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The uniqueness of sparsest solutions of underdetermined linear systems plays a fundamen-
tal role in compressed sensing theory. Several new algebraic concepts, including the sub-
mutual coherence, scaled mutual coherence, coherence rank, and sub-coherence rank,
are introduced in this paper in order to develop new and improved sufficient conditions
for the uniqueness of sparsest solutions. The coherence rank of a matrix with normalized
columns is the maximum number of absolute entries in a row of its Gram matrix that
are equal to the mutual coherence. The main result of this paper claims that when the
coherence rank of a matrix is low, the mutual-coherence-based uniqueness conditions
for the sparsest solution of a linear system can be improved. Furthermore, we prove that
the Babel-function-based uniqueness can be also improved by the so-called sub-Babel
function. Moreover, we show that the scaled-coherence-based uniqueness conditions can
be developed, and that the right-hand-side vector b of a linear system, the support overlap
of solutions, and the range property of a transposed matrix can be also integrated into the
criteria for the uniqueness of the sparsest solution of an underdetermined linear system.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Consider an underdetermined system of linear equations
Ax ¼ b;
where A is a given m� n matrix with m < n, and b 2 Rm is a given vector. Throughout this paper, we assume that A has at
least two rows, i.e., m P 2. Seeking for the sparsest solution of an underdetermined linear system has recently become an
important and common request in many applications such as signal and image processing, compressed sensing, computer
vision, statistical and financial model selections, and machine learning (see e.g., [5,15,26,17] and the references therein).
Let kxk0 denote the cardinality, i.e., the number of nonzero components of the vector x 2 Rn. Then finding a sparsest solution
of a linear system is formulated as the so-called ‘0-minimization problem
minfkxk0 : Ax ¼ bg;
which is known to be NP-hard [24,1]. An intensive study of this problem has been carried out over the past few years (see
e.g., [7,11,15,26,17]), and continues its growth in both theory and computational methods that stimulate further cross-dis-
ciplinary applications (see e.g., [6,23,25,17]). However, the understanding of ‘0-minimization problems, from theory to com-
putational methods, remains very incomplete at the moment [5,17]. For instance, the fundamental question of when an ‘0-
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problem admits a unique solution has not yet addressed completely, and many existing uniqueness claims remain restric-
tive. The main purpose of this paper is to establish some new and improved sufficient conditions for a linear system to have a
unique sparsest solution.

So far, sufficient criteria for the uniqueness of sparsest solutions have been developed by using such matrix properties as
unique representation property [20], spark [12], mutual coherence [14], restricted isometry property (RIP)[8], null space
property (NSP) [10,30], exact recovery condition [27,28], range space property (RSP) of AT [31,32], and the verifiable condi-
tions [22]. A crucial tool for the study of uniqueness is the spark, denoted by SparkðAÞ, which is the smallest number of col-
umns of the matrix A that are linearly dependent. The spark provides the guaranteed uniqueness of sparsest solutions, as
shown by the result below.

Theorem 1.1 [12]. If a linear system Ax ¼ b has a solution x satisfying kxk0 < SparkðAÞ=2, then x is the unique sparsest solution of
the system.

The spark is difficult to compute. Any computable lower bound 0 < /ðAÞ 6 SparkðAÞ, however, produces a checkable suf-
ficient condition for the uniqueness, such as kxk0 6 /ðAÞ=2.The mutual coherence of a matrix (see the definition in Section 2),
denoted by lðAÞ, is such a property (e.g., [14,16,12,21,18,27]) that yields a computable lower bound of the spark as follows
1þ 1
lðAÞ 6 SparkðAÞ; ð1Þ
which, together with Theorem 1.1, implies the following uniqueness claim.

Theorem 1.2 [14,19,16]. If a linear system Ax ¼ b has a solution x obeying
kxk0 < 1þ 1
lðAÞ

� �
=2; ð2Þ
then x is the unique sparsest solution of the system.
The condition (2) is restrictive in many cases. In [27], the Babel function, denoted by l1ðpÞ, is introduced and shown to

satisfy that SparkðAÞP minfp : l1ðp� 1ÞP 1gP 1þ 1=l, yielding the following stronger uniqueness condition than (2).

Theorem 1.3 [27]. If a linear system Ax ¼ b has a solution x obeying
kxk0 <
1
2

minfp : l1ðp� 1ÞP 1g; ð3Þ
then x is the unique sparsest solution of the system.
Theorems 1.2 and 1.3 are valid for general matrices. When A ¼ ½UW� is a concatenation of two orthogonal matrices, Elad

and Bruckstein [16] have shown that (2) can be improved to kxk0 < 1=lðAÞ, and when A consists of J concatenated orthogonal
bases, Gribonval and Nielsen [21] have shown that the uniqueness condition can be stated as kxk0 <

1
2 1þ 1

J�1

� �
=lðAÞ. For a

general matrix A, however, it remains important, from a mathematical point of view, to address the question: How can the
bounds (2) and (3) be improved? In this paper, we answer this question through the classic Brauder’s Theorem. To this end, we
introduce and use the sub-mutual coherence, which is the second largest inner product between two columns of a matrix
with normalized columns, and the so-called coherence rank that turns out to be an important concept for the uniqueness
of sparsest solutions. The sub-Babel function is also introduced in order to enhance the result of Theorem 1.3 above. One
of our results in this paper claims that for a general matrix A, when the coherence rank of A is smaller than 1=lðAÞ, the lower
bound (1) of Spark(A), and thus the condition (2), can be improved.

The spark of a matrix is invariant under nonsingular scalings, but the mutual coherence is not. Thus we introduce the concept
of the scaled mutual coherence in Section 4, which enables us to establish an optimal lower bound of the spark in certain sense.
Note that the existing uniqueness conditions use matrix properties only, and the role of b is completely overlooked. The sparsity
of a solution, however, can also depend on the right-hand-side vector b of a linear system. How to integrate b into a uniqueness
condition for sparsest solutions is worth addressing (as pointed out by Bruckstein et al. [5]). An instant application of the scaled
mutual coherence yields a uniqueness condition that depends on the property of A and b altogether.

All the above-mentioned results are developed by identifying a lower bound for the spark of a matrix. Any improvement of
the spark condition in Theorem 1.1 leads to a further enhancement of these results. Although it is hard to improve Theorem 1.1
in general, it is possible to do so in some situations. We show that the support overlap of solutions of a linear system is the
information that can be used to achieve this goal (see Section 5 for details). Finally, we introduce certain range properties of
a matrix that can still guarantee the uniqueness of sparsest solutions to a linear system. Similar to the RIP [8,7] and the NSP
[10,30], the range space property arises naturally from the analysis of the uniform recovery of sparse signals ([31,32]).

This paper is organized as follows. We introduce several new concepts in Section 2, and use them to develop improved
uniqueness for sparsest solutions. The improvement of Babel-function-based uniqueness condition are given in Section 3.
The scaled-coherence-based uniqueness conditions and their applications are discussed in Section 4. A further improvement
of the spark condition via support overlap of solutions is demonstrated in Section 5, and the range-property-based unique-
ness is briefly introduced in Section 6.
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2. Improved conditions for uniqueness of sparsest solutions

Let ai; i ¼ 1; . . . ;n be the columns of A. Recall that the mutual coherence of A (see e.g., [14,5]) is defined as
lðAÞ ¼max
i–j

jaT
i ajj

kaik2 � kajk2
:

So lðAÞ is the maximum absolute value of the inner product between the normalized columns of A. The lower
bound (1) plays a vital role in the development of the uniqueness theory and the performance guarantee of such algo-
rithms as (orthogonal) matching pursuit, ‘1-minimization, and iterative thresholding algorithms for the sparsest solu-
tion of linear systems (see e.g., [14,16,12,18,27,28,5,15,2,3]). Any improvement of this lower bound may lead to an
enhancement of many existing results in this field. In what follows, we develop an improved lower bound for spark
(A) that leads to an improved sufficient conditions for a linear system to have a unique sparsest solution. Let us begin
with a few concepts.

