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Abstract While the product of finitely many convex functions has been investigated
in the field of global optimization, some fundamental issues such as the convexity
condition and the Legendre-Fenchel transform for the product function remain unre-
solved. Focusing on quadratic forms, this paper is aimed at addressing the question:
When is the product of finitely many positive definite quadratic forms convex, and
what is the Legendre-Fenchel transform for it? First, we show that the convexity of
the product is determined intrinsically by the condition number of so-called ‘scaled
matrices’ associated with quadratic forms involved. The main result claims that if the
condition number of these scaled matrices are bounded above by an explicit constant
(which depends only on the number of quadratic forms involved), then the prod-
uct function is convex. Second, we prove that the Legendre-Fenchel transform for
the product of positive definite quadratic forms can be expressed, and the compu-
tation of the transform amounts to finding the solution to a system of equations (or
equally, finding a Brouwer’s fixed point of a mapping) with a special structure. Thus,
a broader question than the open “Question 11” in Hiriart-Urruty (SIAM Rev. 49,
225–273, 2007) is addressed in this paper.

Keywords Matrix analysis · Convex analysis · Legendre-Fenchel transform ·
Quadratic forms · Positive definite matrices · Condition numbers

1 Introduction

Optimization problems having a product of convex functions as an objective or a
constraint are called ‘multiplicative programming’ problems which have been exten-
sively investigated in the field of global optimization (see e.g. [3, 4, 19–21, 32, 34,
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35]). The multiplicative programming problem may find applications in such areas as
microeconomics, geometric design, finance, VLSI chip design, and system reliability
[4, 11, 20]. The product function is not only used in optimization, but in other areas as
well. For instance, the product of finitely many quadratic forms in random variables
has been widely studied in probability and statistics [9, 10, 16, 18, 27–29].

Matsui [30] showed that the linear multiplicative programming problem is NP-
hard. Thus the multiplicative programming is not an ‘easy’ class of optimization
problems. Part of the reason can be understood from the fact that the product of con-
vex functions is not convex in general. For instance, the product (yT Ay)(yT A−1y),
where A is an n × n positive definite matrix, is not convex in general. While
the general multiplicative programming problem is NP-hard, for a given problem
it is not always so negative if we can prove that the problem is convex. Thus
a natural and fundamental question is: when is the product of finitely many con-
vex functions convex? It is interesting to address this question since answering it
may identify a subclass of multiplicative optimization problems that can be com-
putationally tractable. However, developing a convexity condition for the prod-
uct function is not straightforward, and very limited progresses on this issue were
made so far: The product of univariate convex functions and the product of two
positive definite quadratic forms in Rn were studied in [12] and [36], respec-
tively.

On the other hand, the Legendre-Fenchel transform (LF-transform for short) plays
a vital role in developing optimization theory and algorithms (see e.g. [1, 5, 6, 14,
33]), and it has wide applications also in other areas of applied mathematics [7, 25].
Recall that for a given function h : Rn → R, the LF-transform of h is defined by

h∗(x) = sup
y∈Rn

xT y − h(y).

From a practical application point of view, it is important to obtain an explicit ex-
pression of the LF-transform. Unfortunately, for the product of convex functions, the
question of whether its LF-transform can be explicitly expressed remains open in
many situations even for the product of quadratic forms. So another fundamental is-
sue associated with the product function is: what is the LF-transform of the product
of finitely many convex functions? It is worth mentioning that some recent efforts on
effective computation and expression of the LF-transform, stimulated by different
needs, can be found in [2, 7, 12, 15, 23–26, 37].

As in the situation of the convexity condition, there is very little knowledge about
the LF-transform of the product of convex functions so far. The initial discussion on
the product of univariate convex functions was given in [12], and the LF-transform
of the product of two positive definite quadratic forms was posted as an open ques-
tion in the field of nonlinear analysis and optimization (see ‘Question 11’ in [13]).
Recently, this open question has been addressed in [36]. Let qA denote the quadratic
form qA(y) = (1/2)yT Ay, where A is an n × n symmetric positive definite matrix.
The following result was established in [36]: (i) If A,B are positive definite and
f = qAqB is convex, then f ∗ can be expressed explicitly as a function which is ho-
mogeneous of degree 4

3 , and the computation of f ∗ can be implemented via finding
a root of a univariate polynomial equation; (ii) there exists a positive constant γ > 0
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(which can be given explicitly) such that if the condition number of the scaled matrix
B−1/2AB−1/2 is less than or equal to the constant γ , then the product f = qAqB is
convex.

However, it is quite challenging to provide a general answer to the aforementioned
question concerning the convexity and LF-transform for the product of general con-
vex functions. The aim of this paper is to address the question in the case of finitely
many positive definite quadratic forms: when is the product of finitely many positive
definite quadratic forms convex, and what is the LF-transform for it? The contribu-
tion of this paper is twofold: a general sufficient convexity condition for the product
of quadratic forms is established and an explicit expression of its LF-transform is de-
rived in this paper. First, the convexity result claims that if the condition number of
‘scaled matrices’ are not too large (bounded above by a constant which depends on
the number of quadratic forms), then the product function is convex. To our knowl-
edge, this is the first general convexity condition for the product of finitely many
quadratic forms. Secondly, we prove that if the product function is convex then its
LF-transform can be explicitly expressed as a nonnegative function which is posi-
tively homogeneous of degree 2m

2m−1 , where m is the number of quadratic forms (see
Theorem 3.6 and Remark 3.7). Thus, a broader question than the open “Question 11”
in [13] is addressed. The analysis in this paper shows that the computation of the LF-
transform can be implemented via solving a system of smooth equations (or equally,
finding a fixed-point of a smooth mapping) with a special structure. It should be men-
tioned that many discussions and the proof for the case of only two quadratic forms
in [36] cannot be directly generalized to the case of more than two quadratic forms.

This paper is organized as follows. In Sect. 2, we establish a general sufficient
convexity condition for the product of finitely many quadratic forms. In Sect. 3, a se-
ries of useful technical results are proved, based on which an explicit formula for
the LF-transform of the product function is derived. Conclusions are given in the last
section.

2 When Is the Product Function Convex?

Throughout this paper, Rn++ is used to denote the positive orthant of the n-
dimensional Euclidean space Rn, i.e., the set of all vectors with positive components,
and I is used to denote the identity matrix with an appropriate dimension. If M is
a matrix, M � 0 means a symmetric, positive definite matrix, and κ(M) denotes the
condition number of M , i.e., κ(M) = λmax(M)/λmin(M), the ratio of its largest and
smallest eigenvalues.

