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Abstract. The uniqueness of sparsest solutions of underdetermined linear systems plays a

fundamental role in compressed sensing theory. Several new algebraic concepts, including the sub-

mutual coherence, scaled mutual coherence, coherence rank, and sub-coherence rank, are intro-

duced in this paper in order to develop new and improved sufficient conditions for the uniqueness

of sparsest solutions. The coherence rank of a matrix with normalized columns is the maximum

number of absolute entries in a row of its Gram matrix that are equal to the mutual coher-

ence. The main result of this paper claims that when the coherence rank of a matrix is low, the

mutual-coherence-based uniqueness conditions for the sparsest solution of a linear system can be

improved. Furthermore, we prove that the Babel-function-based uniqueness can be also improved

by the so-called sub-Babel function. Moreover, we show that the scaled-coherence-based unique-

ness conditions can be developed, and that the right-hand-side vector b of a linear system, the

support overlap of solutions, and the range property of a transposed matrix can be also integrated

into the criteria for the uniqueness of the sparsest solution of an underdetermined linear system.
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1 Introduction

Consider an underdetermined system of linear equations

Ax = b,

where A is a given m × n matrix with m < n, and b ∈ Rm is a given vector. Throughout this

paper, we assume that A has at least two rows, i.e., m ≥ 2. Seeking for the sparsest solution

of an underdetermined linear system has recently become an important and common request in

many applications such as signal and image processing, compressed sensing, computer vision,

statistical and financial model selections, and machine learning (see e.g., [5, 15, 26, 17] and the

references therein). Let ∥x∥0 denote the cardinality, i.e., the number of nonzero components of the

vector x ∈ Rn. Then finding a sparsest solution of a linear system is formulated as the so-called

ℓ0-minimization problem

min{∥x∥0 : Ax = b},

which is known to be NP-hard [24, 1]. An intensive study of this problem has been carried out

over the past few years (see e.g., [7, 11, 15, 26, 17]), and continues its growth in both theory

and computational methods that stimulate further cross-disciplinary applications (see e.g., [6, 23,

25, 17]). However, the understanding of ℓ0-minimization problems, from theory to computational

methods, remains very incomplete at the moment [5, 17]. For instance, the fundamental question

of when an ℓ0-problem admits a unique solution has not yet addressed completely, and many

existing uniqueness claims remain restrictive. The main purpose of this paper is to establish some

new and improved sufficient conditions for a linear system to have a unique sparsest solution.

So far, sufficient criteria for the uniqueness of sparsest solutions have been developed by using

such matrix properties as unique representation property [20], spark [12], mutual coherence [14],

restricted isometry property (RIP)[8], null space property (NSP) [10, 30], exact recovery condition

[27, 28], range space property (RSP) of AT [31, 32], and the verifiable conditions [22]. A crucial

tool for the study of uniqueness is the spark, denoted by Spark(A), which is the smallest number

of columns of the matrix A that are linearly dependent. The spark provides the guaranteed

uniqueness of sparsest solutions, as shown by the result below.

Theorem 1.1 ([12]). If a linear system Ax = b has a solution x satisfying ∥x∥0 < Spark(A)/2,

then x is the unique sparsest solution of the system.

The spark is difficult to compute. Any computable lower bound 0 < ϕ(A) ≤ Spark(A),

however, produces a checkable sufficient condition for the uniqueness, such as ∥x∥0 ≤ ϕ(A)/2.

The mutual coherence of a matrix (see the definition in section 2), denoted by µ(A), is such a

property (e.g., [14, 16, 12, 21, 18, 27]) that yields a computable lower bound of the spark as follows

1 +
1

µ(A)
≤ Spark(A), (1)

which, together with Theorem 1.1, implies the following uniqueness claim.

Theorem 1.2 ([14, 19, 16]). If a linear system Ax = b has a solution x obeying

∥x∥0 <
(
1 +

1

µ(A)

)
/2, (2)

2



then x is the unique sparsest solution of the system.

The condition (2) is restrictive in many cases. In [27], the Babel function, denoted by µ1(p),

is introduced and shown to satisfy that Spark(A) ≥ min{p : µ1(p − 1) ≥ 1} ≥ 1 + 1/µ, yielding

the following stronger uniqueness condition than (2).

Theorem 1.3 ([27]). If a linear system Ax = b has a solution x obeying

∥x∥0 <
1

2
min{p : µ1(p− 1) ≥ 1}, (3)

then x is the unique sparsest solution of the system.

Theorems 1.2 and 1.3 are valid for general matrices. When A = [Φ Ψ] is a concatenation

of two orthogonal matrices, Elad and Bruckstein [16] have shown that (2) can be improved to

∥x∥0 < 1/µ(A), and when A consists of J concatenated orthogonal bases, Gribonval and Nielsen

[21] have shown that the uniqueness condition can be stated as ∥x∥0 < 1
2

(
1 + 1

J−1

)
/µ(A). For a

general matrix A, however, it remains important, from a mathematical point of view, to address

the question: How can the bounds (2) and (3) be improved? In this paper, we answer this

question through the classic Brauder’s Theorem. To this end, we introduce and use the sub-

mutual coherence, which is the second largest inner product between two columns of a matrix

with normalized columns, and the so-called coherence rank that turns out to be an important

concept for the uniqueness of sparsest solutions. The sub-Babel function is also introduced in

order to enhance the result of Theorem 1.3 above. One of our results in this paper claims that

for a general matrix A, when the coherence rank of A is smaller than 1/µ(A), the lower bound

(1) of Spark(A), and thus the condition (2), can be improved.

The spark of a matrix is invariant under nonsingular scalings, but the mutual coherence is not.