2.1. Sub-mutual coherence, coherence rank, and sub-coherence rank

Let us sort the different values of the inner product jaT
i ajj=ðkaik2kajk2Þ in a descending order, and denote them by
lð1ÞðAÞ > lð2ÞðAÞ > � � � > lðkÞðAÞ:
Clearly, the largest one is lð1ÞðAÞ ¼ lðAÞ, the mutual coherence.

Definition 2.1. The sub-mutual coherence of A, lð2ÞðAÞ, is the second largest absolute inner product between two normalized
columns of A:
lð2ÞðAÞ ¼max
i–j

aT
i aj

kaik2 � kajk2
:

aT
i aj

kaik2 � kajk2
< lðAÞ

� �
:

In order to introduce the next useful property of a matrix, let us consider the index set
SiðAÞ :¼ j : j – i;
aT

i aj

kaik2 � kajk2
¼ lðAÞ

� �
; i ¼ 1; . . . ;m:
Without loss of generality, we assume that the columns of A are normalized. It is easy to see that SiðAÞ counts the number
of absolute entries equal to lðAÞ in ith row of G ¼ AT A, the Gram matrix of A. Clearly, at least one of these sets is nonempty,
since the largest absolute entry of G is equal to lðAÞ. Denote the cardinality of SiðAÞ by aiðAÞ, i.e.,
aiðAÞ ¼ jSiðAÞj; i ¼ 1; . . . ;m:
Clearly, 0 6 aiðAÞ 6 n� 1. Let
aðAÞ ¼ max
16i6m

aiðAÞ ¼ max
16i6m

jSiðAÞj; ð4Þ
which is a positive number. Let i0 be an index such that
aðAÞ ¼ ai0 ðAÞ ¼ jSi0 ðAÞj;
i.e., the i0th row of G has the maximal number of absolute entries equal to lðAÞ. Then we may define
bðAÞ ¼ max
16i6m;i–i0

aiðAÞ ¼ max
16i6m;i–i0

jSiðAÞj; ð5Þ
which is the second largest number among aiðAÞ; i ¼ 1; . . . ;m.
Definition 2.2. aðAÞ, given by (4), is called the coherence rank of A, and bðAÞ, given by (5), is called sub-coherence rank
of A.

For a given matrix A with normalized columns, both aðAÞ and bðAÞ can be easily obtained through its Gram matrix
G ¼ AT A or its absolute Gram matrix, denoted by absðGÞ. By the definition of lðAÞ, there exists at least one off-diagonal
absolute entry of A, say jGijj (in ith row), which is equal to lðAÞ. By the symmetry of G, we also have jGjij ¼ lðAÞ (in jth
row of G). Thus the symmetry of G implies that bðAÞP 1. So, for any matrix A, we have the relation
1 6 bðAÞ 6 aðAÞ: ð6Þ
Geometrically, aðAÞ can be called the Equiangle of A in the sense that it is the maximum number of columns of A that have
the same largest angle with respect to a column, say the i0-column, of A.
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Remark 2.3. When all columns of A are generated by a single vector, then lðAÞ ¼ 1 and aðAÞ ¼ bðAÞ ¼ n� 1. When A has at
least two independent columns (not all columns are generated by a single vector), then aðAÞ < n� 1. For the concatenation of
two orthogonal bases A ¼ ½WU�, where W;U are m�m orthogonal matrices, we see that aðAÞ 6 n=2 ¼ m. As we have pointed
out, all lðAÞ;lð2ÞðAÞ;aðAÞ and bðAÞ can be obtained straightaway from the Gram matrix of A. For example, when A is given by
A ¼
�0:9802 0:1 0:3521 0:9239 0:9239 0:7405
�1:8282 0 1:0365 0:3827 �0:3827 �1:6821
0:3269 0 1:3563 0 0 �0:2949

264
375; ð7Þ
then the Gram matrix of the normalized A is given by
G ¼

1 �0:4668 �0:4908 �0:7644 �0:0981 0:5763
�0:4668 1 0:2020 0:9239 0:9239 0:3978
�0:4908 0:2020 1 0:4142 �0:0409 �0:5803
�0:7644 0:9239 0:4142 1 0:7071 0:0217
�0:0981 0:9239 �0:0409 0:7071 1 0:7134
0:5763 0:3978 �0:5803 0:0217 0:7134 1

2666666664

3777777775
;

from which we see that lðAÞ ¼ 0:9239 > lð2ÞðAÞ ¼ 0:7644, and aðAÞ ¼ 2 > bðAÞ ¼ 1.
2.2. Coherence-rank-based lower bounds for Spark(A)

Let us first recall the Brauer’s theorem [4] (see also Theorem 2.3 in [29]), concerning the estimate of eigenvalues of a ma-
trix. Let rðAÞ :¼ fk : k is an eigenvalue of Ag be the spectrum of A.

Theorem 2.4. (Brauer [4]). Let A ¼ ðaijÞ be an N � N matrix with N P 2. Then, if k is an eigenvalue of A, there is a pair ðr; qÞ of
positive integers with r – qð1 6 r; q 6 NÞ such that
jk� arrj � jk� aqqj 6 DrDq;where Di :¼
XN

j¼1;j–i

jaijj for 1 6 i 6 N:
Hence if KijðAÞ ¼ fz : jz� aiij � jz� ajjj 6 DiDjg for i – j, then rðAÞ#
SN

i–jKijðAÞ.
We make use of this classic theorem to prove the following result, which turns out to be an improved version of (1) when

the coherence rank is low.

Theorem 2.5. Let A 2 Rm�n be a matrix with m < n, and let aðAÞ and bðAÞ be defined by (4) and (5), respectively. Suppose that one
of the following conditions holds: (i) aðAÞ < 1

lðAÞ; (ii) aðAÞ 6 1
lðAÞ and bðAÞ < aðAÞ. Then lð2ÞðAÞ > 0 and
SparkðAÞP 1þ
2 1� aðAÞbðAÞelðAÞ2h i

lð2ÞðAÞ elðAÞðaðAÞ þ bðAÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffielðAÞðaðAÞ � bðAÞÞ½ �2 þ 4

q� � ; ð8Þ
where elðAÞ :¼ lðAÞ � lð2ÞðAÞ.
Proof. Normalizing the columns of a matrix does not affect any of the SparkðAÞ;lðAÞ;lð2ÞðAÞ;aðAÞ and bðAÞ. Thus, without
loss of generality, we assume that all columns of A have unit ‘2-norms. Let p ¼ SparkðAÞ. By the definition of spark, there exist
p columns of A that are linearly dependent. Let AS be the submatrix consisting of these p columns. Without lost of generality,
we assume AS ¼ ða1; a2; . . . ; apÞ. Thus the p� p matrix GSS ¼ AT

S AS is singular, since the columns of AS are linearly dependent.
Note that all diagonal entries of GSS are equal to 1, and all off-diagonal absolute entries are less than or equal to lðAÞ. Under
either condition (i) or (ii), we have aðAÞ 6 1

lðAÞ. Hence it follows from (1) that
1þ aðAÞ 6 1þ 1
lðAÞ 6 SparkðAÞ:
So, aðAÞ 6 SparkðAÞ � 1 ¼ p� 1. Note that GSS is a p� p matrix. Thus in every row of GSS, there exist at most aðAÞ absolute
entries equal to lðAÞ, and the remaining ðp� 1Þ � aðAÞ absolute entries are less than or equal to lð2ÞðAÞ. By the singularity of
GSS; k ¼ 0 is an eigenvalue of GSS. Note that the entries of GSS are given by Gij ¼ aT

i aj where i; j¼ 1; . . . ; p. Thus by Theorem 2.4,
there exist two different rows, say ith and jth rows ði – jÞ, such that
j0� Giij � j0� Gjjj 6 DiDj ¼
Xp

k¼1;k–i

jaT
i akj

 ! Xp

k¼1;k–j

jaT
j akj

 !
; ð9Þ
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where Gii ¼ Gjj ¼ 1 are two diagonal entries of GSS. By the definition of aðAÞ and bðAÞ, one of these two rows contains at most
aðAÞ entries with absolute values equal to lðAÞ, and the next row contains at most bðAÞ entries with absolute values equal to
lðAÞ. The remaining entries in these rows are less than or equal to lð2ÞðAÞ. Therefore,
Xp

k¼1;k–i

jaT
i akj

 ! Xp

k¼1;k–j

jaT
j akj

 !
6 aðAÞlðAÞ þ ðp� 1� aðAÞÞlð2ÞðAÞ
	 


� bðAÞlðAÞ þ ðp� 1� bðAÞÞlð2ÞðAÞ
	 


: ð10Þ
Combining (9) and (10) leads to
1 6 aðAÞlðAÞ þ ðp� 1� aðAÞÞlð2ÞðAÞ
	 


� bðAÞlðAÞ þ ðp� 1� bðAÞÞlð2ÞðAÞ
	 


¼ aðAÞelðAÞ þ ðp� 1Þlð2ÞðAÞ
	 


� bðAÞelðAÞ þ ðp� 1Þlð2ÞðAÞ
	 


;

where elðAÞ :¼ lðAÞ � lð2ÞðAÞ. By rearranging terms, the inequality above can be written as
ðp� 1Þlð2ÞðAÞ
	 