Let f : Rn → R denote the product of finitely many quadratic forms, i.e.,

f (y) =
m∏

i=1

(
1

2
yT Aiy

)
=

m∏

i=1

qAi
(y)
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where m ≥ 2 and Ai, i = 1, . . . ,m, are n × n symmetric matrices (n ≥ 1). Clearly,
the gradient and the Hessian matrix of f are given by

∇f (y) =
m∑

i=1

⎛

⎝
m∏

j=1,j �=i

qAj
(y)

⎞

⎠Aiy, (1)

∇2f (y) =
m∑

i=1

⎛

⎝
m∏

j=1,j �=i

qAj
(y)

⎞

⎠Ai

+
m∑

i=1

m∑

j=1,j �=i

⎛

⎝
m∏

k=1,k �=i,j

qAk
(y)

⎞

⎠AiyyT Aj . (2)

When m = 2, we see that (2) is reduced to

∇2f (y) = qA1(y)A2 + qA2(y)A1 + A1yyT A2 + A2yyT A1,

and when m = 3, (2) is reduced to

∇2f (y) = qA2(y)qA3(y)A1 + qA1(y)qA3(y)A2 + qA1(y)qA2(y)A3

+ qA1(y)
(
A2yyT A3 + A3yyT A2

)
+ qA2(y)

(
A1yyT A3 + A3yyT A1

)

+ qA3(y)
(
A1yyT A2 + A2yyT A1

)
.

Given the two positive definite matrices Ai and Aj , the term AiyyT Aj is not neces-
sarily positive semi-definite, and hence the product function f (y) may lose its con-
vexity. Since f is twice continuously differentiable in Rn, to develop a convexity
condition for f , it is sufficient to identify the condition under which its Hessian ma-
trix is positive semi-definite at any point y ∈ Rn. By (2), for any x ∈ Rn, we have

xT ∇2f (y)x

=
m∑

i=1

⎧
⎨

⎩

⎡

⎣ 1

2m−1

m∏

j=1,j �=i

yT Ajy

⎤

⎦xT Aix

+
m∑

j=1,j �=i

⎡

⎣ 1

2m−2

m∏

k=1,k �=i,j

yT Aky

⎤

⎦xT AiyyT Ajx

⎫
⎬

⎭

= 1

2m−1
Φ(x,y) (3)

where

Φ(x,y) :=
m∑

i=1

⎡

⎣
m∏

j=1,j �=i

yT Ajy

⎤

⎦xT Aix



Appl Math Optim (2010) 62: 411–434 415

+ 2
m∑

i=1

m∑

j=1,j �=i

⎡

⎣
m∏

k=1,k �=i,j

yT Aky

⎤

⎦ (xT Aiy)(yT Ajx). (4)

Thus, to prove that (2) is positive semi-definite for any y ∈ Rn, it suffices to show
that Φ(x,y) ≥ 0 for any x, y ∈ Rn. We will make use of the result below.

Lemma 2.1 ([17], Theorem 7.4.34). Let M be a given n×n matrix and M � 0. Then

(
xT My

)2 ≤
(

λmax(M) − λmin(M)

λmax(M) + λmin(M)

)2

(xT Mx)(yT My)

for every pair of orthogonal vectors x, y ∈ Rn, i.e., xT y = 0.

It should be stressed that the vectors x, y in the lemma above are required to be
orthogonal.

For any M � 0, in the remainder of this paper we denote by

χ(M) = λmax(M) − λmin(M)

λmax(M) + λmin(M)
= κ(M) − 1

κ(M) + 1
.

For any pair of matrices A,B � 0, it is easy to verify that κ(B−1/2AB−1/2) =
κ(A−1/2BA−1/2), and thus χ(B−1/2AB−1/2) = χ(A−1/2BA−1/2). Hence, when we
consider the condition number of these matrices, we do not distinguish between
B−1/2AB−1/2 and A−1/2BA−1/2.

The next result plays a key role in developing our main convexity condition for
the product function.

Lemma 2.2 Let η > 0 be any given positive number. For any n × n matrices A � 0

and B � 0, if χ(B−1/2AB−1/2) ≤
√

2η
η+1 , then

Γ(A,B,η)(x, y) := η
(
xT AxyT By + xT BxyT Ay

)
+ 2(xT Ay)(xT By) ≥ 0

for any vectors x, y ∈ Rn.

Proof Denote by P = B−1/2AB−1/2. By the nonsingular linear transformation
(

x

y

)
=
(

B−1/2 0
0 B−1/2

)(
u

v

)

we may reformulate Γ as follows:

Γ(A,B,η)(x, y)

= η
[
uT (B−1/2AB−1/2)uvT v + uT uvT (B−1/2AB−1/2)v

]

+ 2uT (B−1/2AB−1/2)vuT v
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= η
[
(uT Pu)vT v + uT u(vT Pv)

]
+ 2(uT Pv)uT v

=: θ(P,η)(u, v).

Thus, to prove Γ(A,B,η)(x, y) ≥ 0 for any x, y ∈ Rn, it is sufficient to show that

θ(P,η)(u, v) ≥ 0 (5)

for any u,v ∈ Rn. In fact, if uT v = 0, it is evident from (5) that θ(P,η)(u, v) ≥ 0. Thus,
in what follows we assume that uT v �= 0. Let Lu denote the subspace generated by u

and L⊥
u be the orthogonal subspace of Lu, i.e.,

Lu = {tu : t ∈ R}, L⊥
u = {w : uT w = 0,w ∈ Rn}.

Since uT v �= 0 (i.e., v /∈ L⊥
u ), the vector v can be represented as v = û + v̂ for some

û ∈ Lu and v̂ ∈ L⊥
u . By the structure of Lu, the vector û = tu for some t ∈ R where

t �= 0 (since otherwise v = v̂ ∈ L⊥
u ). From (5), we see that θ(P,η) is homogeneous of

degree 2 in v. Thus,

θ(P,η)(u, v) = θP,η(u, tu + v̂) = θP,η(u, t (u + v̂/t)) = t2θ(P,η)(u,u + v̂/t).

Notice that v̂/t ∈ L⊥
u . Thus, to prove θP,η(u, v) ≥ 0 it is sufficient to prove that

θ(P,η)(u,u + z) ≥ 0 for any z such that uT z = 0.

First, for any z such that uT z = 0, we note that

θ(P,η)(u,u + z)

= η
[
uT Pu(u + z)T (u + z) + uT u(u + z)T P (u + z)

]
+ 2uT P (u + z)uT (u + z)

= η
[
uT Pu(uT u + zT z) + uT u(uT Pu + 2uT Pz + zT P z)

]

+ 2uT PuuT u + 2uT PzuT u

= (uT Pu)uT u

{
2(η + 1) + η

zT z

uT u
+ 2(η + 1)

uT P z

uT Pu
+ η

zT P z

uT Pu

}
. (6)

Since uT z = 0, by Lemma 2.1 we see that |uT Pz| ≤ χ(P )
√

uT PuzT P z which im-
plies that uT Pz ≥ −χ(P )

√
uT PuzT P z. Therefore, from (6) we have

θ(P,η)(u,u + z)

≥ (uT Pu)uT u

(
2(η + 1) + η

zT z

uT u
− 2(η + 1)χ(P )

√
uT PuzT P z

uT Pu
+ η

zT P z

uT Pu

)

= (uT Pu)uT u

⎧
⎨

⎩η
zT z

uT u
+
⎛

⎝2(η + 1) − 2(η + 1)χ(P )

√
zT P z

uT Pu
+ η

zT P z

uT Pu

⎞

⎠

⎫
⎬

⎭

≥ 0.
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The last inequality follows from the fact that when χ(P ) ≤
√

2η
η+1 , the quadratic

function 2(η + 1) − 2(η + 1)χ(P )t + ηt2 ≥ 0 for any t ∈ R. �

It should be mentioned that Lemma 2.2 is also true for η = 0, in which case A and
B are collinear. We now prove the main result of this section.

