̃) ⊆ supp(x∗), where x̃ is the optimal solution to (25).

The study in this paper indicates that the models (24) and (25) make it possible to establish

a sign recovery theory for k-sparse signals from 1-bit measurements. It is worth noting that

these models can also make it possible to extend reweighted `1-algorithms (e.g., [13, 43, 34, 44])

to 1-bit CS problems.

The RIP and NSP recovery conditions are widely assumed in classic CS scenarios. Recent

study has shown that it is NP-hard to compute the RIP and NSP constants of a given matrix

([36, 3]). The RSP recovery condition introduced in [41] is equivalent to the NSP since both are

the necessary and sufficient condition for the uniform recovery of all k-sparse signals. The NSP

characterizes the uniform recovery from the perspective of the null space of a sensing matrix,

while the RSP characterizes the uniform recovery from its orthogonal space, i.e., the range

space of a transposed sensing matrix. So it is also difficult to certify the RSP of a given matrix.

Clearly, the N-RRSP and S-RRSP are more complex than the standard RSP, and thus they are

hard to certify as well. Note that the existence of a matrix with the RSP follows directly from

the fact that any matrix with RIP of order 2k or NSP of order 2k must admit the RSP of order

k (see [41]). In 1-bit CS setting, however, the analogous theory are still underdevelopment. The

existence analysis of a S-RRSP matrix has not yet properly addressed at the current stage.

5 Proof of Theorem 3.2

We now prove Theorem 3.2 which provides a complete characterization for the uniqueness of

solutions to the 1-bit basis pursuit (25). We start by developing necessary conditions.
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5.1 Necessary condition (I): Range space property

By introducing u, v, t ∈ Rn+, where t satisfies that |xi| ≤ ti for i = 1, . . . , n, then (30) can be

written as the linear program

min eT t

s.t. x+ u = t, − x+ v = t, ΦJ+,nx− α = eJ+ ,

ΦJ−,nx+ β = −eJ− , ΦJ0,nx = 0, (55)

(t, u, v, α, β) ≥ 0.

Clearly, we have the following statement.

Lemma 5.1 (i) For any optimal solution (x∗, t∗, u∗, v∗, α∗, β∗) of (55), we have that t∗ = |x∗|,
u∗ = |x∗|−x∗, v∗ = |x∗|+x∗ and (α∗, β∗) is given by (31). (ii) x∗ is the unique optimal solution

to (25) if and only if (x, t, u, v, α, β) = (x∗, |x∗|, |x∗| − x∗, |x∗|+ x∗, α∗, β∗) is the unique optimal

solution to (55), where (α∗, β∗) is given by (31).

Any linear program can be written in the form min{cT z : Az = b, z ≥ 0}, to which the
Lagrangian dual problem is given by max{bT y : AT y ≤ c} (see, e.g., [18]). So it is very easy to
verify that the dual problem of (55) is given as

(DLP) max eTJ+h3 − e
T
J−h4

s.t. h1 − h2 + (ΦJ+,n)Th3 + (ΦJ−,n)Th4

+ (ΦJ0,n)Th5 = 0,

− h1 − h2 ≤ e, (56)

h1 ≤ 0, (57)

h2 ≤ 0, (58)

− h3 ≤ 0, (59)

h4 ≤ 0. (60)

The (DLP) is always feasible in the sense that there exists a point, for instance, (h1, . . . , h5) =

(0, . . . , 0), satisfies all constraints. Furthermore, let s(1), . . . , s(5) be the nonnegative slack vari-
ables associated with the constraints (56) through (60), respectively. Then (DLP) can be also
written as

max eTJ+h3 − e
T
J−h4

s.t. h1 − h2 + (ΦJ+,n)Th3 + (ΦJ−,n)Th4

+(ΦJ0,n)Th5 = 0, (61)

s(1) − h1 − h2 = e, (62)

s(2) + h1 = 0, (63)

s(3) + h2 = 0, (64)

s(4) − h3 = 0, (65)

s(5) + h4 = 0, (66)

s(1), . . . , s(5) ≥ 0.