2 þ ðp� 1Þlð2ÞðAÞ

	 

ðaðAÞ þ bðAÞÞelðAÞ þ aðAÞbðAÞelðAÞ2 � 1 P 0: ð11Þ
We now show that lð2ÞðAÞ – 0. In fact, if lð2ÞðAÞ ¼ 0, then (11) is reduced to aðAÞbðAÞlðAÞ2 P 1, which contradicts both
conditions (i) and (ii). In fact, each of conditions (i) and (ii) implies that aðAÞbðAÞlðAÞ2 < 1. Thus lð2ÞðAÞ is positive. Note that
the quadratic equation (in t)
t2 þ tðaðAÞ þ bðAÞÞelðAÞ þ aðAÞbðAÞelðAÞ2 � 1 ¼ 0
has only one positive root. So it follows from (11) that
ðp� 1Þlð2ÞðAÞP
�ðaðAÞ þ bðAÞÞelðAÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffielðAÞðaðAÞ þ bðAÞÞ½ �2 � 4ðaðAÞbðAÞelðAÞ2 � 1Þ

q
2

¼
�ðaðAÞ þ bðAÞÞelðAÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaðAÞ � bðAÞÞelðAÞ½ �2 þ 4
q

2
¼

2 1� aðAÞbðAÞelðAÞ2h i
ðaðAÞ þ bðAÞÞelðAÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaðAÞ � bðAÞÞelðAÞ½ �2 þ 4
q ;
which is exactly the relation (8). h

The next proposition shows that the bound (8) is an improved lower bound for the spark under the condition of
Theorem 2.5.

Proposition 2.6. Let W aðAÞ; bðAÞ;lðAÞ;lð2ÞðAÞ
� �

denote the right-hand side of the inequality (8). When aðAÞ < 1
lðAÞ, we have
W aðAÞ;bðAÞ;lðAÞ;lð2ÞðAÞ
� �

P 1þ 1
lðAÞ

� �
þ 1

lð2ÞðAÞ �
1

lðAÞ

� �
ð1� aðAÞlðAÞÞ:
When aðAÞ 6 1
lðAÞ and bðAÞ < aðAÞ, we have
W aðAÞ;bðAÞ;lðAÞ;lð2ÞðAÞ
� �

P 1þ 1
lðAÞ

� �
þ 1

lð2ÞðAÞ �
1

lðAÞ

� �
ð1� aðAÞlðAÞÞ þ aðAÞelðAÞ2

lð2ÞðAÞð1þ aðAÞelðAÞÞ ;

where elðAÞ ¼ lðAÞ � lð2ÞðAÞ.
Proof. By using the fact
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
6 aþ b for any a; b P 0, we have
W aðAÞ;bðAÞ;lðAÞ;lð2ÞðAÞ
� �

� 1 ¼
2 1� aðAÞbðAÞelðAÞ2� �

lð2ÞðAÞ elðAÞðaðAÞ þ bðAÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffielðAÞðaðAÞ � bðAÞÞ½ �2 þ 4

q� �

P
2 1� aðAÞbðAÞelðAÞ2� �

lð2ÞðAÞ elðAÞðaðAÞ þ bðAÞÞ þ elðAÞðaðAÞ � bðAÞÞ½ � þ 2

 �

¼ 1� aðAÞbðAÞelðAÞ2
lð2ÞðAÞð1þ aðAÞelðAÞÞ : ð12Þ
Case 1: aðAÞ < 1
lðAÞ. In this case, by (6), i.e., bðAÞ 6 aðAÞ, it follows from (12) that
W aðAÞ;bðAÞ;lðAÞ;lð2ÞðAÞ
� �

� 1 P
1� aðAÞ2 elðAÞ2

lð2ÞðAÞð1þ aðAÞelðAÞÞ ¼ 1� aðAÞelðAÞ
lð2ÞðAÞ ¼ 1

lðAÞ þ
1

lð2ÞðAÞ �
1

lðAÞ

� �
ð1� aðAÞlðAÞÞ:
Case 2: aðAÞ 6 1
lðAÞ and bðAÞ < aðAÞ. In this case, since bðAÞ 6 aðAÞ � 1, it follows again from (12) that
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W aðAÞ;bðAÞ;lðAÞ;lð2ÞðAÞ
� �

� 1 P
1� aðAÞðaðAÞ � 1ÞelðAÞ2
lð2ÞðAÞð1þ aðAÞelðAÞÞ ¼ 1� aðAÞelðAÞ

lð2ÞðAÞ þ aðAÞelðAÞ2
lð2ÞðAÞð1þ aðAÞelðAÞÞ

¼ 1
lðAÞ þ

1
lð2ÞðAÞ �

1
lðAÞ

� �
ð1� aðAÞlðAÞÞ þ aðAÞelðAÞ2

lð2ÞðAÞð1þ aðAÞelðAÞÞ ;

as desired. h

Under the first case above, we see that 1
lð2ÞðAÞ �

1
lðAÞ

� �
ð1� aðAÞlðAÞÞ > 0, and under the second case, we have
1
lð2ÞðAÞ �

1
lðAÞ

� �
ð1� aðAÞlðAÞÞ þ aðAÞelðAÞ2

lð2ÞðAÞð1þ aðAÞelðAÞÞ > 0:
Thus, under the condition of Theorem 2.5, we have W aðAÞ; bðAÞ;lðAÞ;lð2ÞðAÞ
� �

> 1þ 1
lðAÞ. Therefore, the lower bound of

spark given by (8) does improve the bound (1) when the coherence rank, aðAÞ, is small. Proposition 2.6 also indicates explic-
itly how much this improvement can be made at least.

If the Gram matrix G of the normalized A has two rows containing aðAÞ entries with absolute values equal to lðAÞ, then
aðAÞ ¼ bðAÞ, in which case the lower bound (8) can be simplified to
W aðAÞ;bðAÞ;lðAÞ;lð2ÞðAÞ
� �

¼ 1þ 1
lðAÞ

� �
þ 1

lð2ÞðAÞ �
1

lðAÞ

� �
ð1� aðAÞlðAÞÞ:
Note that G has at most one absolute entry equal to lðAÞ in its every row if and only if aðAÞ ¼ bðAÞ ¼ 1. In this special case,
the condition aðAÞ < 1=lðAÞ holds trivially when lðAÞ < 1. Thus, the next corollary follows immediately from Theorem 2.5.

Corollary 2.7. Let A 2 Rm�n be a matrix with m < n. If lðAÞ < 1 and aðAÞ ¼ 1, then lð2ÞðAÞ > 0, and
SparkðAÞP 1þ 1
lðAÞ þ

1
lð2ÞðAÞ �

1
lðAÞ

� �
ð1� lðAÞÞ:
Although Corollary 2.7 deals with a special case from a mathematical point of view, many matrices satisfy the property
aðAÞ ¼ 1 together with lðAÞ < 1. Numerical experiments show that when a matrix is randomly generated, the coherence
rank of the matrix is most likely equal to 1. In fact, the case aðAÞP 2 arises only when A has at least two columns, each
of which has the same angle to a column of the matrix, and such an angle is the largest one between a pair of columns of
A. This phenomenon indicates that the coherence rank of a matrix is usually low in practice, typically aðAÞ ¼ 1.