Theorem 2.3 Let Ai � 0, i = 1, . . . ,m, be n × n matrices. If

κ(A
−1/2
j AiA

−1/2
j ) ≤ (2m + 1) + 2

√
4m − 2

2m − 3
for all i, j = 1, . . . ,m, i �= j (7)

(which is equivalent to χ(A
−1/2
j AiA

−1/2
j ) ≤

√
2

2m−1 for all i, j = 1, . . . ,m, i �= j ),

then the product of m quadratic forms f =∏m
i=1 qAi

is convex.

Proof Denote by

Ω(x,y) :=
m∑

i=1

⎛

⎝
m∏

k=1,k �=i

yT Aky

⎞

⎠ (xT Aix).

Note that for any vectors x, y we have

m∑

i=1

m∑

j=1,j �=i

⎛

⎝
m∏

k=1,k �=i,j

yT Aky

⎞

⎠xT AixyT Ajy

=
m∑

i=1

m∑

j=1,j �=i

⎛

⎝
m∏

k=1,k �=i

yT Aky

⎞

⎠xT Aix

= (m − 1)

m∑

i=1

⎛

⎝
m∏

k=1,k �=i

yT Aky

⎞

⎠xT Aix

= (m − 1)Ω(x, y). (8)

On the other hand, we have

m∑

i=1

m∑

j=1,j �=i

⎛

⎝
m∏

k=1,k �=i,j

yT Aky

⎞

⎠ (yT Aiy)(xT Ajx)

=
m∑

i=1

m∑

j=1,j �=i

xT Ajx

⎛

⎝
m∏

k=1,k �=j

yT Aky

⎞

⎠

=
m∑

i=1

⎧
⎨

⎩

m∑

j=1

xT Ajx

⎛

⎝
m∏

k=1,k �=j

yT Aky

⎞

⎠− xT Aix

⎛

⎝
m∏

k=1,k �=i

yT Aky

⎞

⎠

⎫
⎬

⎭
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=
m∑

i=1

⎧
⎨

⎩Ω(x,y) − xT Aix

⎛

⎝
m∏

k=1,k �=i

yT Aky

⎞

⎠

⎫
⎬

⎭

= (m − 1)Ω(x, y). (9)

Thus, (8) and (9) imply that

m∑

i=1

m∑

j=1,j �=i

⎛

⎝
m∏

k=1,k �=i,j

yT Aky

⎞

⎠xT AixyT Ajy

=
m∑

i=1

m∑

j=1,j �=i

⎛

⎝
m∏

k=1,k �=i,j

yT Aky

⎞

⎠yT AiyxT Ajx,

and hence

m∑

i=1

m∑

j=1,j �=i

⎛

⎝
m∏

k=1,k �=i,j

yT Aky

⎞

⎠xT AixyT Ajy

= 1

2

m∑

i=1

m∑

j=1,j �=i

⎛

⎝
m∏

k=1,k �=i,j

yT Aiy

⎞

⎠
{
(xT Aix)yT Ajy + (yT Aiy)xT Ajx

}
.

(10)

By (4), (8) and (10), we have

Φ(x,y)

= Ω(x,y) + 2
m∑

i=1

m∑

j=1,j �=i

⎡

⎣
m∏

k=1,k �=i,j

yT Aky

⎤

⎦
(
xT Aiy

)
xT Ajy

= 1

(m − 1)

m∑

i=1

m∑

j=1,j �=i

⎛

⎝
m∏

k=1,k �=i,j

yT Aky

⎞

⎠ (xT Aix)yT Ajy

+ 2
m∑

i=1

m∑

j=1,j �=i

⎛

⎝
m∏

k=1,k �=i,j

yT Aky

⎞

⎠
(
xT Aiy

)(
xT Ajy

)

= 1

2(m − 1)

m∑

i=1

m∑

j=1,j �=i

⎡

⎣
m∏

k=1,k �=i,j

yT Aky

⎤

⎦

×
{
(xT Aix)yT Ajy + yT Aiy(xT Ajx)

}

+ 2
m∑

i=1

m∑

j=1,j �=i

⎡

⎣
m∏

k=1,k �=i,j

yT Aky

⎤

⎦
(
xT Aiy

)(
xT Ajy

)
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=
m∑

i=1

m∑

j=1,j �=i

m∏

k=1,k �=i,j

yT Aky

×
{

1

2(m − 1)

[
xT AixyT Ajy + yT AiyxT Ajx

]
+ 2xT AiyxT Ajy

}

=
m∑

i=1

m∑

j=1,j �=i

⎛

⎝
m∏

k=1,k �=i,j

yT Aky

⎞

⎠Γ
(Ai,Aj , 1

2(m−1)
)
(x, y), (11)

where Γ
(Ai,Aj , 1

2(m−1)
)
(x, y) is defined as in Lemma 2.2 by setting A = Ai , B = Aj

and η = 1
2(m−1)

. Since η = 1
2(m−1)

, we have that
√

2η
η+1 =

√
2

2m−1 . If

χ(A
−1/2
j AiA

−1/2
j ) ≤

√
2

2m − 1
=
√

2η

η + 1

for all i, j = 1, . . . ,m and i �= j , then by applying Lemma 2.2 to the matrix pair
(Ai,Aj ) and η = 1

2(m−1)
we deduce that

Γ
(Ai,Aj , 1

2(m−1)
)
(x, y) ≥ 0 for any x, y ∈ Rn.

Thus, it follows from (11) that Φ(x,y) ≥ 0 for any vectors x, y ∈ Rn. Notice that

χ
(
A

−1/2
j AiA

−1/2
j

)
= κ(A

−1/2
j AiA

−1/2
j ) − 1

κ(A
−1/2
j AiA

−1/2
j ) + 1

,

which implies that χ(A
−1/2
j AiA

−1/2
j ) ≤

√
2

2m−1 if and only if κ(A
−1/2
j AiA

−1/2
j ) sat-

isfies (7). By (3), we conclude that the Hessian matrix of the product function f is
positive semi-definite, and thus f is convex. �

It is worth noting that the upper bound (7) of condition numbers depends on the
number of quadratic forms involved. Intuitively, the more functions are involved, the
more likely the product function loses its convexity. Note that the upper bound (7)
decreases as m increases. So (7) does indicate that the more quadratic forms are
involved, the more restrictive conditions need to be imposed on the condition number
of scaled matrices in order to retain the convexity of the product function.