Thus we introduce the concept of the scaled mutual coherence in section 4, which enables us to

establish an optimal lower bound of the spark in certain sense. Note that the existing uniqueness

conditions use matrix properties only, and the role of b is completely overlooked. The sparsity

of a solution, however, can also depend on the right-hand-side vector b of a linear system. How

to integrate b into a uniqueness condition for sparsest solutions is worth addressing (as pointed

out by Bruckstein et al. [5]). An instant application of the scaled mutual coherence yields a

uniqueness condition that depends on the property of A and b altogether.

All the above-mentioned results are developed by identifying a lower bound for the spark of a

matrix. Any improvement of the spark condition in Theorem 1.1 leads to a further enhancement

of these results. Although it is hard to improve Theorem 1.1 in general, it is possible to do

so in some situations. We show that the support overlap of solutions of a linear system is the

information that can be used to achieve this goal (see section 5 for details). Finally, we introduce

certain range properties of a matrix that can still guarantee the uniqueness of sparsest solutions

to a linear system. Similar to the RIP [8, 7] and the NSP [10, 30], the range space property arises

naturally from the analysis of the uniform recovery of sparse signals ([31, 32]).

This paper is organized as follows. We introduce several new concepts in section 2, and

use them to develop improved uniqueness for sparsest solutions. The improvement of Babel-

function-based uniqueness condition are given in section 3. The scaled-coherence-based uniqueness

conditions and their applications are discussed in section 4. A further improvement of the spark
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condition via support overlap of solutions is demonstrated in section 5, and the range-property-

based uniqueness is briefly introduced in section 6.

2 Improved conditions for uniqueness of sparsest solutions

Let ai, i = 1, ..., n be the columns of A. Recall that the mutual coherence of A (see e.g., [14, 5])

is defined as

µ(A) = max
i̸=j

|aTi aj |
∥ai∥2 · ∥aj∥2

.

So µ(A) is the maximum absolute value of the inner product between the normalized columns

of A. The lower bound (1) plays a vital role in the development of the uniqueness theory and

the performance guarantee of such algorithms as (orthogonal) matching pursuit, ℓ1-minimization,

and iterative thresholding algorithms for the sparsest solution of linear systems (see e.g., [14, 16,

12, 18, 27, 28, 5, 15, 2, 3]). Any improvement of this lower bound may lead to an enhancement of

many existing results in this field. In what follows, we develop an improved lower bound for spark

(A) that leads to an improved sufficient conditions for a linear system to have a unique sparsest

solution. Let us begin with a few concepts.

2.1 Sub-mutual coherence, coherence rank, and sub-coherence rank

Let us sort the different values of the inner product |aTi aj |/(∥ai∥2∥aj∥2) in a descending order,

and denote them by

µ(1)(A) > µ(2)(A) > · · · > µ(k)(A).

Clearly, the largest one is µ(1)(A) = µ(A), the mutual coherence.

Definition 2.1. The sub-mutual coherence of A, µ(2)(A), is the second largest absolute inner

product between two normalized columns of A :

µ(2)(A) = max
i ̸=j

{
aTi aj

∥ai∥2 · ∥aj∥2
:

aTi aj
∥ai∥2 · ∥aj∥2

< µ(A)

}
.

In order to introduce the next useful property of a matrix, let us consider the index set

Si(A) :=

{
j : j ̸= i,

aTi aj
∥ai∥2 · ∥aj∥2

= µ(A)

}
, i = 1, ..., n.

Without loss of generality, we assume that the columns of A are normalized. It is easy to see that

Si(A) counts the number of absolute entries equal to µ(A) in ith row of G = ATA, the Gram

matrix of A. Clearly, at least one of these sets is nonempty, since the largest absolute entry of G

is equal to µ(A). Denote the cardinality of Si(A) by αi(A), i.e.,

αi(A) = |Si(A)|, i = 1, ..., n.

Clearly, 0 ≤ αi(A) ≤ n− 1. Let

α(A) = max
1≤i≤n

αi(A) = max
1≤i≤n

|Si(A)|, (4)
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which is a positive number. Let i0 be an index such that

α(A) = αi0(A) = |Si0(A)|,

i.e., the i0th row of G has the maximal number of absolute entries equal to µ(A). Then we may

define

β(A) = max
1≤i≤n, i ̸=i0

αi(A) = max
1≤i≤n, i ̸=i0

|Si(A)|, (5)

which is the second largest number among αi(A), i = 1, ..., n.

Definition 2.2. α(A), given by (4), is called the coherence rank of A, and β(A), given by (5),

is called sub-coherence rank of A.

For a given matrix A with normalized columns, both α(A) and β(A) can be easily obtained

through its Gram matrix G = ATA or its absolute Gram matrix, denoted by abs(G). By the

definition of µ(A), there exists at least one off-diagonal absolute entry of A, say |Gij | (in ith row),

which is equal to µ(A). By the symmetry of G, we also have |Gji| = µ(A) (in jth row of G). Thus

the symmetry of G implies that β(A) ≥ 1. So, for any matrix A, we have the relation

1 ≤ β(A) ≤ α(A). (6)

Geometrically, α(A) can be called the Equiangle of A in the sense that it is the maximum

number of columns of A that have the same largest angle with respect to a column, say the

i0-column, of A.