2.3. Uniqueness via coherence and coherence rank

Consider the class of matrices
M¼ A 2 Rm�n : either aðAÞ 6 1
lðAÞ and bðAÞ < aðAÞ;or aðAÞ < 1

lðAÞ

� �
¼M1 [M2; ð13Þ
where
M1 ¼ A 2 Rm�n : aðAÞ < 1
lðAÞ

� �
;M2 ¼ A 2 Rm�n : aðAÞ 6 1

lðAÞ and bðAÞ < aðAÞ
� �

:

We now state the main uniqueness claim of this section.

Theorem 2.8. Let A 2M,defined by (13). If the system Ax ¼ b has a solution x obeying
kxk0 <
1
2

1þ
2 1� aðAÞbðAÞelðAÞ2� �

lð2ÞðAÞ elðAÞðaðAÞ þ bðAÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffielðAÞðaðAÞ � bðAÞÞ½ �2 þ 4

q� �
2664

3775; ð14Þ
where elðAÞ :¼ lðAÞ � lð2ÞðAÞ, then x is the unique sparsest solution to the linear system.
This result follows instantly from Theorems 2.5 and 1.1. As shown by Proposition 2.6, condition (14) has improved the

well-known condition (2) when A is in class M. This improvement is achieved by using the sub-mutual coherence lð2ÞðAÞ
together with (sub-) coherence rank, instead of lðAÞ only. Note that aðAÞ; bðAÞ;lðAÞ and lð2ÞðAÞ can be obtained straightfor-
ward from the Gram matrix G ¼ AT A: Thus the bound (14) can be easily computed.

By Theorem 2.5 and Proposition 2.6, we obtain the next result.

Theorem 2.9.

(i) Let A 2 M1, defined by (13). If the system Ax ¼ b has a solution x obeying
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kxk0 <
1
2

1þ 1
lðAÞ þ

1
lð2ÞðAÞ �

1
lðAÞ

� �
ð1� aðAÞlðAÞÞ

� �
; ð15Þ
then x is the unique sparsest solution of the linear system.
(ii) Let A 2 M2, defined by (13). If the system Ax ¼ b has a solution x obeying
kxk0 <
1
2

1þ 1
lðAÞ þ

1
lð2ÞðAÞ �

1
lðAÞ

� �
ð1� aðAÞlðAÞÞ þ aðAÞelðAÞ2

lð2ÞðAÞð1þ aðAÞelðAÞÞ
" #

; ð16Þ
then x is the unique sparsest solution of the linear system.
(iii) Let A be a matrix with lðAÞ < 1 and aðAÞ ¼ 1. Then the solution of Ax ¼ b satisfying
kxk0 <
1
2

1þ 1
lðAÞ þ

1
lð2ÞðAÞ �

1
lðAÞ

� �
ð1� lðAÞÞ

� �
ð17Þ
is the unique sparsest solution of the linear system.

Result (iii) of the above theorem shows that for coherence-rank-1 matrices, the uniqueness criterion (2) can be always
improved to (17). As we have pointed out, matrices (especially the randomly generated ones) are largely coherence-rank-
1, unless the matrix is particularly designed.

Example 2.10. Consider a randomly generated A below and the absolute Gram matrix of its column-normalized counterpart
A ¼
0:0010 �0:7998 �0:6002 0:0717
0:8001 �0:3558 0:4798 �0:1913
0:5999 0:4801 �0:6398 �0:6412

264
375; absðGÞ ¼

1 0:0025 0:0005 0:7989
0:0025 1 0:0022 0:4422
0:005 0:0022 1 0:4093

0:7989 0:4422 0:4093 1

26664
37775:
From absðGÞ, we see that aðAÞ ¼ bðAÞ ¼ 1;lðAÞ ¼ 0:7989, and lð2ÞðAÞ ¼ 0:4422. Note that SparkðAÞ=2 ¼ 2 for this example.
The standard mutual bound (2) is ð1þ 1

lðAÞÞ=2 ¼ 1:1258, which is improved to 1.2274 by (17).
3. Improvement of Babel-function-based uniqueness

Let A 2 Rm�n be a matrix with normalized columns. Tropp [27] introduced the so-called Babel-function defined as
l1ðqÞ ¼ max
K;jKj¼q

max
jRK

X
i2K
jaT

i ajj
where ak; k ¼ 1; . . . ;n, are the columns of A, and K is some subset of f1; . . . ;ng. By this function, the following lower bound for
spark is obtained (see [27]):
SparkðAÞP min
16q6n

fq : l1ðq� 1ÞP 1g: ð18Þ
The Babel function can be equivalently defined/computed in terms of the Gram matrix G ¼ AT A. In fact, sorting every row
of absðGÞ in descending order yields the matrix bG ¼ ðbGijÞ with the first column equal to the vector of ones, consisting of the
diagonal entries of G. Therefore, as pointed out in [15], the Babel function can be written as
l1ðqÞ ¼ max
16k6m

Xqþ1

j¼2

jbGkjj ¼
Xqþ1

j¼2

jbGk0jj; ð19Þ
where k0 denotes an index such that the above maximum is achieved. Since l1ðq� 1Þ 6 ðq� 1ÞlðAÞ, it is evident that
min
16q6n

fq : l1ðq� 1ÞP 1gP 1þ 1
lðAÞ :
So the lower bond given by (18) is an enhanced version of (1). Some immediate questions arise: Can we compare the lower
bounds (18) and (8)? Can the lower bounds (18) and (8) be further improved?

We first address the second question above, by showing that the Babel-function-based bound (18) can be further im-
proved by using the so-called sub-Babel function. Again, Brauer’s Theorem plays a fundamental role in deriving such an en-
hanced result. The sub-Babel function, denoted by lð2Þ1 ðqÞ, is defined as
lð2Þ1 ðqÞ ¼ max
16k6m;k–k0

Xqþ1

j¼2

jbGkjj; ð20Þ
where k0 is determined in (19). Clearly, we have
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lð2Þ1 ðqÞ 6 l1ðqÞ for any 1 6 q 6 n� 1: ð21Þ
We have the following improved version of (18).

Theorem 3.1. For any matrix A 2 Rm�n, we have
SparkðAÞP min
16q6n

q : l1ðq� 1Þ � lð2Þ1 ðq� 1ÞP 1
n o

: ð22Þ
Proof. Let p ¼ SparkðAÞ. Then there exist p columns of A that are linearly dependent. Without lost of generality, we assume
AS ¼ ða1; a2; . . . ; apÞ is the submatrix consisting of these p columns. Since the columns of AS are linearly dependent and nor-
malized, the p� p matrix GSS ¼ AT

S AS is singular, and all diagonal entries of GSS are equal to 1. Thus by Theorem 2.4 (Brauer’s
Theorem), for any eigenvalue k of GSS, there exist two different rows, say ith and jth rows ði – jÞ, such that ! !
jk� Giij � jk� Gjjj 6 DiDj ¼
Xp

k¼1;k–i

jaT
i akj

Xp

k¼1;k–j

jaT
j akj ; ð23Þ
where Gii ¼ Gjj ¼ 1 are two diagonal entries of GSS. By the definition of Babel and sub-Babel functions, we see that
maxfDi;Djg 6 l1ðp� 1Þ; minfDi;Djg 6 lð2Þ1 ðp� 1Þ:
Thus it follows from (23) that
ðk� 1Þ2 6 DiDj ¼maxfDi;Djg �minfDi;Djg 6 l1ðp� 1Þ � lð2Þ1 ðp� 1Þ:
In particular, since k ¼ 0 is an eigenvalue of GSS, we have
l1ðp� 1Þ � lð2Þ1 ðp� 1ÞP 1: ð24Þ
So p ¼ SparkðAÞ implies that p must satisfy (24). Therefore,
SparkðAÞ ¼ p P min
16q6n

q : l1ðq� 1Þ � lð2Þ1 ðq� 1ÞP 1
n o

;

as desired. h

The next proposition shows that the lower bound (22) is an improved version of (18).