When m = 3 (the product of three quadratic forms), we see that

(2m + 1) + 2
√

4m − 2

2m − 3
= 7 + 2

√
10

3
≈ 4.4415.

Corollary 2.4 Let A,B,C be n × n matrices. If A,B,C � 0 and

κ(B−1/2AB−1/2), κ(C−1/2BC−1/2), κ(A−1/2CA−1/2) ≤ 7 + 2
√

10

3
,
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then the product f = qAqBqC is convex.

When m = 2, we have

(2m + 1) + 2
√

4m − 2

2m − 3
= 5 + 2

√
6 ≈ 9.899.

In this case, Theorem 2.3 is reduced to the next result, which was first proved in [36].

Corollary 2.5 (Zhao [36]) For any n × n matrices A and B , if A,B � 0 and
κ(B−1/2AB−1/2) ≤ 5 + 2

√
6, then the product f = qAqB is convex.

Theorem 2.3 provides a sufficient convexity condition for the product of finitely
many quadratic forms (2 ≤ m < ∞). This is the first general sufficient convexity
for the product function. At present, we do not know whether the condition (7) can
be further improved in general cases. Even for the case m = 2, the question about
whether or not the threshold 5 + 2

√
6 in Corollary 2.5 can be improved is not clear.

However, if the matrix with a special structure is considered, the threshold can be
improved, as indicated by the following result.

Proposition 2.6 Let A,B � 0 be 2 × 2 matrices. Suppose that A,B can be simulta-
neously diagonalizable, i.e., there exists an orthogonal matrix U such that

A = UT

[
β1 0
0 β2

]
U, B = UT

[
γ1 0
0 γ2

]
U,

and the diagonal entries satisfy β1γ1 = β2γ2. Then f = qAqB is convex if and only if
κ(B−1/2AB−1/2) ≤ 17 + 12

√
2.

Proof Without loss of generality, we assume that β1 ≥ β2 which together with
β1γ1 = β2γ2 implies that β1

γ1
≥ β2

γ2
. Notice that

B−1/2AB−1/2 = UT

⎡

⎣
β1
γ1

0

0 β2
γ2

⎤

⎦U.

Thus, κ(B−1/2AB−1/2) = (
β1
γ1

)/(
β2
γ2

) = β1γ2
β2γ1

. By setting z = Uy, f can be written as

f (y1, y2) = 1

2
(β1z

2
1 + β2z

2
2) · 1

2

(
γ1z

2
1 + γ2z

2
2

)
=: g(z1, z2).

Clearly, f is convex if and only if g is convex. Consider the Hessian matrix of g,

which is given by

∇2g(z1, z2) = 1

2

[
6β1γ1z

2
1 + (β1γ2 + β2γ1)z

2
2 2(β1γ2 + β2γ1)z1z2

2(β1γ2 + β2γ1)z1z2 6β2γ2z
2
2 + (β1γ2 + β2γ1)z

2
1

]
.

(12)
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If g is convex in Rn, then (12) must be positive semi-definite at any point in Rn. In
particular, it must be positive semi-definite at (z1, z2) = (1,1), thus

∇2g(1,1) = 1

2

[
6β1γ1 + (β1γ2 + β2γ1) 2(β1γ2 + β2γ1)

2(β1γ2 + β2γ1) 6β2γ2 + (β1γ2 + β2γ1)

]
� 0

which implies that

0 ≤ det

[
6β1γ1 + (β1γ2 + β2γ1) 2(β1γ2 + β2γ1)

2(β1γ2 + β2γ1) 6β2γ2 + (β1γ2 + β2γ1)

]

= (β1γ2 + β2γ1)
2 det

[
6β1γ1

β1γ2+β2γ1
+ 1 2

2 6β2γ2
β1γ2+β2γ1

+ 1

]

= 3(β1γ2 + β2γ1)
2
(

12
β1γ1β2γ2

(β1γ2 + β2γ1)2
+ 2

β1γ1 + β2γ2

β1γ2 + β2γ1
− 1

)
.

Since β1γ1 = β2γ2, we have that β1γ1 + β2γ2 = 2
√

β1γ1β2γ2. Substituting this into
the inequality above, we have

12

( √
β1γ1β2γ2

β1γ2 + β2γ1

)2

+ 4

( √
β1γ1β2γ2

β1γ2 + β2γ1

)
− 1 ≥ 0. (13)

Conversely, if (13) holds, we can prove that g is convex. Indeed, since the diagonal
entries of (12) is nonnegative, it is sufficient to prove that det(∇2g) ≥ 0. In fact,
noting that β1γ1 = β2γ2, we have

det(∇2g(z1, z2))

= 1

4

{[
6β1γ1z

2
1 + (β1γ2 + β2γ1) z2

2

][
6β2γ2z

2
2 + (β1γ2 + β2γ1) z2

1

]

− 4 (β1γ2 + β2γ1)
2 z2

1z
2
2

}

= 1

4

[
6β1γ1 (β1γ2 + β2γ1) (z4

1 + z4
2) + 36β1γ1β2γ2z

2
1z

2
2

− 3 (β1γ2 + β2γ1)
2 z2

1z
2
2

]

≥ 1

4

[
12β1γ1 (β1γ2 + β2γ1) z2

1z
2
2 + 36β1γ1β2γ2z

2
1z

2
2 − 3 (β1γ2 + β2γ1)

2 z2
1z

2
2

]

= 1

4

[
12
√

β1γ1β2γ2 (β1γ2 + β2γ1) + 36β1γ1β2γ2 − 3 (β1γ2 + β2γ1)
2
]
z2

1z
2
2

= 3

4
(β1γ2 + β2γ1)

2
[

4

√
β1γ1β2γ2

β1γ2 + β2γ1
+ 12

β1γ1β2γ2

(β1γ2 + β2γ1)
2

− 1

]
z2

1z
2
2

≥ 0.
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The first inequality above follows from the fact z4
1 + z4

2 ≥ 2z2
1z

2
2. Therefore, g is

convex if and only if the positive numbers β1, β2, γ1, γ2 satisfy the inequality (13).
Notice that the quadratic function 12t2 + 4t − 1 ≥ 0 if and only if either t ≤ − 1

2 or
t ≥ 1

6 . Thus, (13) holds if and only if

1

6
≤

√
β1γ1β2γ2

β1γ2 + β2γ1
=

√
(β1γ2)/(β2γ1)

(β1γ2)/(β2γ1) + 1
=

√
κ(B−1/2AB−1/2)

κ(B−1/2AB−1/2) + 1
(14)

which is equivalent to κ(B−1/2AB−1/2) ≤ 17 + 12
√

2. �

Remark 2.7 The proposition above shows that if κ(B−1/2AB−1/2) > 17 + 12
√

2,
the product of two quadratic forms considered in Proposition 2.6 is not convex. As
we mentioned earlier, we do not know at present whether the bound ‘5 + 2

√
6’ in

Corollary 2.5 can be improved without affecting the result of the corollary. If it can
be improved to a certain level γ ∗ > 5 + 2

√
6 without damaging the result of Corol-

lary 2.5, then Proposition 2.6 indicates that γ ∗ must not exceed 17 + 12
√

2.