Remark 2.3. When all columns of A are generated by a single vector, then µ(A) = 1 and

α(A) = β(A) = n − 1. When A has at least two independent columns (not all columns are

generated by a single vector), then α(A) < n− 1. For the concatenation of two orthogonal bases

A = [Ψ Φ], where Ψ,Φ are m × m orthogonal matrices, we see that α(A) ≤ n/2 = m. As we

have pointed out, all µ(A), µ(2)(A), α(A) and β(A) can be obtained straightaway from the Gram

matrix of A. For example, when A is given by

A =

 −0.9802 0.1 0.3521 0.9239 0.9239 0.7405
−1.8282 0 1.0365 0.3827 −0.3827 −1.6821
0.3269 0 1.3563 0 0 −0.2949

 , (7)

then the Gram matrix of the normalized A is given by

G =



1 −0.4668 −0.4908 −0.7644 −0.0981 0.5763
−0.4668 1 0.2020 0.9239 0.9239 0.3978
−0.4908 0.2020 1 0.4142 −0.0409 −0.5803
−0.7644 0.9239 0.4142 1 0.7071 0.0217
−0.0981 0.9239 −0.0409 0.7071 1 0.7134
0.5763 0.3978 −0.5803 0.0217 0.7134 1

 ,

from which we see that µ(A) = 0.9239 > µ(2)(A) = 0.7644, and α(A) = 2 > β(A) = 1.

2.2 Coherence-rank-based lower bounds for Spark(A)

Let us first recall the Brauer’s theorem [4] (see also Theorem 2.3 in [29]), concerning the estimate

of eigenvalues of a matrix. Let σ(A) := {λ : λ is an eigenvalue of A} be the spectrum of A.
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Theorem 2.4 (Brauer [4]). Let A = (aij) be an N ×N matrix with N ≥ 2. Then, if λ is an

eigenvalue of A, there is a pair (r, q) of positive integers with r ̸= q (1 ≤ r, q ≤ N) such that

|λ− arr| · |λ− aqq| ≤ ∆r∆q, where ∆i :=
N∑

j=1,j ̸=i

|aij | for 1 ≤ i ≤ N.

Hence if Kij(A) = {z : |z − aii| · |z − ajj | ≤ ∆i∆j} for i ̸= j, then σ(A) ⊆
∪N

i̸=j Kij(A).

We make use of this classic theorem to prove the following result, which turns out to be an

improved version of (1) when the coherence rank is low.

Theorem 2.5. Let A ∈ Rm×n be a matrix with m < n, and let α(A) and β(A) be defined by

(4) and (5), respectively. Suppose that one of the following conditions holds: (i) α(A) < 1
µ(A) ; (ii)

α(A) ≤ 1
µ(A) and β(A) < α(A). Then µ(2)(A) > 0 and

Spark(A) ≥ 1 +
2
[
1− α(A)β(A)µ̃(A)2

]
µ(2)(A)

{
µ̃(A)(α(A) + β(A)) +

√
[µ̃(A)(α(A)− β(A))]2 + 4

} , (8)

where µ̃(A) := µ(A)− µ(2)(A).

Proof. Normalizing the columns of a matrix does not affect any of the Spark(A), µ(A), µ(2)(A),

α(A) and β(A). Thus, without loss of generality, we assume that all columns of A have unit ℓ2-

norms. Let p = Spark(A). By the definition of spark, there exist p columns of A that are linearly

dependent. Let AS be the submatrix consisting of these p columns. Without lost of generality, we

assume AS = (a1, a2, ..., ap). Thus the p × p matrix GSS = AT
SAS is singular, since the columns

of AS are linearly dependent. Note that all diagonal entries of GSS are equal to 1, and all off-

diagonal absolute entries are less than or equal to µ(A). Under either condition (i) or (ii), we have

α(A) ≤ 1
µ(A) . Hence it follows from (1) that

1 + α(A) ≤ 1 +
1

µ(A)
≤ Spark(A).

So, α(A) ≤ Spark(A) − 1 = p − 1. Note that GSS is a p × p matrix. Thus in every row of GSS ,

there exist at most α(A) absolute entries equal to µ(A), and the remaining (p−1)−α(A) absolute

entries are less than or equal to µ(2)(A). By the singularity of GSS , λ = 0 is an eigenvalue of GSS .

Note that the entries of GSS are given by Gij = aTi aj where i, j = 1, ..., p. Thus by Theorem 2.4,

there exist two different rows, say ith and jth rows (i ̸= j), such that

|0−Gii| · |0−Gjj | ≤ ∆i∆j =

 p∑
k=1,k ̸=i

|aTi ak|

 p∑
k=1,k ̸=j

|aTj ak|

 , (9)

where Gii = Gjj = 1 are two diagonal entries of GSS . By the definition of α(A) and β(A), one

of these two rows contains at most α(A) entries with absolute values equal to µ(A), and the next

row contains at most β(A) entries with absolute values equal to µ(A). The remaining entries in

these rows are less than or equal to µ(2)(A). Therefore, p∑
k=1,k ̸=i

|aTi ak|

 p∑
k=1,k ̸=j

|aTj ak|

 ≤
[
α(A)µ(A) + (p− 1− α(A))µ(2)(A)

]
·
[
β(A)µ(A)

+(p− 1− β(A))µ(2)(A)
]
. (10)
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Combining (9) and (10) leads to

1 ≤
[
α(A)µ(A) + (p− 1− α(A))µ(2)(A)

]
·
[
β(A)µ(A) + (p− 1− β(A))µ(2)(A)

]
=

[
α(A)µ̃(A) + (p− 1)µ(2)(A)

]
·
[
β(A)µ̃(A) + (p− 1)µ(2)(A)

]
,

where µ̃(A) := µ(A)− µ(2)(A). By rearranging terms, the inequality above can be written as[
(p− 1)µ(2)(A)

]2
+

[
(p− 1)µ(2)(A)

]
(α(A) + β(A))µ̃(A) + α(A)β(A)µ̃(A)2 − 1 ≥ 0. (11)

We now show that µ(2)(A) ̸= 0. In fact, if µ(2)(A) = 0, then (11) is reduced to α(A)β(A)µ(A)2 ≥ 1,

which contradicts both conditions (i) and (ii). In fact, each of conditions (i) and (ii) implies that

α(A)β(A)µ(A)2 < 1. Thus µ(2)(A) is positive. Note that the quadratic equation (in t)

t2 + t(α(A) + β(A))µ̃(A) + α(A)β(A)µ̃(A)2 − 1 = 0

has only one positive root. So it follows from (11) that

(p− 1)µ(2)(A)

≥
−(α(A) + β(A))µ̃(A) +

√
[µ̃(A)(α(A) + β(A))]2 − 4(α(A)β(A)µ̃(A)2 − 1)

2

=
−(α(A) + β(A))µ̃(A) +

√
[(α(A)− β(A))µ̃(A)]2 + 4

2

=
2
[
1− α(A)β(A)µ̃(A)2

]
(α(A) + β(A))µ̃(A) +

√
[(α(A)− β(A))µ̃(A)]2 + 4

,

which is exactly the relation (8). 2

The next proposition shows that the bound (8) is an improved lower bound for the spark

under the condition of Theorem 2.5.