Proposition 3.2. Denote by
q� ¼ min
16q6n

q : l1ðq� 1Þ � lð2Þ1 ðq� 1ÞP 1
n o

; bq ¼ min
16q6n

q : l1ðq� 1ÞP 1

 �

:

Then q� P bq. In particular, if lð2Þ1 ðbq � 1Þ < 1
l1ðbq�1Þ

, then q� > bq.

Proof. By the definition of q�, we see that l1ðq� � 1Þ � lð2Þ1 ðq� � 1ÞP 1. This, together with (21), implies that l1ðq� � 1ÞP 1.
Thus
q� P min
16q6n

fq : l1ðq� 1ÞP 1g ¼ bq:

We now further show that this inequality holds strictly when the value of the sub-Babel function are relatively small in

the sense that lð2Þ1 ðbq � 1Þ < 1
l1ðbq�1Þ

. In fact, under this condition, we have
l1ðbq � 1Þ � lð2Þ1 ðbq � 1Þ < 1:
Note that both l1ðq� 1Þ and lð2Þ1 ðq� 1Þ are increasing functions in q. The inequality above shows that when
l1ðq� 1Þ � lð2Þ1 ðq� 1ÞP 1, we must have q > bq. Therefore,
q� ¼ min
16i6n
fq : l1ðq� 1Þ � lð2Þ1 ðq� 1ÞP 1g > bq;
which shows that (22) improves (18) for this case. h

The next proposition indicates that when the coherence rank of A is relatively small, bound (22) is also an improved ver-
sion of (8).

Proposition 3.3. Let A 2 Rm�n be a given matrix. Let q� be defined as in Proposition 3.2. If aðAÞ < 1=lðAÞ and aðAÞ 6 q� � 1, then
q� P 1þ
2 1� aðAÞbðAÞelðAÞ2h i

lð2ÞðAÞ elðAÞðaðAÞ þ bðAÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffielðAÞðaðAÞ � bðAÞÞ½ �2 þ 4

q� � ;
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where elðAÞ :¼ lðAÞ � lð2ÞðAÞ.
Proof. Since aðAÞ 6 q� � 1, by the definition of aðAÞ and bðAÞ, it follows from (19) and (20) that
l1ðq� � 1Þ 6 aðAÞlðAÞ þ ðq� � 1� aðAÞÞlð2ÞðAÞ;

lð2Þ1 ðq� � 1Þ 6 bðAÞlðAÞ þ ðq� � 1� bðAÞÞlð2ÞðAÞ:
These relations, together with the definition of q�, imply that
1 6 l1ðq� � 1Þ � lð2Þ1 ðq� � 1Þ 6 aðAÞlðAÞ þ ðq� � 1� aðAÞÞlð2ÞðAÞ
	 


� bðAÞlðAÞ þ ðq� � 1� bðAÞÞlð2ÞðAÞ
	 


:

Thus we obtain the same inequality as (11) with p replaced by q�. Following (11), and repeating the same proof therein,
we deduce that
q� P 1þ
2 1� aðAÞbðAÞelðAÞ2h i

lð2ÞðAÞ elðAÞðaðAÞ þ bðAÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffielðAÞðaðAÞ � bðAÞÞ½ �2 þ 4

q� � ;

where elðAÞ :¼ lðAÞ � lð2ÞðAÞ. h

It is also worth briefly comparing the Babel-function-based bound (18) and those developed in Section 2 of this paper. At
a first glance, it seems that (18) is more sophisticated than those developed in section 2. However, two types of bounds are
mutually independent in the sense that one cannot definitely dominate the other in general. For example, when aðAÞ 6 bq � 1
and aðAÞ < 1=lðAÞ where bq is defined in Proposition 3.2, we have
1 6 l1ðbq � 1Þ ¼ max
16k6m

Xbq
j¼2

jbGkjj 6 aðAÞlðAÞ þ ðbq � 1� aðAÞÞlð2ÞðAÞ:
Thus,
bq P 1þ 1� aðAÞelðAÞ
lð2ÞðAÞ ¼ 1þ 1

lðAÞ

� �
þ 1

lð2ÞðAÞ �
1

lðAÞ

� �
ð1� aðAÞlðAÞÞ:
In this case, the Babel-function-based bound (18) is tighter than bound (15). However, when bq � 1 < aðAÞ, the rela-
tionship between the bounds (15) and (18) can be complicated. The bound (15) and the one in Theorem 2.8 might be
tighter than (18). Indeed, let us assume that bq � 1 < aðAÞ 6 p� 1 where p ¼ SparkðAÞ, and aðAÞ < 1=lðAÞ. Then (15)
indicates that
p ¼ 1þ 1
lðAÞ þ

1
lð2ÞðAÞ �

1
lðAÞ

� �
ð1� aðAÞlðAÞÞ

� �
þ t�
for some integer t� P 0. This can be written as
bq ¼ 1þ 1
lðAÞ þ

1
lð2ÞðAÞ �

1
lðAÞ

� �
ð1� aðAÞlðAÞÞ

� �
þ t� � ðp� bqÞ:
If t� < p� bq, then the above inequality implies that
bq 6 1þ 1
lðAÞ þ

1
lð2ÞðAÞ �

1
lðAÞ

� �
ð1� aðAÞlðAÞÞ:
By Proposition 2.6, the right-hand side of the above is dominated by WðaðAÞ; bðAÞ;lðAÞ;lð2ÞðAÞÞ. Therefore, as a lower
bound of spark, (8) is tighter than (18) in this special case.

4. Scaled mutual coherence

The mutual coherence is an important concept for the development of the uniqueness of sparsest solutions, and it is also
crucial for the performance guarantee and stability analysis for many sparsity-seeking algorithms, such as basis pursuit,
orthogonal matching pursuit, and thresholding algorithms (see e.g., [9,16,12,18,27,28,13,5,15,17]). So it is worth considering
how this concept can be further enhanced in order to possibly provide an improved bound for the spark. In this section, we
introduce the scaled mutual coherence, which may lead to an optimal coherence-based estimate of the spark in certain
sense. In theory, the improved results established in previous sections can be either extended or further improved by choos-
ing a suitable scaling matrix.
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4.1. Uniqueness via the scaled mutual coherence

Note that Spark (A), where A 2 Rm�n with m < n, is invariant under a nonsingular linear transformation in the sense that
SparkðAÞ ¼ SparkðWAÞ
for any nonsingular matrix W 2 Rm�m. However, the mutual coherence lðAÞ is not. That is,
lðAÞ– lðWAÞ
in general (see Examples 4.3 and 4.4 in this section). Thus the improved conditions (14)–(17) still have a room for a further
improvement by using a suitable nonsingular scaling W. Motivated by this observation, we consider the weighted inner
product between every pair of columns of a matrix, and define
lW ðAÞ ¼max
i–j

jðWaiÞT Wajj
kWaik2 � kWajk2

¼ lðWAÞ:
Similarly, we define
lð2ÞW ðAÞ ¼ max
i–j

jðWaiÞT Wajj
kWaik2 � kWajk2

:
jðWaiÞT Wajj
kWaik2 � kWajk2

< lWðAÞ
( )

¼ lð2ÞðWAÞ:
In this paper, lWðAÞ and lð2ÞW ðAÞ are referred to be as the scaled mutual coherence and the scaled sub-mutual coherence,
respectively. It makes sense to introduce the next definition.

Definition 4.1. Let
l�ðAÞ :¼min
W

lWðAÞ : W 2 Rm�m is nonsingular

 �

:

l�ðAÞ is called the optimal scaled mutual coherence (OSMC) of A.
By definition, we have l�ðAÞ 6 lWðAÞ for any nonsingular W 2 Rm�m and any A 2 Rm�n. In particular, by setting W ¼ I (the

identity matrix), we see that l�ðAÞ 6 lðAÞ for any A. As shown by the next result, the OSMC provides a theoretical lower
bound for the spark that is better than any other scaled-mutual-coherence-based bound.