Remark 2.8 By setting y = B1/2x, the product function can be written as

(xT Ax)(xT Bx) = yT (B−1/2AB−1/2)y(yT y),

which implies that the convexity of the product function is completely determined by
such a scaled matrix as B−1/2AB−1/2. Thus, from an algebraic point of view, it is
natural to impose a condition on the scaled matrix in order to obtain the convexity
of the product function, as shown by Theorems 2.3 and its corollaries. The condi-

tion (7) that is equivalent to χ(A
−1/2
j AiA

−1/2
j ) ≤

√
2

2m−1 , i, j = 1, . . . ,m, i �= j can
be understood from a geometric point of view. In fact, denote the angle between A

and B as θ(A,B) = arccos〈A,B〉/(‖A‖F ‖B‖F ) where 〈A,B〉 = tr(AB) and ‖ · ‖F

is Frobenius norm. Then it is easy to see that χ(B−1/2AB−1/2) = 0 if and only if
θ(A,B) = 0, in which case A and B are collinear. Thus, the condition (7) basically
means the angle between each pair of matrices does not exceed a certain threshold.
For the case m = 2, Proposition 2.6 indicates that the result of Theorem 2.3 does
not hold if the threshold is higher than 17 + 12

√
2. In other words, when the an-

gle between the matrices exceeds a certain threshold (the worst scenario occurs when
θ(A,B) is close to π/2 in which case ξ(B−1/2AB−1/2) ≈ ∞), then the product func-
tion will lose its convexity.

3 Expression of Legendre-Fenchel Transform

In this section, we address a more challenging question than the one (Question 11)
in [13]: What is the LF-transform for the product of finitely many positive-definite
quadratic forms? To this end, let us first prove a series of useful technical results
concerning the existence and/or uniqueness of the solution to certain nonlinear equa-
tions.
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Lemma 3.1 Let Ai � 0, i = 1, . . . ,m, be n × n matrices, and let 0 �= x ∈ Rn be an
arbitrarily given vector. Then for each i (i = 1, . . . ,m) the nonlinear equation

⎛

⎝
m∏

j=1,j �=i

qAj
(y)

⎞

⎠Aiy = x (15)

has a unique solution which is given by

y(i) =
(

2m−1

∏m
j=1,j �=i x

T A−1
i AjA

−1
i x

) 1
2m−1

A−1
i x, (16)

where i = 1, . . . ,m.

Proof It is easy to verify that (16) is a solution to (15). Thus, it suffices to prove that
(16) is the only solution to (15). Indeed, let y be an arbitrary solution to (15). Then,
we have Ai[(∏m

j=1,j �=i qAj
(y))y] = x. Let u be the unique solution to Aiu = x, i.e.,

u = A−1
i x. Thus,

⎛

⎝
m∏

j=1,j �=i

qAj
(y)

⎞

⎠y = A−1
i x = u,

from which we see that y �= 0 since x �= 0. Notice that
∏m

j=1,j �=i qAj
(y) > 0 for all

i = 1, . . . ,m. Denote by β = 1/(
∏m

j=1,j �=i qAj
(y)). Then the equality above can be

written as y = βu. Substituting it back into (15), we have
⎛

⎝
m∏

j=1,j �=i

qAj
(βu)

⎞

⎠Ai(βu) = x,

i.e.,

β2(m−1)+1

⎛

⎝
m∏

j=1,j �=i

qAj
(u)

⎞

⎠Aiu = x.

Since Aiu=x �=0, the inequality above implies that β2(m−1)+1(
∏m

j=1,j �=i qAj
(u))=1.

Hence

β =
(

1∏m
j=1,j �=i qAj

(u)

) 1
2(m−1)+1

=
(

2m−1

∏m
j=1,j �=i x

T A−1
i AjA

−1
i x

) 1
2m−1

,

which implies that

y = βu =
(

2m−1

∏m
j=1,j �=i x

T A−1
i AjA

−1
i x

) 1
2m−1

A−1
i x.
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Thus the solution to (15) is unique and is given by (16). �

An immediate result from Lemma 3.1 is the following lemma.

Lemma 3.2 Let Ai � 0, i = 1, . . . ,m, be n × n matrices, and let x(i) �= 0, i =
1, . . . ,m, be given vectors. Then the following system with respect to y

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
∏m

j=1,j �=1 qAj
(y))A1y = x(1),

(
∏m

j=1,j �=2 qAj
(y))A2y = x(2),

...

(
∏m

j=1,j �=m qAj
(y))Amy = x(m)

(17)

has a solution if and only if y(1) = y(2) = · · · = y(m), where

y(i) =
(

2m−1

∏m
j=1,j �=i (x

(i))T A−1
i AjA

−1
i x(i)

) 1
2m−1

A−1
i x(i), i = 1, . . . ,m.

Moreover, if the system (17) has a solution, its solution must be unique.

Proof Given a set of vectors x(i) �= 0, i = 1, . . . ,m, by Lemma 3.1 each individual
equation of (17) always has a unique solution. Thus, if the system (17) has a solution,
such a solution must be unique. However, the whole system of equations may not
have a common solution unless x(i) �= 0, i = 1, . . . ,m, are chosen such that all the
vectors y(i), i = 1, . . . ,m, are equal. That is, x(i) (i = 1, . . . ,m) must satisfy the
following condition:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 2m−1
∏m

j=1,j �=2(x
(2))T A−1

2 Aj A−1
2 x(2)

) 1
2m−1 A−1

2 x(2) = y(1),

( 2m−1
∏m

j=1,j �=3(x
(3))T A−1

3 Aj A−1
3 x(3)

) 1
2m−1 A−1

3 x(3) = y(1),

...( 2m−1
∏m

j=1,j �=m(x(m))T A−1
m Aj A−1

m x(m)

) 1
2m−1 A−1

m x(m) = y(1),

(18)

where y(1) = ( 2m−1
∏m

j=1,j �=1(x
(1))T A−1

1 Aj A−1
1 x(1)

)
1

2m−1 A−1
1 x(1). �

Before we prove the next result, let us first define a useful mapping. Given a vector
0 �= x ∈ Rn, let F (x) = (F (x)

2 , F (x)
3 , . . . , F (x)

m )T be a mapping from Rm−1++ to Rm−1++ .
Its components are defined as

F
(x)
j (α2, . . . , αm) = xT D−T A−1

1 AjA
−1
1 D−1x

xT D−T A−1
1 D−1x

, j = 2, . . . ,m (19)
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where Ai � 0 for i = 1, . . . ,m and

D = I + 1

α2
A2A

−1
1 +· · ·+ 1

αm

AmA−1
1 =

(
A1 + 1

α2
A2 + · · · + 1

αm

Am

)
A−1

1 . (20)

The mapping F (x) plays a key role in the proof of the next result.