We now prove that if x∗ is the unique optimal solution to (25), the range space R(ΦT ) must

satisfy some properties.
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Lemma 5.2 If x∗ is the unique optimal solution to (25), then there exist vectors h1, h2 ∈ Rn
and w ∈ Rm satisfying

h2 − h1 = ΦTw,
(h1)i = −1, (h2)i = 0 for x∗i > 0,
(h1)i = 0, (h2)i = −1 for x∗i < 0,
(h1)i, (h2)i < 0, (h1 + h2)i > −1 for x∗i = 0,
wi > 0 for i ∈ A(x∗) ∩ J+,
wi < 0 for i ∈ A(x∗) ∩ J−,
wi = 0 for i ∈ Ã+(x∗) ∪ Ã−(x∗).

(67)

Proof. Assume that x∗ is the unique optimal solution to (25). By Lemma 5.1,

(x, t, u, v, α, β) = (x∗, |x∗|, |x∗| − x∗, |x∗|+ x∗, α∗, β∗) (68)

is the unique optimal solution to (55), where (α∗, β∗) is given by (31). By the strict complemen-

tarity theory of linear programs (see, e.g., Goldman and Tucker [21]) , there exists a solution

(h1, . . . , h5) of (DLP) such that the associated vectors s(1), . . . , s(5) determined by (62)–(66) and

the vectors (t, u, v, α, β) given by (68) are strictly complementary, i.e., these vectors satisfy the

conditions

tT s(1) = uT s(2) = vT s(3) = αT s(4) = βT s(5) = 0 (69)

and {
t+ s(1) > 0, u+ s(2) > 0, v + s(3) > 0,

α+ s(4) > 0, β + s(5) > 0.
(70)

For the above-mentioned solution (h1, . . . , h5) of (DLP), let w ∈ Rm be the vector defined by

wJ+ = h3, wJ− = h4, and wJ0 = h5. Then it follows from (61) that

h2 − h1 = (ΦJ+,n)Th3 + (ΦJ−,n)Th4 + (ΦJ0,n)Th5 = ΦTw. (71)

From (68), we see that the solution of (55) satisfies the following properties:

ti = x∗i > 0, ui = 0, vi = 2x∗i > 0 for x∗i > 0,
ti = |x∗i | > 0, ui = 2|x∗i | > 0, vi = 0 for x∗i < 0,

ti = 0, ui = 0, vi = 0 for x∗i = 0.

Thus, from (69) and (70), it follows that

s
(1)
i = 0, s

(2)
i > 0, s

(3)
i = 0 for x∗i > 0,

s
(1)
i = 0, s

(2)
i = 0, s

(3)
i > 0 for x∗i < 0,

s
(1)
i > 0, s

(2)
i > 0, s

(3)
i > 0 for x∗i = 0.

From (62), (63) and (64), the above relations imply that

(h1 + h2)i = −1, (h1)i < 0, (h2)i = 0 for x∗i > 0,
(h1 + h2)i = −1, (h1)i = 0, (h2)i < 0 for x∗i < 0,
(h1 + h2)i > −1, (h1)i < 0, (h2)i < 0 for x∗i = 0.

From (65) and (66), we see that s(4) = h3 ≥ 0 and s(5) = −h4 ≥ 0. Let π(·) and %(·) be defined

as (28) and (29), respectively. It follows from (31), (69) and (70) that

(h3)π(i) = s
(4)
π(i) > 0 for i ∈ A(x∗) ∩ J+,

(h3)π(i) = s
(4)
π(i) = 0 for i ∈ Ã+(x∗),

(−h4)%(i) = s
(5)
%(i) > 0 for i ∈ A(x∗) ∩ J−,

(−h4)%(i) = s
(5)
%(i) = 0 for i ∈ Ã−(x∗).
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By the definition of w (i.e., wJ+ = h3, wJ− = h4 and wJ0 = h5), the above conditions imply that

wi = (h3)π(i) > 0 for i ∈ A(x∗) ∩ J+,
wi = (h3)π(i) = 0 for i ∈ Ã+(x∗),

wi = (h4)%(i) < 0 for i ∈ A(x∗) ∩ J−,
wi = (h4)%(i) = 0 for i ∈ Ã−(x∗).