Theorem 4.2. For any m� n (m < n) matrix A with nonzero columns, we have l�ðAÞ > 0, and
1þ 1
lWðAÞ

6 1þ 1
l�ðAÞ

6 SparkðAÞ
for any nonsingular matrix W 2 Rm�m. Hence if the system Ax ¼ b has a solution satisfying
kxk0 6 1þ 1
l�ðAÞ

� �
=2;
or more restrictively, if there is a nonsingular matrix W such that kxk0 < 1þ 1=lWðAÞ
� �

=2, then x is the unique sparsest solution to
the linear system.
Proof. Let W be an arbitrary nonsingular matrix. We consider the scaled matrix WA: Let D ¼ diagð1=kWa1k2; . . . ;1=kWank2Þwhere
ai; i ¼ 1; . . . ;n are the columns of A. Then WAD is a matrix with normalized columns. Clearly, this normalization does not change the
spark (and hence, sparkðWADÞ ¼ sparkðWAÞ ¼ sparkðAÞ). We also note that WADðD�1xÞ ¼Wb and Ax ¼ b have the same sparsity of
solutions. So without loss of generality, we assume that all columns of WA have unit ‘2-norms. Let p ¼ SparkðAÞ. By definition, there
exist p columns of A that are linearly dependent. Let AS consist of these p columns. Then the matrix
GðWÞSS :¼ ðWASÞTðWASÞ ¼ AT
S WT WAS
is a p� p singular matrix due to the linear dependence of columns of AS. Since WA is normalized, all diagonal entries of GðWÞSS

are equal to 1, and off-diagonal entries are less than or equal to lWðAÞ. By the singularity of GðWÞSS , this matrix has a zero eigen-
value. Thus by Gerschgorin’s theorem, there exists a row of the matrix, say the ith row, such that
1 6
X
j–i

jðGðWÞSS Þijj 6 ðp� 1ÞlWðAÞ;
which implied that
lW ðAÞP 1=ðp� 1Þ > 0:
Note that the inequality above holds for any nonsingular matrix W 2 Rm�m. Taking the minimum value of the left-hand
side yields l�ðAÞP 1=ðp� 1Þ > 0, and thus
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pð¼ SparkðAÞÞP 1þ 1
l�ðAÞ

:

The right-hand side of the inequality above is greater than or equal 1þ 1=lWðAÞ for any nonsingular W, since
lW ðAÞ 6 l�ðAÞ. The uniqueness of sparsest solutions of the linear system Ax ¼ b follows immediately from Theorem 1.1. h

With a scaling matrix W, we denote the scaled coherence rank and scaled sub-coherence rank by aWðAÞ ¼ aðWAÞ and
bW ðAÞ ¼ bðWAÞ, respectively. Let us define a class of matrices as follows:
fM¼ A2Rm�n : there is a nonsingular W 2Rm�m such that either aWðAÞ6
1

lW ðAÞ
and bW ðAÞ<aW ðAÞ; or aW ðAÞ<

1
lW ðAÞ

� �
: ð25Þ
By applying the same proof of Theorem 2.5 to the scaled matrix WA, the lower bound of spark, together with uniqueness
conditions for sparsest solutions in Section 2, can be stated in terms of lWðAÞ;l

ð2Þ
W ðAÞ;aW ðAÞ and bWðAÞ. We omit the state-

ment of the counterparts of Theorems 2.8 and 2.9 for the scaled coherence and the scaled coherence rank.
The next example shows thatM� fM, i.e., fM is strictly larger thanM. This shows that by a suitable scaling, the results in

Section 2 may be further improved. In fact, when aðAÞ 6 1
lðAÞ does not hold (in which case A R M), the scaled matrix WA may

satisfy the condition aWðAÞ < 1
lW ðAÞ

(so WA 2 M, and hence A 2 fM), as shown by the next example.

Example 4.3. Consider the matrix (7) given in Remark 2.3. For this matrix, lðAÞ ¼ 0:9239,
lð2ÞðAÞ ¼ 0:7644;aðAÞ ¼ 2; bðAÞ ¼ 1, and the bound (2) is 1.0498. Note that this matrix does not belong to M, since
aðAÞi1=lðAÞ. So (14)–(17) cannot apply to this matrix. Now, we randomly generate a scaling matrix as follows
W ¼
�0:9415 �0:5320 �0:4838
�0:1623 1:6821 �0:7120
�0:1461 �0:8757 �1:1742

264
375:
It is easy to verify that lWðAÞ ¼ 0:8954, lð2ÞW ðAÞ ¼ 0:8302, and aWðAÞ ¼ bWðAÞ ¼ 1. In fact, after this scaling, the absolute
Gram matrix of the normalized WA is given by
absðGðWÞÞ ¼

1:0000 0:3561 0:7138 0:8302 0:3978 0:8954
0:3561 1:0000 0:5753 0:8130 0:7126 0:0973
0:7138 0:5753 1:0000 0:8227 0:0177 0:4874
0:8302 0:8130 0:8227 1:0000 0:1707 0:4969
0:3978 0:7126 0:0177 0:1707 1:0000 0:7634
0:8954 0:0973 0:4874 0:4969 0:7634 1:0000

2666666664

3777777775
:

Thus by this scaling, the original coherence rank aðAÞ ¼ 2 is down to aWðAÞ ¼ 1. Note that the scaled bound ð1þ 1
lW ðAÞ
Þ=2 in

Theorem 4.2 is 1:0584, improving the original unscaled bound (2). This example shows that while A R M, we have WA 2 M,
and hence A 2 fM.

From simulations, we observe that when the coherence rank of a matrix is high in the sense that aðAÞP 2, it is quite sen-
sitive to a scaling W; which may immediately reduce aðAÞ to aWðAÞ ¼ 1, as shown by the above example. When the coher-
ence rank aðAÞ ¼ 1, it is insensitive to a scaling W, and it is highly likely that aWðAÞ remains 1.

Example 4.4. Consider A and the absolute Gram matrix absðGÞ of its normalized counterpart
A ¼
0:0010 �0:7998 �0:6002 1:4290
0:8001 �0:3558 0:4798 1:2393
0:5999 0:4801 �0:6398 �0:6849

264
375; absðGÞ ¼

1 0:0025 0:0005 0:2894
0:0025 1 0:0022 0:9523
0:005 0:0022 1 0:0870

0:2894 0:9523 0:0870 1

26664
37775:
For this example, aðAÞ ¼ bðAÞ ¼ 1;lðAÞ ¼ 0:9523, and lð2ÞðAÞ ¼ 0:2894. The standard bound (2) is ð1þ 1
lðAÞÞ=2 ¼ 1:025,

which is improved to 1.0824 by (17). We now use the scaling matrix
W ¼
�0:2078 0:9393 0:1905
�0:9381 0:5715 0:3268
0:6702 0:2228 0:7662

264
375;
which is a randomly generated nonsingular matrix. This scaling matrix yields lWðAÞ ¼ 0:8343;lð2ÞA ðAÞ ¼ 0:7272, and
aW ðAÞ ¼ bW ðAÞ ¼ 1. The original bound (2) can be further improved by bound ð1þ 1

lW ðAÞ
Þ=2 ¼ 1:0993, and the unscaled bound

(17) can be improved to 1:1139 by using the scaled mutual coherence.
Note that if the OSMC is attainable, i.e., there exists a nonsingular W� such that l�ðAÞ ¼ lW� ðAÞ. Then Theorem 4.3 holds

for the OSMC. However, the optimal scaling W� is difficult to obtain in general. Also, for a given linear system, which scaling
matrix should be used in order to improve the uniqueness claims is not obvious in advance. However, the scaled coherence
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can be viewed as a unified method for developing other coherence-type conditions for the uniqueness of sparsest solutions.
It is worth mentioning that the Babel function can be also generalized to the weighted case, and related uniqueness claims
can be made as well.