Proposition 2.6. Let Ψ
(
α(A), β(A), µ(A), µ(2)(A)

)
denote the right-hand side of the in-

equality (8). When α(A) < 1
µ(A) , we have

Ψ
(
α(A), β(A), µ(A), µ(2)(A)

)
≥

(
1 +

1

µ(A)

)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− α(A)µ(A)).

When α(A) ≤ 1
µ(A) and β(A) < α(A), we have

Ψ
(
α(A), β(A), µ(A), µ(2)(A)

)
≥

(
1 +

1

µ(A)

)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− α(A)µ(A))

+
α(A)µ̃(A)2

µ(2)(A)(1 + α(A)µ̃(A))
,

where µ̃(A) = µ(A)− µ(2)(A).

Proof. By using the fact
√
a2 + b2 ≤ a+ b for any a, b ≥ 0, we have

Ψ
(
α(A), β(A), µ(A), µ(2)(A)

)
− 1
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=
2
(
1− α(A)β(A)µ̃(A)2

)
µ(2)(A)

{
µ̃(A)(α(A) + β(A)) +

√
[µ̃(A)(α(A)− β(A))]2 + 4

}
≥ 2

(
1− α(A)β(A)µ̃(A)2

)
µ(2)(A) {µ̃(A)(α(A) + β(A)) + [µ̃(A)(α(A)− β(A))] + 2}

=
1− α(A)β(A)µ̃(A)2

µ(2)(A)(1 + α(A)µ̃(A))
. (12)

Case 1: α(A) < 1
µ(A) . In this case, by (6), i.e., β(A) ≤ α(A), it follows from (12) that

Ψ
(
α(A), β(A), µ(A), µ(2)(A)

)
− 1 ≥ 1− α(A)2µ̃(A)2

µ(2)(A)(1 + α(A)µ̃(A))

=
1− α(A)µ̃(A)

µ(2)(A)

=
1

µ(A)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− α(A)µ(A)).

Case 2: α(A) ≤ 1
µ(A) and β(A) < α(A). In this case, since β(A) ≤ α(A) − 1, it follows again

from (12) that

Ψ
(
α(A), β(A), µ(A), µ(2)(A)

)
− 1 ≥ 1− α(A)(α(A)− 1)µ̃(A)2

µ(2)(A)(1 + α(A)µ̃(A))

=
1− α(A)µ̃(A)

µ(2)(A)
+

α(A)µ̃(A)2

µ(2)(A)(1 + α(A)µ̃(A))

=
1

µ(A)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− α(A)µ(A))

+
α(A)µ̃(A)2

µ(2)(A)(1 + α(A)µ̃(A))
,

as desired. 2

Under the first case above, we see that
(

1
µ(2)(A)

− 1
µ(A)

)
(1 − α(A)µ(A)) > 0, and under the

second case, we have(
1

µ(2)(A)
− 1

µ(A)

)
(1− α(A)µ(A)) +

α(A)µ̃(A)2

µ(2)(A)(1 + α(A)µ̃(A))
> 0.

Thus, under the condition of Theorem 2.5, we have Ψ
(
α(A), β(A), µ(A), µ(2)(A)

)
> 1 + 1

µ(A) .

Therefore, the lower bound of spark given by (8) does improve the bound (1) when the coherence

rank, α(A), is small. Proposition 2.6 also indicates explicitly how much this improvement can be

made at least.

If the Gram matrix G of the normalized A has two rows containing α(A) entries with absolute

values equal to µ(A), then α(A) = β(A), in which case the lower bound (8) can be simplified to

Ψ
(
α(A), β(A), µ(A), µ(2)(A)

)
=

(
1 +

1

µ(A)

)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− α(A)µ(A)).

Note that G has at most one absolute entry equal to µ(A) in its every row if and only if α(A) =

β(A) = 1. In this special case, the condition α(A) < 1/µ(A) holds trivially when µ(A) < 1. Thus,

the next corollary follows immediately from Theorem 2.5.
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Corollary 2.7. Let A ∈ Rm×n be a matrix with m < n. If µ(A) < 1 and α(A) = 1, then

µ(2)(A) > 0, and

Spark(A) ≥ 1 +
1

µ(A)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− µ(A)).

Although Corollary 2.7 deals with a special case from a mathematical point of view, many

matrices satisfy the property α(A) = 1 together with µ(A) < 1. Numerical experiments show that

when a matrix is randomly generated, the coherence rank of the matrix is most likely equal to

1. In fact, the case α(A) ≥ 2 arises only when A has at least two columns, each of which has

the same angle to a column of the matrix, and such an angle is the largest one between a pair of

columns of A. This phenomenon indicates that the coherence rank of a matrix is usually low in

practice, typically α(A) = 1.

2.3 Uniqueness via coherence and coherence rank

Consider the class of matrices

M =

{
A ∈ Rm×n : either α(A) ≤ 1

µ(A)
and β(A) < α(A), or α(A) <

1

µ(A)

}
= M1 ∪M2, (13)

where

M1 =

{
A ∈ Rm×n : α(A) <

1

µ(A)

}
, M2 =

{
A ∈ Rm×n : α(A) ≤ 1

µ(A)
and β(A) < α(A)

}
.