Lemma 3.3 Let Ai � 0, i = 1, . . . ,m and let 0 �= x ∈ Rn be an arbitrarily given
vector in Rn. Then the following system of equations in variables α2, . . . , αm has a
solution in Rm−1++ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2 = xT (A1+∑m
k=2

1
αk

Ak)
−1A2(A1+∑m

k=2
1
αk

Ak)
−1x

xT (A1+∑m
k=2

1
αk

Ak)
−1A1(A1+∑m

k=2
1
αk

Ak)
−1x

,

α3 = xT (A1+∑m
k=2

1
αk

Ak)
−1A3(A1+∑m

k=2
1
αk

Ak)
−1x

xT (A1+∑m
k=2

1
αk

Ak)
−1A1(A1+∑m

k=2
1
αk

Ak)
−1x

,

...

αm = xT (A1+∑m
k=2

1
αk

Ak)
−1Am(A1+∑m

k=2
1
αk

Ak)
−1x

xT (A1+∑m
k=2

1
αk

Ak)
−1A1(A1+∑m

k=2
1
αk

Ak)
−1x

(21)

and any solution (α2, . . . , αm) ∈ Rm−1++ of the system above satisfies that

αi ∈ [λmin(Pi), λmax(Pi)], i = 2, . . . ,m (22)

where Pi = A
−1/2
1 AiA

−1/2
1 , i = 2, . . . ,m.

Proof Given x �= 0, let the mapping F (x) : Rm−1++ → Rm−1++ be defined by (19) where
D is given by (20). Consider the following compact and convex set

S = [λmin(P2), λmax(P2)] × · · · × [λmin(Pm),λmax(Pm)] (23)

which is the Cartesian product of m − 1 intervals. Notice that F (x)(α2, . . . , αm) is
continuous on S, and that for any (α2, . . . , αm) ∈ S, it follows from (19) that

F (x)
j (α2, . . . , αm) = xT D−T A−1

1 AjA
−1
1 D−1x

xT D−T A−1
1 D−1x

= zT (A
−1/2
1 AjA

−1/2
1 )z

zT z
= zT Pj z

zT z
,

where z = A
−1/2
1 D−1x, and Pj = A

−1/2
1 AjA

−1/2
1 . By Rayleigh-Ritz Theorem,

λmin(Pj ) ≤ F (x)
j (α2, . . . , αm) ≤ λmax(Pj ), j = 2, . . . ,m. (24)

Therefore, we conclude that F (x)(S) ⊆ S. By Brouwer’s fixed-point theorem, the
mapping F (x) has a fixed point in S, i.e., there is a vector (α2, . . . , αm) in S such that

(α2, . . . , αm)T = F (x)(α2, . . . , αm),
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namely

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2 = xT D−T A−1
1 A2A

−1
1 D−1x

xT D−T A−1
1 D−1x

,

α3 = xT D−T A−1
1 A3A

−1
1 D−1x

xT D−T A−1
1 D−1x

,

...

αm = xT D−T A−1
1 AmA−1

1 D−1x

xT D−T A−1
1 D−1x

,

which, by (20), is nothing but (21). Thus, the solution of (21) coincides with the
fixed point of the mapping F (x). Notice that (22) follows directly from the fact αj =
F

(x)
j (α2, . . . , αm) and (24). �

Lemma 3.4 Let Ai � 0, i = 1, . . . ,m and let 0 �= x ∈ Rn be an arbitrarily given
vector in Rn. For any given positive vector (α2, . . . , αm)T ∈ Rm−1++ , the following
system of equations (in variables x(1), . . . , x(m) ∈ Rn)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x(1) + x(2) + · · · + x(m) = x,

A2A
−1
1 x(1) − α2x

(2) = 0,

A3A
−1
1 x(1) − α3x

(3) = 0,

...

AmA−1
1 x(1) − αmx(m) = 0

(25)

has a unique solution which is given by

⎡

⎢⎢⎢⎣

x(1)

x(2)

...

x(m)

⎤

⎥⎥⎥⎦=

⎡

⎢⎢⎢⎢⎢⎣

A1
(
A1 +∑m

k=2
1
αk

Ak

)−1
x

1
α2

A2
(
A1 +∑m

k=2
1
αk

Ak

)−1
x

...
1

αm
Am

(
A1 +∑m

k=2
1
αk

Ak

)−1
x

⎤

⎥⎥⎥⎥⎥⎦
. (26)

Proof The system (25) can be written as

⎡

⎢⎢⎢⎢⎢⎣

I I I · · · I

A2A
−1
1 −α2I 0 · · · 0

A3A
−1
1 0 −α3I · · · 0

...
...

...
. . .

...

AmA−1
1 0 0 · · · −αmI

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

x(1)

x(2)

x(3)

...

x(m)

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

x

0
0
...

0

⎤

⎥⎥⎥⎥⎥⎦
. (27)
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For any given (α2, . . . , αm) > 0, it is easy to check that the coefficient matrix above
is nonsingular, and its inverse is given by

⎡

⎢⎢⎢⎢⎣

D−1 1
α2

D−1 · · · 1
αm

D−1

1
α2

A2A
−1
1 D−1 1

α2

( 1
α2

A2A
−1
1 D−1 − I

) · · · 1
α2

( 1
αm

A2A
−1
1 D−1

)

...
...

. . .
...

1
αm

AmA−1
1 D−1 1

αm

( 1
α2

AmA−1
1 D−1

) · · · 1
αm

( 1
αm

AmA−1
1 D−1 − I

)

⎤

⎥⎥⎥⎥⎦

where D is given by (20). Thus, the solution to the system (27) is unique and given
by

⎡

⎢⎢⎢⎣

x(1)

x(2)

...

x(m)

⎤

⎥⎥⎥⎦=

⎡

⎢⎢⎢⎢⎣

D−1x
1
α2

A2A
−1
1 D−1x

...
1

αm
AmA−1

1 D−1x

⎤

⎥⎥⎥⎥⎦
.

Substituting (20) into the above leads to (26). �

As we have mentioned earlier, to ensure that the system (17) has a solution the
vectors x(i) (i = 1, . . . ,m) should satisfy certain conditions. The next result shows
how to construct such vectors.