4.2. Application

Note that the existing uniqueness claims for sparsest solutions of linear systems are general and hold true uniformly
for all b. These claims are made largely by using the property of A only, and the role of b, which is solution-dependent,
has been overlooked. Clearly, the property of the sparsest solution is usually dependent on A and b. So it is interesting
to incorporate the information b into a uniqueness criterion for sparsest solutions. The scaled mutual coherence can be
used to achieve this goal. Indeed, let / be a mapping from Rm to Rm

þþ (the positive orthant of Rm). Denote by
Uu ¼ diagð/ðuÞÞ, a nonsingular diagonal matrix with diagonal entries /iðuÞ > 0; i ¼ 1; . . . ;m. Setting u ¼ b, we see that
the system Ax ¼ b is equivalent to
ðUbAÞx ¼ Ubb: ð26Þ
For instance, we let /ðuÞ be separable, i.e., /ðuÞ ¼ ð/1ðu1Þ; . . . ;/nðxnÞÞT , and we define
/iðtÞ ¼
1=t if t – 0
1 otherwise:

�
ð27Þ
By this choice, we have Ubb ¼ diagð/ðbÞÞb ¼ jsignðbÞj. Note that SparkðAÞ ¼ SparkðUbAÞ, and the sparsity of solutions of the
scaled system (26) is exactly the same as that of Ax ¼ b. However, as we have seen before, a scaling matrix may change the
mutual coherence, and a suitable scaling may improve the mutual-coherence-based uniqueness claims for sparsest solutions
of a linear system. Through a scaling matrix dependent on b, the contribution of b to the uniqueness of sparsest solutions can
be demonstrated by the next two corollaries.

Corollary 4.5. If the system Ax ¼ b, where A 2 Rm�n with m < n, has a solution satisfying kxk0 < 1þ 1
lðUbAÞ

� �
=2, then x is the

unique sparsest solution to the linear system.
Applying to the scaled system (26), this corollary follows from Theorems 4.2 and 1.1 straightaway, and this result can be

improved when the scaled coherence rank aðUbAÞ is relatively small, as indicated by the next result.

Corollary 4.6. Let A be an m� n matrix with m < n.

(i) Suppose that either aðUbAÞ 6 1
lðUbAÞ and bðUbAÞ < aðUbAÞ or aðUbðAÞÞ < 1

lðUbAÞ. If the system Ax ¼ b has a solution x obeying
kxk0 <
1
2

1þ
2 1� aðUbAÞbðUbAÞelðUbAÞ2
� �

lð2ÞðUbAÞ elðUbAÞðaðUbAÞ þ bðUbAÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffielðUbAÞðaðUbAÞ � bðUbAÞÞ½ �2 þ 4

q� �
2664

3775;

where elðUbAÞ :¼ lðUbAÞ � lð2ÞðUbAÞ, then x is the unique sparsest solution to the linear system. In particular, the same conclusion
holds if x obeys
kxk0 <
1
2

1þ 1
lðUbAÞ þ

1
lð2ÞðUbAÞ �

1
lðUbAÞ

� �
ð1� aðUbAÞlðUbAÞÞ

� �
;

(ii) If / is chosen such that lðUbAÞ < 1 and aðUbAÞ ¼ 1, then the solution x of Ax ¼ b satisfying

kxk0 <
1
2

1þ 1
lðUbAÞ þ

1
lð2ÞðUbAÞ �

1
lðUbAÞ

� �
ð1� lðUbAÞÞ

� �
ð28Þ

is the unique sparsest solution of the linear system.

The next example shows that when b is involved, the uniqueness claim for sparsest solutions can be improved in some
situations.

Example 4.7. Consider the system Ax ¼ b where A is a 3� 5 matrix given by
A ¼
1 �3 �6 4 �3
2 3 �2 �2 3
3 �2 1 0 4

264
375; absðGÞ ¼

1 0:1709 0:2922 0 0:6875
0:1709 1 0:3330 0:8581 0:3656
0:2922 0:3330 1 0:6984 0:4285

0 0:8581 0:6984 1 0:6903
0:6875 0:3656 0:4285 0:6903 1

26666664

37777775;
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where absðGÞ is the absolute Gram matrix of the normalized A.From absðGÞ, we see that lðAÞ ¼ 0:8581;lð2ÞðAÞ ¼ 0:6984, and
aðAÞ ¼ bðAÞ ¼ 1. Thus the standard bound (2) is 1:0827, which is improved to 1:1016 by (17). In order to see which b can
further improve these bounds, let us randomly generate a vector b, for instance, b ¼ ð3:6159;�3:5189;2:6954ÞT . Let / be gi-
ven by (27). Then the absolute Gram matrix of the scaled matrix UbA with normalized columns is given by
absðGðUbAÞÞ ¼

1:0000 0:3180 0:1608 0:0107 0:7833
0:3180 1:0000 0:2454 0:8042 0:1178
0:1608 0:2454 1:0000 0:6784 0:4231
0:0107 0:8042 0:6784 1:0000 0:5928
0:7833 0:1178 0:4231 0:5928 1:0000

26666664

37777775;
from which we see that after this b-involved scaling, the coherence has changed to lðUbAÞ ¼ 0:8042 and lð2ÞðUbAÞ ¼ 0:7833,
and the coherence rank remains unchanged. The scaled bound ð1þ 1

lðUbAÞÞ=2 ¼ 1:1217 and the scaled bound (28) equal to
1:1250 both improve the unscaled bound (2) and (17).
5. A further improvement via support overlap

Many uniqueness conditions for sparsest solutions of a linear system were derived from Theorem 1.1 by using the lower
bound of SparkðAÞ. In this section, we point out that Theorem 1.1 itself might be improved in some situations by the support
overlap of solutions of a linear system, leading to an enhanced spark-type uniqueness condition. We use SuppðxÞ to denote
the support of x, i.e., SuppðxÞ ¼ fi : xi – 0g.

Definition 5.1. The support overlap S� of the solution of Ax ¼ b is the index set
S� ¼
\
x2Y

SuppðxÞ;
where Y ¼ fx : Ax ¼ bg, the solution set of the linear system.
Clearly, S� might be empty if there is no common index for the support of solutions. However, when some columns of A

are crucial, and they must be used for the representation of b,the support overlap S� is nonempty for these cases.

Theorem 5.2. Let S� be the support overlap of the solution of the system Ax ¼ b. If the system has a solution x satisfying
kxk0 <
1
2
ðjS�j þ SparkðAÞÞ; ð29Þ
then x is the unique sparsest solution of the linear system.
Proof. Let x be a solution of the system Ax ¼ b satisfying (29). We now prove that it is the unique sparsest solution of the
linear system. We assume the contrary that the linear system has a solution y – x with kyk0 6 kxk0. Since Aðy� xÞ ¼ 0, which
implies that the columns ai; i 2 Suppðy� xÞ of A are linearly dependent, we have
y� xk k0 ¼ jSuppðy� xÞjP SparkðAÞ: ð30Þ
Note that for any u;v 2 Rn, the value of kdiagðuÞvk0 is the number of i’s such that uiv i – 0. So it is easy to see that
S� ¼min diagðxÞuk k0 : x; u 2 Y

 �

:

Thus, for any u;v 2 Rn, we have
ku� vk0 6 kuk0 þ kvk0 � kdiagðuÞvk0
and hence
y� xk k0 6 yk k0 þ xk k0 � diagðxÞyk k0 6 2 xk k0 � diagðxÞyk k0 6 2kxk0 � jS
�j; ð31Þ
where the first inequality follows from kyk0 6 kxk0 and the second inequality follows from the fact diagðxÞyk k0 P jS�j for any
x; y 2 Y. It follows from (30) and (31) that 2kxk0 � jS

�jP SparkðAÞ, which contradicts with (29). Thus x is the unique sparsest
solution of the linear system. h

As a result, all previous mutual-coherence-type uniqueness criteria for sparsest solutions of a linear system can be further
improved when the value of jS�j or its lower bound is available. Taking Theorem 2.9 (iii) as an example, we have the following
result.