We now state the main uniqueness claim of this section.

Theorem 2.8. Let A ∈ M, defined by (13). If the system Ax = b has a solution x obeying

∥x∥0 <
1

2

1 + 2
(
1− α(A)β(A)µ̃(A)2

)
µ(2)(A)

{
µ̃(A)(α(A) + β(A)) +

√
[µ̃(A)(α(A)− β(A))]2 + 4

}
 , (14)

where µ̃(A) := µ(A)− µ(2)(A), then x is the unique sparsest solution to the linear system.

This result follows instantly from Theorems 2.5 and 1.1. As shown by Proposition 2.6, condi-

tion (14) has improved the well-known condition (2) when A is in class M. This improvement is

achieved by using the sub-mutual coherence µ(2)(A) together with (sub-)coherence rank, instead

of µ(A) only. Note that α(A), β(A), µ(A) and µ(2)(A) can be obtained straightforward from the

Gram matrix G = ATA. Thus the bound (14) can be easily computed.

By Theorem 2.5 and Proposition 2.6, we obtain the next result.

Theorem 2.9. (i) Let A ∈ M1, defined by (13). If the system Ax = b has a solution x

obeying

∥x∥0 <
1

2

[
1 +

1

µ(A)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− α(A)µ(A))

]
, (15)

9



then x is the unique sparsest solution of the linear system.

(ii) Let A ∈ M2, defined by (13). If the system Ax = b has a solution x obeying

∥x∥0 <
1

2

[
1 +

1

µ(A)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− α(A)µ(A)) +

α(A)µ̃(A)2

µ(2)(A)(1 + α(A)µ̃(A))

]
, (16)

then x is the unique sparsest solution of the linear system.

(iii) Let A be a matrix with µ(A) < 1 and α(A) = 1. Then the solution of Ax = b satisfying

∥x∥0 <
1

2

[
1 +

1

µ(A)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− µ(A))

]
(17)

is the unique sparsest solution of the linear system.

Result (iii) of the above theorem shows that for coherence-rank-1 matrices, the uniqueness

criterion (2) can be always improved to (17). As we have pointed out, matrices (especially the

randomly generated ones) are largely coherence-rank-1, unless the matrix is particularly designed.

Example 2.10. Consider a randomly generated A below and the absolute Gram matrix of

its column-normalized counterpart

A =

 0.0010 −0.7998 −0.6002 0.0717
0.8001 −0.3558 0.4798 −0.1913
0.5999 0.4801 −0.6398 −0.6412

 , abs(G) =


1 0.0025 0.0005 0.7989

0.0025 1 0.0022 0.4422
0.005 0.0022 1 0.4093
0.7989 0.4422 0.4093 1

 .

From abs(G), we see that α(A) = β(A) = 1, µ(A) = 0.7989, and µ(2)(A) = 0.4422. Note that

Spark(A)/2 = 2 for this example. The standard mutual bound (2) is (1+ 1
µ(A))/2 = 1.1258, which

is improved to 1.2274 by (17).

3 Improvement of Babel-function-based uniqueness

Let A ∈ Rm×n be a matrix with normalized columns. Tropp [27] introduced the so-called Babel-

function defined as

µ1(q) = max
Λ,|Λ|=q

max
j ̸∈Λ

∑
i∈Λ

|aTi aj |

where ak, k = 1, ..., n, are the columns of A, and Λ is some subset of {1, ..., n}. By this function,

the following lower bound for spark is obtained (see [27]):

Spark(A) ≥ min
1≤q≤n

{q : µ1(q − 1) ≥ 1}. (18)

The Babel function can be equivalently defined/computed in terms of the Gram matrix G = ATA.

In fact, sorting every row of abs(G) in descending order yields the matrix Ĝ = (Ĝij) with the first

column equal to the vector of ones, consisting of the diagonal entries of G. Therefore, as pointed

out in [15], the Babel function can be written as

µ1(q) = max
1≤k≤m

q+1∑
j=2

|Ĝkj | =
q+1∑
j=2

|Ĝk0j |, (19)
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where k0 denotes an index such that the above maximum is achieved. Since µ1(q−1) ≤ (q−1)µ(A),

it is evident that

min
1≤q≤n

{q : µ1(q − 1) ≥ 1} ≥ 1 +
1

µ(A)
.

So the lower bond given by (18) is an enhanced version of (1). Some immediate questions arise:

Can we compare the lower bounds (18) and (8)? Can the lower bounds (18) and (8) be further

improved?

We first address the second question above, by showing that the Babel-function-based bound

(18) can be further improved by using the so-called sub-Babel function. Again, Brauer’s Theorem

plays a fundamental role in deriving such an enhanced result. The sub-Babel function, denoted

by µ
(2)
1 (q), is defined as

µ
(2)
1 (q) = max

1≤k≤m,k ̸=k0

q+1∑
j=2

|Ĝkj |, (20)

where k0 is determined in (19). Clearly, we have

µ
(2)
1 (q) ≤ µ1(q) for any 1 ≤ q ≤ n− 1. (21)

We have the following improved version of (18).

Theorem 3.1. For any matrix A ∈ Rm×n, we have

Spark(A) ≥ min
1≤q≤n

{
q : µ1(q − 1) · µ(2)

1 (q − 1) ≥ 1
}
. (22)

Proof. Let p = Spark(A). Then there exist p columns of A that are linearly dependent.