Thus, h1, h2 and w satisfy (71) and the properties:

(h1)i = −1, (h2)i = 0 for x∗i > 0,
(h1)i = 0, (h2)i = −1 for x∗i < 0,

(h1)i, (h2)i < 0, (h1 + h2)i > −1 for x∗i = 0,
wi > 0 for i ∈ A(x∗) ∩ J+,

wi = 0 for i ∈ Ã+(x∗),
wi < 0 for i ∈ A(x∗) ∩ J−,
wi = 0 for i ∈ Ã−(x∗).

Therefore, condition (67) is a necessary condition for x∗ to be the unique optimal solution to

(25). �

It should be pointed out that the uniqueness of x∗ implies that x∗ is the strictly comple-

mentary solution. This leads to the condition (67) in which all inequalities hold strictly. If x∗

is not the unique optimal solution of (25), then x∗ is not necessarily a strictly complementary

solution, and thus (67) does not necessarily hold. We now present an equivalent statement for

(67) as follows.

Lemma 5.3 Let x∗ ∈ Rn be a given vector satisfying the constraints of (25). There exist vectors

h1, h2 and w satisfying (67) if and only if there exists a vector η ∈ R(ΦT ) satisfying the following

two conditions:

(i) ηi = 1 for x∗i > 0, ηi = −1 for x∗i < 0, and |ηi| < 1 for x∗i = 0;

(ii) η = ΦTw for some w ∈ F(x∗) defined as (32).

It is straightforward to verify this lemma. Its proof is omitted here. By Definition 3.1,

Combining Lemmas 5.2 and 5.3 yields the following result.

Corollary 5.4 If x∗ is the unique optimal solution to (25), then the RRSP of ΦT at x∗ holds.

The RRSP at x∗ is not sufficient to ensure the uniqueness of x∗. We need to develop another

necessary condition (called the full-column-rank property).

5.2 Necessary condition (II): Full column rank

Assume that x∗ is the unique optimal solution to (25). Denote still by S+ = {i : x∗i > 0} and

S− = {i : x∗i < 0}. We have the following lemma.

Lemma 5.5 If x∗ is the unique optimal solution to (25), then H(x∗), defined by (33), has a

full-column rank.

Proof. Assume the contrary that H(x∗) has linearly dependent columns. Then there exists

a vector d =

[
u
v

]
6= 0, where u ∈ R|S+| and v ∈ R|S−|, such that H(x∗)d = 0. Since x∗ is the
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unique optimal solution to (25), there exist nonnegative α∗ and β∗, determined by (31), such

that (x∗, α∗, β∗) is the unique optimal solution to (30) with the least objective value ‖x∗‖1. Note

that (x∗, α∗, β∗) satisfies

ΦJ+,nx
∗ − α∗ = eJ+ , ΦJ−,nx

∗ + β∗ = −eJ− , ΦJ0,nx
∗ = 0.

Similar to the proof of Lemma 3.3, eliminating the zero components of x∗, α∗ and β∗ from the

above system yield the same system as (40). Similarly, we define x(λ) ∈ Rn as x(λ)S+ = x∗S+
+λu,

and x(λ)S− = x∗S− +λv, and x(λ)i = 0 for i /∈ S+ ∪S−. We see that for all sufficiently small |λ|,
(x(λ)S+ , x(λ)S−) satisfies the conditions (41)–(43). In other words, there exists a small number

δ > 0 such that for any λ 6= 0 with |λ| ∈ (0, δ), the vector x(λ) is feasible to (25). In particular,

choose λ∗ 6= 0 such that |λ∗| ∈ (0, δ), x∗S+
+ λ∗u > 0, x∗S− + λ∗v > 0 and

λ∗(eTS+
u− eTS−v) ≤ 0. (72)

Then we see that x(λ∗) 6= x∗ since λ∗ 6= 0 and (u, v) 6= 0. Moreover, we have

‖x(λ∗)‖1 = eTS+
(x∗S+

+ λ∗u)− eTS−(x∗S− + λ∗v),

= eTS+
x∗S+
− eTS−x

∗
S− + λ∗eTS+

u− λ∗eTS−v,
= ‖x∗‖1 + λ∗(eTS+

u− eTS−v)

≤ ‖x∗‖1,

where the inequality follows from (72). As ‖x∗‖1 is the least objective value of (25), it implies

that x(λ∗) is also an optimal solution to this problem, contradicting to the uniqueness of x∗.