Corollary 5.3. Let A 2 Rm�n,where m < n, be a matrix with lðAÞ < 1 and aðAÞ ¼ 1. Suppose that jS�jP c� where c� is known.
Then if the system Ax ¼ b has a solution x satisfying
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kxk0 <
1
2

c� þ 1þ 1
lðAÞ

� �
þ 1

lð2ÞðAÞ �
1

lðAÞ

� �
ð1� lðAÞÞ

� �
; ð32Þ
x is the unique sparsest solution of the linear system.
When the support overlap S� is nonempty, we have jS�jP 1. All the aforementioned mutual coherence type bounds for

uniqueness of sparsest solutions can be further improved by at least 0.5. Such an improvement can be crucial, as shown by
the next example.

Example 5.4. Consider the system Ax ¼ b where
A ¼
�1 0 �4 2 4
0 �1 �1 1 2
0 0 �1 0 0

264
375; b ¼

2
1=2
1=2

264
375
Clearly, the last two columns are linearly dependent. So SparkðAÞ ¼ 2, and Theorem 1.1 cannot confirm the unique-
ness of any sparsest solution. However, note that the third column of A is vital and must be used to represent b. This
means that x3 – 0 for any solution of the linear system. So, jS�jP 1 ¼ c�. Note that the solution x� ¼ ð0;0;1=2;0;0ÞT

satisfies that
kxk0 ¼ 1 < 1:5 ¼ ðc� þ SparkðAÞÞ=2 6 ðjS�j þ SparkðAÞÞ=2:
By Theorem 5.2, x� is the unique sparsest solution of the linear system. This example shows that by incorporating the
support overlap S�, the result of Theorem 1.1 can be remarkably improved when S� – ;.
6. Uniqueness via range property of AT

The exact recovery of all k-sparse vectors in Rn by a single matrix A is called the uniform recovery. To uniformly recover
sparse vectors, some matrix properties should be imposed on A. The restricted isometry property (RIP) [8] and null space
property [10,30] are two well-known conditions for the uniform recovery. Recently, the so-called range space property
(RSP) of order k was proposed in [31,32], which can also characterize the uniform recovery. All uniform recovering conditions
imply that the linear system Ax ¼ y :¼ Ax0 has a unique sparsest solution. In fact, these conditions have more capability than
just ensuring the uniqueness of sparsest solutions of a linear system. For instance, they also guarantee that a linear system
has a unique least ‘1-norm solution, leading to the strong equivalence between ‘0- and ‘1-minimization problems, which is
fundamental for the development of compressed sensing theory. In this section, we briefly discuss and develop certain more
relaxed range properties of AT that guarantee the uniqueness of sparsest solutions. Our first range property is defined as fol-
lows, which was first introduced in [33] for a convergence analysis of reweighted ‘1-methods for the sparse solution of a
linear system.

Definition 6.1. (Range Property (I)). Let A be a full-rank m� n matrix with m < n. Let B be an ðn�mÞ � n matrix
consisting of the basis of the null space of A. BT is said to satisfy a range space property (RSP) of order k with a
constant q > 0 if
knJk1 6 qknJk1
for all n 2 RðBTÞ, the range space of BT , where J # f1; . . . ;ng with jJj ¼ k is the indices of k smallest absolute components of n,
and J ¼ f1; . . . ;ng n J:

Based on the above definition, we have the next result.

Theorem 6.2. Let A 2 Rm�n and B 2 Rðn�mÞ�n be full-rank matrices satisfying ABT ¼ 0, where m < n. Suppose that BT has a RSP of
order ðn� kÞ. Then the solution x of the system Ax ¼ b obeying kxk0 6 k=2 is the unique sparsest solution of the linear system.
Proof. First, under the condition of the theorem, we have the following statement (see e.g., Proposition 3.6 in [33]): BT has
the RSP of order ðn� kÞ with a constant q > 0 if and only if A has the NSP of order k with the same constant s ¼ q: Therefore, by
the definition of NSP of order k, we have kgKk1 6 skgKk1 for all g 2 NðAÞ and all K # f1;2; . . . ;ng with jKj 6 k, where
K ¼ fi : i R Kg. This implies that the solution x with kxk0 6 k=2 must be unique. In fact, we note that two ðk=2Þ-sparse solu-
tions x and y satisfy Aðx� yÞ ¼ 0, i.e., x� y 2 NðAÞ. Let K ¼ Suppðx� yÞ. Since x� y is at most k-sparse, we have jKj 6 k. By
the NSP of order k, we have
kx� yk1 ¼ kðx� yÞKk1 6 skðx� yÞKk1 ¼ 0;
which implies that x ¼ y. Thus the ðk=2Þ-sparse solution is the uniqueness sparsest solution of the linear system. h

The above theorem impose range property on the basis of the null space of A, instead of on A itself. We now impose a
range property on A directly.
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Definition 6.3 (Range Property (II)). There exists an integer k such that for any disjoint subsets K1;K2 of f1; . . . ;ng with
jK1j þ jK2j ¼ k and jK2j 6 1, the range space RðATÞ contains a vector g satisfying gi ¼ 1 for all i 2 K1;gi ¼ �1 for all i 2 K2,
and jgij < 1 for i R K1

S
K2.

The above definition is a relaxed version of the range property introduced in [31]. Under the above range property (II), we
can prove the following result.

Theorem 6.4. Suppose that A 2 Rm�n with m < n satisfies the range property (II). Then if the system Ax ¼ b has a solution
satisfying kxk0 6 k=2; x is the unique sparsest solution of the linear system.
Proof. Under the range property (II), we first prove that any k columns of A are linearly independent. In fact, let
K ¼ fc1; . . . ; ckg be an arbitrary subset of f1; . . . ;ng with jKj ¼ k. We now prove that the columns of AK are linearly indepen-
dent. It is sufficient to show that zK ¼ 0 is the only solution to the system AKzK ¼ 0. In fact, let us assume AKzK ¼ 0. Then
z ¼ ðzK; zK ¼ 0Þ 2 Rn is in NðAÞ. Consider the disjoint sets K1 ¼ K, and K2 ¼ ;. By the range property (II), there exists a vector
g 2 RðATÞ with gi ¼ 1 for all i 2 K1 ¼ K. By the orthogonality of NðAÞ and RðATÞ, we have
0 ¼ zTg ¼ zT
KgK þ zT

K
gK ¼ zT

KgK;
which is nothing but
zc1
þ zc2

þ � � � þ zck
¼ 0: ð33Þ
Now we consider an arbitrary pair of disjoint sets:
K1 ¼ K n fcig; K2 ¼ fcig;
which satisfy that jK1j þ jK2j ¼ k and jK2j 6 1. By the range property (II), there exists an g 2 RðATÞwith gcj
¼ 1 for every j – i

and gci
¼ �1. Again, it follows from zTg ¼ 0 that
ðzc1
þ � � � þ zci�1

þ zciþ1
� � � þ zck

Þ � zci
¼ 0;
which holds for every i with 1 6 i 6 k. Combining these relations and (33) implies that zci
¼ 0 for all i ¼ 1; . . . ; k, i.e., zK ¼ 0.

So any k columns of A are linearly independent. This implies that k < SparkðAÞ. The desired result follows immediately from
Theorem 1.1. h
7. Conclusions

Through such concepts as sub-mutual coherence, scaled mutual coherence, coherence rank, and sub-Babel function, we
have developed several new and improved sufficient conditions for a linear system to have a unique sparsest solution. The
key result established in this paper claims that when the coherence rank of a matrix is low, the mutual-coherence-based
lower bound for the spark of a matrix can be improved. We have also demonstrated that the scaled mutual coherence, which
yields a unified uniqueness claim, may further improve the unscaled coherence-based uniqueness conditions if a suitable
scaling matrix is used. The scaled mutual coherence makes it possible to integrate the right-hand-side vector b of a linear
system into a uniqueness criterion for the sparsest solution of a linear system. Moreover, the support overlap of solutions
and certain range property of a matrix also play an important role in the uniqueness of sparsest solutions of linear systems.
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