Without lost of generality, we assume AS = (a1, a2, ..., ap) is the submatrix consisting of these

p columns. Since the columns of AS are linearly dependent and normalized, the p × p matrix

GSS = AT
SAS is singular, and all diagonal entries of GSS are equal to 1. Thus by Theorem 2.4

(Brauer’s Theorem), for any eigenvalue λ of GSS , there exist two different rows, say ith and jth

rows (i ̸= j), such that

|λ−Gii| · |λ−Gjj | ≤ ∆i∆j =

 p∑
k=1,k ̸=i

|aTi ak|

 p∑
k=1,k ̸=j

|aTj ak|

 , (23)

where Gii = Gjj = 1 are two diagonal entries of GSS . By the definition of Babel and sub-Babel

functions, we see that

max{∆i,∆j} ≤ µ1(p− 1), min{∆i,∆j} ≤ µ
(2)
1 (p− 1).

Thus it follows from (23) that

(λ− 1)2 ≤ ∆i∆j = max{∆i,∆j} ·min{∆i,∆j} ≤ µ1(p− 1) · µ(2)
1 (p− 1).

In particular, since λ = 0 is an eigenvalue of GSS , we have

µ1(p− 1) · µ(2)
1 (p− 1) ≥ 1. (24)

11



So p = Spark(A) implies that p must satisfy (24). Therefore,

Spark(A) = p ≥ min
1≤q≤n

{
q : µ1(q − 1) · µ(2)

1 (q − 1) ≥ 1
}
,

as desired. 2.

The next proposition shows that the lower bound (22) is an improved version of (18).

Proposition 3.2. Denote by

q∗ = min
1≤q≤n

{
q : µ1(q − 1) · µ(2)

1 (q − 1) ≥ 1
}
, q̂ = min

1≤q≤n
{q : µ1(q − 1) ≥ 1} .

Then q∗ ≥ q̂. In particular, if µ
(2)
1 (q̂ − 1) < 1

µ1(q̂−1)
, then q∗ > q̂.

Proof. By the definition of q∗, we see that µ1(q
∗ − 1) · µ(2)

1 (q∗ − 1) ≥ 1. This, together with

(21), implies that µ1(q
∗ − 1) ≥ 1. Thus

q∗ ≥ min
1≤q≤n

{q : µ1(q − 1) ≥ 1} = q̂.

We now further show that this inequality holds strictly when the value of the sub-Babel function

are relatively small in the sense that µ
(2)
1 (q̂ − 1) < 1

µ1(q̂−1)
. In fact, under this condition, we have

µ1(q̂ − 1) · µ(2)
1 (q̂ − 1) < 1.

Note that both µ1(q−1) and µ
(2)
1 (q−1) are increasing functions in q. The inequality above shows

that when µ1(q − 1) · µ(2)
1 (q − 1) ≥ 1, we must have q > q̂. Therefore,

q∗ = min
1≤i≤n

{q : µ1(q − 1) · µ(2)
1 (q − 1) ≥ 1} > q̂,

which shows that (22) improves (18) for this case. 2.

The next proposition indicates that when the coherence rank of A is relatively small, bound

(22) is also an improved version of (8).

Proposition 3.3. Let A ∈ Rm×n be a given matrix. Let q∗ be defined as in Proposition 3.2.

If α(A) < 1/µ(A) and α(A) ≤ q∗ − 1, then

q∗ ≥ 1 +
2
[
1− α(A)β(A)µ̃(A)2

]
µ(2)(A)

{
µ̃(A)(α(A) + β(A)) +

√
[µ̃(A)(α(A)− β(A))]2 + 4

} ,

where µ̃(A) := µ(A)− µ(2)(A).

Proof. Since α(A) ≤ q∗ − 1, by the definition of α(A) and β(A), it follows from (19) and (20)

that

µ1(q
∗ − 1) ≤ α(A)µ(A) + (q∗ − 1− α(A))µ(2)(A),

µ
(2)
1 (q∗ − 1) ≤ β(A)µ(A) + (q∗ − 1− β(A))µ(2)(A).

These relations, together with the definition of q∗, imply that

1 ≤ µ1(q
∗ − 1) · µ(2)

1 (q∗ − 1)

≤
[
α(A)µ(A) + (q∗ − 1− α(A))µ(2)(A)

]
·
[
β(A)µ(A) + (q∗ − 1− β(A))µ(2)(A)

]
.
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Thus we obtain the same inequality as (11) with p replaced by q∗. Following (11), and repeating

the same proof therein, we deduce that

q∗ ≥ 1 +
2
[
1− α(A)β(A)µ̃(A)2

]
µ(2)(A)

{
µ̃(A)(α(A) + β(A)) +

√
[µ̃(A)(α(A)− β(A))]2 + 4

} ,

where µ̃(A) := µ(A)− µ(2)(A). 2.

It is also worth briefly comparing the Babel-function-based bound (18) and those developed

in section 2 of this paper. At a first glance, it seems that (18) is more sophisticated than those

developed in section 2. However, two types of bounds are mutually independent in the sense

that one cannot definitely dominate the other in general. For example, when α(A) ≤ q̂ − 1 and

α(A) < 1/µ(A) where q̂ is defined in Proposition 3.2, we have

1 ≤ µ1(q̂ − 1) = max
1≤k≤m

q̂∑
j=2

|Ĝkj | ≤ α(A)µ(A) + (q̂ − 1− α(A))µ(2)(A).

Thus,

q̂ ≥ 1 +
1− α(A)µ̃(A)

µ(2)(A)
=

(
1 +

1

µ(A)

)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− α(A)µ(A)).

In this case, the Babel-function-based bound (18) is tighter than bound (15). However, when

q̂ − 1 < α(A), the relationship between the bounds (15) and (18) can be complicated. The

bound (15) and the one in Theorem 2.8 might be tighter than (18). Indeed, let us assume that

q̂ − 1 < α(A) ≤ p− 1 where p = Spark(A), and α(A) < 1/µ(A). Then (15) indicates that

p =

⌈
1 +

1

µ(A)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− α(A)µ(A))

⌉
+ t∗

for some integer t∗ ≥ 0. This can be written as

q̂ =

⌈
1 +

1

µ(A)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− α(A)µ(A))

⌉
+ t∗ − (p− q̂).