Hence, H(x∗) must have a full-column rank. �
Combining Corollary 5.4 and Lemma 5.5 yields the desired necessary conditions.

Theorem 5.6 If x∗ is the unique optimal solution to (25), then H(x∗), given by (33), has a

full-column rank and the RRSP of ΦT at x∗ holds.

5.3 Sufficient conditions

We now prove that the converse of Theorem 5.6 is also valid, i.e., the RRSP of ΦT at x∗ combined

with the full-column-rank property of H(x∗) is a sufficient condition for the uniqueness of x∗.

We start with a property of (DLP).

Lemma 5.7 Suppose that x∗ satisfies the constraints of (25). If the vector (h1, h2, w) ∈ Rn ×
Rn ×Rm satisfies that

(h1)i = −1, (h2)i = 0 for x∗i > 0,
(h1)i = 0, (h2)i = −1 for x∗i < 0,
(h1)i < 0, (h2)i < 0, (h1 + h2)i > −1 for x∗i = 0,
h2 − h1 = ΦTw,
wJ+ ≥ 0,
wJ− ≤ 0,

wi = 0 for i ∈ Ã+(x∗) ∪ Ã−(x∗),

(73)

then the vector (h1, h2, h3, h4, h5), with h3 = wJ+ , h4 = wJ− and h5 = wJ0 , is an optimal

solution to (DLP) and x∗ is an optimal solution to (25).

This lemma follows directly from the optimality theory of linear programs by verifying that

the dual optimal value at (h1, h2, h3, h4, h5) is equal to ‖x∗‖1. The proof is omitted. We now

prove the desired sufficient condition for the uniqueness of optimal solutions of (25).
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Theorem 5.8 Let x∗ satisfy the constraints of the problem (25). If the RRSP of ΦT at x∗ holds

and H(x∗), defined by (33), has a full-column rank, then x∗ is the unique optimal solution to

(25).

Proof. By the assumption of the theorem, the RRSP of ΦT at x∗ holds. Then by Lemma 5.3,

there exists a vector (h1, h2, w) ∈ Rn × Rn × Rm satisfying (67), which implies that condition

(73) holds. As x∗ is feasible to (25), by Lemma 5.7, (h1, h2, h3, h4, h5) with h3 = wJ+ , h4 = wJ−
and h5 = wJ0 is an optimal solution to (DLP). At this solution, let the slack vectors s(1), . . . , s(5)

be given as (62)–(66). Also, from Lemma 5.7, x∗ is an optimal solution to (25). Thus by Lemma

5.1, (x, t, u, v, α, β) = (x∗, |x∗|, |x∗| − x∗, |x∗|+ x∗, α∗, β∗), where (α∗, β∗) is given by (31), is an

optimal solution to (55). We now further show that x∗ is the unique solution to (25).

The vector (x∗, α∗, β∗) satisfies the system ΦJ+,nx
∗ − α∗ = eJ+ ,ΦJ−,nx

∗ + β∗ = −eJ− and

ΦJ0,nx
∗ = 0. As shown in the proof of Lemma 5.5, removing the zero components of (x∗, α∗, β∗)

from the above system yields

H(x∗)

[
x∗S+

x∗S−

]
=

 eA(x∗)∩J+
−eA(x∗)∩J−

0

 . (74)

Let (x̃, t̃, ũ, ṽ, α̃, β̃) be an arbitrary optimal solution to (55). By Lemma 5.1, it must hold that

t̃ = |x̃|, ũ = |x̃|− x̃ and ṽ = |x̃|+ x̃. By the complementary slackness property of linear programs