Lemma 3.5 Let Ai � 0, i = 1, . . . ,m and let 0 �= x ∈ Rn be an arbitrarily given
vector in Rn. If the vectors x(1), x(2), . . . , x(m) are given by (26) where (α2, . . . , αm) ∈
Rm−1++ is a solution to the system (21), then the system (17) has a unique solution
which can be represented as

y∗ =
(

2m−1
∏m

j=2 xT C−1AjC−1x

) 1
2m−1

C−1x, C = A1 +
m∑

k=2

1

αk

Ak. (28)

Proof Since (x(1), . . . , x(m)) is determined by (26), we have

x(1) = A1

(
A1 +

m∑

k=2

1

αk

Ak

)−1

x = A1C
−1x, (29)

x(i) = 1

αi

Ai

(
A1 +

m∑

k=2

1

αk

Ak

)−1

x = 1

αi

AiC
−1x, i = 2, . . . ,m, (30)

where (α2, . . . , αm) is a solution to (21), which always exists by Lemma 3.3. Thus,
for each i = 2, . . . ,m, by (29) and (30) and we have

( ∏m
j=2(x

(1))T A−1
1 AjA

−1
1 x(1)

∏m
j=1,j �=i (x

(i))T A−1
i AjA

−1
i x(i)

) 1
2m−1
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=
⎛

⎜⎝
∏m

j=2 xT C−1AjC
−1x

(
1
αi

)2(m−1)∏m
j=1,j �=i x

T C−1AjC−1x

⎞

⎟⎠

1
2m−1

=
⎛

⎜⎝
xT C−1AiC

−1x
(

1
αi

)2(m−1)

xT C−1A1C−1x

⎞

⎟⎠

1
2m−1

=
⎛

⎜⎝
αi

(
1
αi

)2(m−1)

⎞

⎟⎠

1
2m−1

= αi. (31)

The last second equality follows from the fact that (α2, . . . , αm) is a solution to (21).
Since (x(1), . . . , x(m)) given by (26) is the solution to (25), it satisfies that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A2A
−1
1 x(1) − α2x

(2) = 0,

A3A
−1
1 x(1) − α3x

(3) = 0,

...

AmA−1
1 x(1) − αmx(m) = 0,

which can be written as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A−1
1 x(1) = α2A

−1
2 x(2),

A−1
1 x(1) = α3A

−1
3 x(3),

...

A−1
1 x(1) = αmA−1

m x(m).

This together with (31) implies that (x(1), . . . , x(m)) satisfies (18). Thus, we have
y(1) = y(2) = · · · = y(m) where y(i), i = 1, . . . ,m, are given as in Lemma 3.2. By
Lemma 3.2, the nonlinear system (17) has a unique solution which can be represented
as

y∗ =
(

2m−1

∏m
j=2(x

(1))T A−1
1 AjA

−1
1 x(1)

)1/(2m−1)

A−1
1 x(1) = y(1).

Substituting (29) into the above yields (28). �

We have all ingredients to prove the main result of this section.

Theorem 3.6 Let Ai � 0, i = 1, . . . ,m, be n × n matrices, and assume that the
product function f =∏m

i=1 qAi
is convex. Then f ∗(0) = 0 and for x �= 0,

f ∗(x) = (2m − 1)

(
1∏m

k=2 αk

) 1
2m−1

⎛

⎜⎝
xT

(
A1 +∑m

k=2
1
αk

Ak

)−1
x

2m

⎞

⎟⎠

m
2m−1

(32)

where (α2, . . . , αm) ∈ Rm−1++ is an arbitrary solution to the system (21) at x.
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Proof When x = 0, it is evident that f ∗(0) = 0. Thus, in the remainder of this proof,
we assume that x �= 0. First, let (α∗

2 , . . . , α∗
m) ∈ Rm−1++ be a solution to the system (21).

By Lemma 3.3, such a solution always exists. Second, let us consider the following
system in variables x(1), x(2), . . . , x(m) ∈ Rn :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x(1) + x(2) + · · · + x(m) = x,

A2A
−1
1 x(1) − α∗

2x(2) = 0,

A3A
−1
1 x(1) − α∗

3x(3) = 0,

...

AmA−1
1 x(1) − α∗

mx(m) = 0.

(33)

By Lemma 3.4, the system (33) has a unique solution, denoted by (x
(1)∗ , x

(2)∗ , . . . ,

x
(m)∗ ), which can be represented as (26) with (α2, . . . , αm) = (α∗

2 , . . . , α∗
m). Based on

this fact, by Lemma 3.5, the following system
⎛

⎝
m∏

j=1,j �=i

qAj
(y)

⎞

⎠Aiy = x(i)∗ , i = 1, . . . ,m (34)

has a unique solution which can be represented as

y∗ =
(

2m−1
∏m

j=2 xT C−1AjC−1x

) 1
2m−1

C−1x, (35)

where

C = A1 +
m∑

k=2

1

α∗
k

Ak.

Since (x
(1)∗ , x

(2)∗ , . . . , x
(m)∗ ) is the solution to (33), from the first equation of (33), we

have x
(1)∗ + x

(2)∗ + · · · + x
(m)∗ = x. Thus, substituting y∗ into (34) and adding them

up, we have

m∑

i=1

⎛

⎝
m∏

j=1,j �=i

qAj
(y∗)

⎞

⎠Aiy
∗ =

m∑

i=1

x(i)∗ = x,

which by (1) indicates that

x = ∇f (y∗). (36)

Since f is convex, (36) implies that for the given x the function xT y − f (y) attains
its maximum value at y∗. Thus,

f ∗(x) = sup
y∈Rn

xT y − f (y) = xT y∗ − f (y∗). (37)

Note that f is homogeneous of degree 2m, by (36) again it is easy to verify that have

xT y∗ = ∇f (y∗)T y∗ = 2mf (y∗). (38)
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Therefore, by (37), (38) and (35), we have

f ∗(x) = xT y∗ − f (y∗) =
(

1 − 1

2m

)
xT y∗

=
(

2m − 1

2m

)(
2m−1

∏m
j=2 xT C−1AjC−1x

) 1
2m−1

xT C−1x. (39)

Since (α∗
2 , . . . , α∗

m) ∈ Rm−1++ is a solution to (21), we have

xT C−1AjC
−1x = α∗

j xT C−1A1C
−1x, j = 2, . . . ,m,

which implies that

m∑

j=2

1

α∗
j

xT C−1AjC
−1x = (m − 1)xT C−1A1C

−1x, (40)

and

m∏

j=2

xT C−1AjC
−1x =

(
xT C−1A1C

−1x
)m−1 m∏

j=2

α∗
j . (41)

By (40), we have

xT C−1A1C
−1x = xT C−1

(
A1 +

m∑

k=2

1

α∗
k

Ak −
m∑

k=2

1

α∗
k

Ak

)
C−1x

= xT C−1

(
C −

m∑

k=2

1

α∗
k

Ak

)
C−1x

= xT C−1x −
m∑

k=2

1

α∗
k

xT C−1AkC
−1x

= xT C−1x − (m − 1)xT C−1A1C
−1.