If t∗ < p− q̂, then the above inequality implies that

q̂ ≤ 1 +
1

µ(A)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− α(A)µ(A)).

By Proposition 2.6, the right-hand side of the above is dominated by Ψ(α(A), β(A), µ(A), µ(2)(A)).

Therefore, as a lower bound of spark, (8) is tighter than (18) in this special case.

4 Scaled mutual coherence

The mutual coherence is an important concept for the development of the uniqueness of sparsest

solutions, and it is also crucial for the performance guarantee and stability analysis for many

sparsity-seeking algorithms, such as basis pursuit, orthogonal matching pursuit, and thresholding

algorithms (see e.g., [9, 16, 12, 18, 27, 28, 13, 5, 15, 17]). So it is worth considering how this concept

can be further enhanced in order to possibly provide an improved bound for the spark. In this

section, we introduce the scaled mutual coherence, which may lead to an optimal coherence-based

estimate of the spark in certain sense. In theory, the improved results established in previous

sections can be either extended or further improved by choosing a suitable scaling matrix.
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4.1 Uniqueness via the scaled mutual coherence

Note that Spark(A), where A ∈ Rm×n with m < n, is invariant under a nonsingular linear

transformation in the sense that

Spark(A) = Spark(WA)

for any nonsingular matrix W ∈ Rm×m. However, the mutual coherence µ(A) is not. That is,

µ(A) ̸= µ(WA)

in general (see Examples 4.3 and 4.4 in this section). Thus the improved conditions (14) -(17)

still have a room for a further improvement by using a suitable nonsingular scaling W. Motivated

by this observation, we consider the weighted inner product between every pair of columns of a

matrix, and define

µW (A) = max
i ̸=j

|(Wai)
TWaj |

∥Wai∥2 · ∥Waj∥2
= µ(WA).

Similarly, we define

µ
(2)
W (A) = max

i̸=j

{
|(Wai)

TWaj |
∥Wai∥2 · ∥Waj∥2

:
|(Wai)

TWaj |
∥Wai∥2 · ∥Waj∥2

< µW (A)

}
= µ(2)(WA).

In this paper, µW (A) and µ
(2)
W (A) are referred to be as the scaled mutual coherence and the scaled

sub-mutual coherence, respectively. It makes sense to introduce the next definition.

Definition 4.1. Let

µ∗(A) := min
W

{
µW (A) : W ∈ Rm×m is nonsingular

}
.

µ∗(A) is called the optimal scaled mutual coherence (OSMC) of A.

By definition, we have µ∗(A) ≤ µW (A) for any nonsingular W ∈ Rm×m and any A ∈ Rm×n.

In particular, by setting W = I (the identity matrix), we see that µ∗(A) ≤ µ(A) for any A. As

shown by the next result, the OSMC provides a theoretical lower bound for the spark that is

better than any other scaled-mutual-coherence-based bound.

Theorem 4.2. For any m× n (m < n) matrix A with nonzero columns, we have µ∗(A) > 0,

and

1 +
1

µW (A)
≤ 1 +

1

µ∗(A)
≤ Spark(A)

for any nonsingular matrix W ∈ Rm×m. Hence if the system Ax = b has a solution satisfying

∥x∥0 ≤
(
1 +

1

µ∗(A)

)
/2,

or more restrictively, if there is a nonsingular matrix W such that ∥x∥0 < (1 + 1/µW (A)) /2, then

x is the unique sparsest solution to the linear system.

Proof. Let W be an arbitrary nonsingular matrix. We consider the scaled matrix WA. Let

D = diag(1/∥Wa1∥2, ..., 1/∥Wan∥2) where ai, i = 1, ..., n are the columns of A. Then WAD is

a matrix with normalized columns. Clearly, this normalization does not change the spark (and
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hence, spark(WAD) = spark(WA) = spark(A).) We also note that WAD(D−1x) = Wb and

Ax = b have the same sparsity of solutions. So without loss of generality, we assume that all

columns of WA have unit ℓ2-norms. Let p = Spark(A). By definition, there exist p columns of A

that are linearly dependent. Let AS consist of these p columns. Then the matrix

G
(W )
SS := (WAS)

T (WAS) = AT
SW

TWAS

is a p×p singular matrix due to the linear dependence of columns of AS . Since WA is normalized,

all diagonal entries of G
(W )
SS are equal to 1, and off-diagonal entries are less than or equal to

µW (A). By the singularity of G
(W )
SS , this matrix has a zero eigenvalue. Thus by Gerschgorin’s

theorem, there exists a row of the matrix, say the ith row, such that

1 ≤
∑
j ̸=i

|(G(W )
SS )ij | ≤ (p− 1)µW (A),

which implied that

µW (A) ≥ 1/(p− 1) > 0.

Note that the inequality above holds for any nonsingular matrixW ∈ Rm×m. Taking the minimum

value of the left-hand side yields µ∗(A) ≥ 1/(p− 1) > 0, and thus

p(= Spark(A)) ≥ 1 +
1

µ∗(A)
.

The right-hand side of the inequality above is greater than or equal 1 + 1/µW (A) for any nonsin-

gular W, since µW (A) ≤ µ∗(A). The uniqueness of sparsest solutions of the linear system Ax = b

follows immediately from Theorem 1.1. 2.