(see, e.g., [21, 18]), the nonnegative vectors (t̃, ũ, ṽ, α̃, β̃) and (s(1), . . . , s(5)) are complementary,

i.e.,

t̃T s(1) = ũT s(2) = ṽT s(3) = α̃T s(4) = β̃T s(5) = 0. (75)

As (h1, h2, w) satisfies (67), the vector (h1, h2) satisfies that (h1)i = −1 < 0 for x∗i > 0, (h2)i =

−1 < 0 for x∗i < 0 and that (h1 +h2)i > −1, (h1)i < 0 and (h2)i < 0 for x∗i = 0. By the choice of

(h1, h2) and (s(1), . . . , s(5)), we see that the following components of slack variables are positive:

s
(1)
i = 1 + (h1 + h2)i > 0 for x∗i = 0,

s
(4)
π(i) = (h3)π(i) = wi > 0 for i ∈ A(x∗) ∩ J+,

s
(5)
%(i) = −(h4)%(i) = −wi > 0 for i ∈ A(x∗) ∩ J−.

These conditions, together with (75), implies that
t̃i = 0 for x∗i = 0,

α̃π(i) = 0 for i ∈ A(x∗) ∩ J+,
β̃%(i) = 0 for i ∈ A(x∗) ∩ J−.

(76)

We still use the symbol S+ = {i : x∗i > 0} and S− = {i : x∗i < 0}. Since t̃ = |x̃|, the first relation

in (76) implies that x̃i = 0 for all i /∈ S+ ∪ S−. Note that

ΦJ+,nx̃− α̃ = eJ+ , ΦJ−,nx̃+ β̃ = −eJ− , ΦJ0,nx̃ = 0.

Since x̃i = 0 for all i /∈ S+ ∪ S−, by (38) and (76), it implies from the above system that

H(x∗)

[
x̃S+

x̃S−

]
=

 eA(x∗)∩J+
−eA(x∗)∩J−

0

 . (77)

By the assumption of the theorem, the matrix H(x∗) has a full-column rank. Thus it follows

from (74) and (77) that x̃S+ = x∗S+
and x̃S− = x∗S− which, together with the fact x̃i = 0 for all

i /∈ S+∪S−, implies that x̃ = x∗. By assumption, (x̃, t̃, ũ, ṽ, α̃, β̃) is an arbitrary optimal solution

to (55). Thus (x, t, u, v, α, β) = (x∗, |x∗|, |x∗|−x∗, |x∗|+x∗, α∗, β∗) is the unique optimal solution

to (55), and hence (by Lemma 5.1) x∗ is the unique optimal solution to (25). �

Combining Theorems 5.6 and 5.8 yields Theorem 3.2.
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6 Conclusions

Different from the classic compressive sensing, 1-bit measurements are robust to any small

perturbation of a signal. The purpose of this paper is to show that the exact recovery of the sign

of a sparse signal from 1-bit measurements is possible. We have proposed a new reformulation

for the 1-bit CS problem. This reformulation makes it possible to extend the analytical tools

in classic CS to 1-bit CS in order to achieve an analogous theory and decoding algorithms for

1-bit CS problems. Based on the fundamental Theorem 3.2, we have introduced the so-called

restricted range space property (RRSP) of a sensing matrix. This property has been used to

establish a connection between sensing matrices and the sign recovery of sparse signals from 1-

bit measurements. For nonuniform sign recovery, we have shown that if the transposed sensing

matrix admits the so-called S-RRSP of order k with respect to 1-bit measurements, acquired

from an individual k-sparse signal, then the sign of the signal can be exactly recovered by the

proposed 1-bit basis pursuit. For uniform sign recovery, we have shown that the sign of any

k-sparse signal, which is the sparsest signal consistent with the acquired 1-bit measurements,

can be exactly recovered with 1-bit basis pursuit when the transposed sensing matrix admits

the so-called S-RRSP of order k.
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