Thus,

xT C−1A1C
−1x = 1

m
xT C−1x. (42)

Combining (42) and (41) leads to

m∏

j=2

xT C−1AjC
−1x =

(
1

m
xT C−1x

)m−1 m∏

j=2

α∗
j .
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Substituting this into (39), we have

f ∗(x) =
(

2m − 1

2m

)
⎛

⎜⎝
2m−1

(
1
m

xT C−1x
)m−1 ∏m

j=2 α∗
j

⎞

⎟⎠

1
2m−1

xT C−1x

=
(

2m − 1

2m

)(
(2m)m−1
∏m

j=2 α∗
j

) 1
2m−1 (

xT C−1x
) m

2m−1

= (2m − 1)

(
1∏m

j=2 α∗
j

) 1
2m−1 (

xT C−1x

2m

) m
2m−1

,

as desired. �

Remark 3.7 Let α(x) = (α2(x), . . . , αm(x)) denote a solution to the system (21) at x.
Then it is also a solution to the system (21) at λx for any λ ∈ R, i.e., α(λx) = α(x)

for any λ ∈ R. Thus, it is easy to see that f ∗, given by (32), is positively homoge-
neous of degree 2m

2m−1 . This is consistent with a general result concerning the LF-
transform of a convex function that is homogeneous of degree 2m. In fact, Lasserre
[22] showed that if a function which is positively homogeneous of p degree (convex-
ity of the function is not required), then its LF-transform is positively homogeneous
of q degree, where 1/p + 1/q = 1. Thus, if the product function f is not convex,
its LF-transform remains homogeneous of degree 2m

2m−1 , in which case, however, the
formula for f ∗ is not clear at present (Theorem 3.6 above provides the formula of f ∗
when f is convex). Moveover, if the product function f is strictly convex, then f ∗
given by (32) will be differentiable and strictly convex. While this property cannot be
seen immediately from (32), it can follow from a well known result in [8] (see also,
Corollary 4.1.3 in [14]).

Remark 3.8 We see from Theorem 3.6 that f ∗ is finite everywhere and f ∗ > 0 for all
x ∈ Rn\{0}. It should be noted that the convexity assumption on f is only needed in
our analysis in order to derive formula (32). The finiteness and nonnegativeness of f ∗
do not rely on this assumption. The finiteness can follow directly from the coercivity
of the product function f (see e.g., Proposition 1.3.8 in [14]). Noting that f ∗ is
convex and homogeneous of degree 2m/(2m − 1) > 1, the nonnegativeness of f ∗
follows directly from Lemma 5.1 in [2] (which claims that any function that is convex
and homogeneous of degree p > 1 must be nonnegative in its domain). Due to the
special structure of the product function f , the finiteness and nonnegativeness of f ∗
can also be verified by the following estimate: From (22) and (32), it is easy to see that

there exist two positive constants ξ1, ξ2 such that ξ1‖x‖ 2m
2m−1 ≤ f ∗(x) ≤ ξ2‖x‖ 2m

2m−1 .
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It is interesting to consider two special cases: m = 2,3. First, by setting m = 2 in
(32), we have

f ∗(x) = 3

(
1

α2

) 1
3
[
xT

(
A1 + 1

α2
A2

)−1

x/4

] 2
3

= 3(α2)
1
3

(
xT (α2A1 + A2)

−1 x/4
) 2

3
,

and the system (18) collapses to

α2 = xT [A1 + 1
α2

A2]−1A2[A1 + 1
α2

A2]−1x

xT [A1 + 1
α2

A2]−1A1[A1 + 1
α2

A2]−1x

= xT (α2A1 + A2)
−1A2(α2A1 + A2)

−1x

xT (α2A1 + A2)−1A1(α2A1 + A2)−1x
.

Thus, an immediate result from Theorem 3.6 is as follows.

Corollary 3.9 [36] Let A � 0 and B � 0 and the product f = qAqB be convex. Then

f ∗(0) = 0 and for x �= 0, f ∗(x) = 3α
1
3 (xT (A + αB)−1x/4)

2
3 , where α is a root to

the univariate equation at x: α = xT (A+αB)−1A(A+αB)−1x

xT (A+αB)−1B(A+αB)−1x
.

Similarly, when m = 3, Theorem 3.6 is reduced to the next result.

Corollary 3.10 Let A1 � 0, A2 � 0, A3 � 0 be n × n matrices and let the product
f = qA1qA2qA3 be convex. Then f ∗(0) = 0 and for x �= 0,

f ∗(x) = 5

(
1

αγ

) 1
5
(

xT (A1 + 1
α
A2 + 1

γ
A3)

−1x

6

) 3
5

,

where (α, γ ) > 0 is a solution to the following system of equations at x:

α = xT (A1 + 1
α
A2 + 1

γ
A3)

−1A2(A1 + 1
α
A2 + 1

γ
A3)

−1x

xT (A1 + 1
α
A2 + 1

γ
A3)−1A1(A1 + 1

α
A2 + 1

γ
A3)−1x

,

γ = xT (A1 + 1
α
A2 + 1

γ
A3)

−1A3(A1 + 1
α
A2 + 1

γ
A3)

−1x

xT (A1 + 1
α
A2 + 1

γ
A3)−1A1(A1 + 1

α
A2 + 1

γ
A31)x

.

Roughly speaking, the computation of the LF-transform for the product of m

quadratic forms amounts to finding a solution to the system (21). From the proof
of Lemma 3.3, this also amounts to computing a fixed point of the mapping
F (x)(α2, . . . , αm). As the size of the system (21) dependents proportionally on the
number of quadratic forms involved, the computational complexity of f ∗ also de-
pends directly on the number of quadratic forms. The more quadratic forms are in-
volved, the more efforts are required for the evaluation of the LF-transform. It is not
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difficult to see that (21) is actually a polynomial system and hence it is sufficiently
smooth. Newton’s method can be employed to solve the system (21). Since the so-
lution of the system lies in the box (23), the bisection method may be applied, and
some fixed-point methods can be used as well.

4 Conclusions

A general sufficient convexity condition for the product of finitely many quadratic
forms was developed in this paper. The main result claims that the product function is
convex if the condition numbers of the so-called ‘scaled matrices’ are bounded above
by a certain constant which can be explicitly given in terms of the number of quadratic
forms. This result indicates that the more distinct quadratic forms are involved, the
more restrictive condition should be imposed on these quadratic forms in order to re-
tain the convexity of the product function (in another word, the more quadratic forms
are involved, the more likely the product function loses its convexity). The convexity
condition developed in this paper makes it possible to identify the computationally
tractable multiplicative optimization problems, and makes it also possible to employ
some efficient modern convex optimization methods [31] to solve some (quadratic)
multiplicative programming problems instead of relying merely on global optimiza-
tion methods. On the other hand, a more general question than the open ‘Question 11’
in [13] has been addressed in this paper. The main result (Theorem 3.6) shows that the
Legendre-Fenchel transform of the product of finitely many quadratic forms can be
explicitly expressed as a finite function with some parameters which can be obtained
by solving a system of equations with a special structure (or equivalently, by com-
puting a fixed point of a smooth mapping). This result makes it possible to compute
efficiently the LF-transform for the product of finitely many quadratic forms. From a
duality point of view, this result might also lead to an effective duality-type algorithm
for some multiplicative optimization problems.

Acknowledgements The author thanks anonymous referees for their incisive comments and helpful
suggestions that helped improve the paper. In particular, the geometric meaning given in Remark 2.8, the
estimate of f ∗ in Remark 3.8, and the discussion on homogeneity degree of f ∗ and strict convexity in
Remark 3.7 were pointed out by one of the referees to whom the author is grateful.
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