With a scaling matrix W, we denote the scaled coherence rank and scaled sub-coherence rank

by αW (A) = α(WA) and βW (A) = β(WA), respectively. Let us define a class of matrices as

follows:

M̃ =
{
A ∈ Rm×n : there is a nonsingular W ∈ Rm×m such that

either αW (A) ≤ 1

µW (A)
and βW (A) < αW (A), or αW (A) <

1

µW (A)

}
. (25)

By applying the same proof of Theorem 2.5 to the scaled matrix WA, the lower bound of spark,

together with uniqueness conditions for sparsest solutions in section 2, can be stated in terms of

µW (A), µ
(2)
W (A), αW (A) and βW (A). We omit the statement of the counterparts of Theorems 2.8

and 2.9 for the scaled coherence and the scaled coherence rank.

The next example shows that M ⊂ M̃, i.e., M̃ is strictly larger than M. This shows that by a

suitable scaling, the results in section 2 may be further improved. In fact, when α(A) ≤ 1
µ(A) does

not hold (in which case A ̸∈ M), the scaled matrix WA may satisfy the condition αW (A) < 1
µW (A)

(so WA ∈ M, and hence A ∈ M̃), as shown by the next example.

Example 4.3. Consider the matrix (7) given in Remark 2.3. For this matrix, µ(A) = 0.9239,

µ(2)(A) = 0.7644, α(A) = 2, β(A) = 1, and the bound (2) is 1.0498. Note that this matrix does
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not belong to M, since α(A) ̸≤ 1/µ(A). So (14)-(17) cannot apply to this matrix. Now, we

randomly generate a scaling matrix as follows

W =

 −0.9415 −0.5320 −0.4838
−0.1623 1.6821 −0.7120
−0.1461 −0.8757 −1.1742

 .

It is easy to verify that µW (A) = 0.8954, µ
(2)
W (A) = 0.8302, and αW (A) = βW (A) = 1. In fact,

after this scaling, the absolute Gram matrix of the normalized WA is given by

abs(G(W )) =



1.0000 0.3561 0.7138 0.8302 0.3978 0.8954
0.3561 1.0000 0.5753 0.8130 0.7126 0.0973
0.7138 0.5753 1.0000 0.8227 0.0177 0.4874
0.8302 0.8130 0.8227 1.0000 0.1707 0.4969
0.3978 0.7126 0.0177 0.1707 1.0000 0.7634
0.8954 0.0973 0.4874 0.4969 0.7634 1.0000

 .

Thus by this scaling, the original coherence rank α(A) = 2 is down to αW (A) = 1. Note that the

scaled bound (1+ 1
µW (A))/2 in Theorem 4.2 is 1.0584, improving the original unscaled bound (2).

This example shows that while A ̸∈ M, we have WA ∈ M, and hence A ∈ M̃.

From simulations, we observe that when the coherence rank of a matrix is high in the sense that

α(A) ≥ 2, it is quite sensitive to a scaling W, which may immediately reduce α(A) to αW (A) = 1,

as shown by the above example. When the coherence rank α(A) = 1, it is insensitive to a scaling

W, and it is highly likely that αW (A) remains 1.

Example 4.4. Consider A and the absolute Grammatrix abs(G) of its normalized counterpart

A =

 0.0010 −0.7998 −0.6002 1.4290
0.8001 −0.3558 0.4798 1.2393
0.5999 0.4801 −0.6398 −0.6849

 , abs(G) =


1 0.0025 0.0005 0.2894

0.0025 1 0.0022 0.9523
0.005 0.0022 1 0.0870
0.2894 0.9523 0.0870 1

 .

For this example, α(A) = β(A) = 1, µ(A) = 0.9523, and µ(2)(A) = 0.2894. The standard bound

(2) is (1 + 1
µ(A))/2 = 1.025, which is improved to 1.0824 by (17). We now use the scaling matrix

W =

 −0.2078 0.9393 0.1905
−0.9381 0.5715 0.3268
0.6702 0.2228 0.7662

 ,

which is a randomly generated nonsingular matrix. This scaling matrix yields µW (A) = 0.8343,

µ
(2)
A (A) = 0.7272, and αW (A) = βW (A) = 1. The original bound (2) can be further improved by

bound (1 + 1
µW (A))/2 = 1.0993, and the unscaled bound (17) can be improved to 1.1139 by using

the scaled mutual coherence.

Note that if the OSMC is attainable, i.e., there exists a nonsingular W ∗ such that µ∗(A) =

µW ∗(A). Then Theorem 4.3 holds for the OSMC. However, the optimal scaling W ∗ is difficult to

obtain in general. Also, for a given linear system, which scaling matrix should be used in order

to improve the uniqueness claims is not obvious in advance. However, the scaled coherence can

be viewed as a unified method for developing other coherence-type conditions for the uniqueness

of sparsest solutions. It is worth mentioning that the Babel function can be also generalized to

the weighted case, and related uniqueness claims can be made as well.
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4.2 Application

Note that the existing uniqueness claims for sparsest solutions of linear systems are general and

hold true uniformly for all b. These claims are made largely by using the property of A only, and the

role of b, which is solution-dependent, has been overlooked. Clearly, the property of the sparsest

solution is usually dependent on A and b. So it is interesting to incorporate the information b into

a uniqueness criterion for sparsest solutions. The scaled mutual coherence can be used to achieve

this goal. Indeed, let ϕ be a mapping from Rm to Rm
++ (the positive orthant of Rm). Denote

by Φu = diag(ϕ(u)), a nonsingular diagonal matrix with diagonal entries ϕi(u) > 0, i = 1, ...,m.

Setting u = b, we see that the system Ax = b is equivalent to

(ΦbA)x = Φbb. (26)

For instance, we let ϕ(u) be separable, i.e., ϕ(u) = (ϕ1(u1), ..., ϕn(xn))
T , and we define

ϕi(t) =

{
1/t if t ̸= 0
1 otherwise.

(27)

By this choice, we have Φbb = diag(ϕ(b))b = |sign(b)|. Note that Spark(A) = Spark(ΦbA), and the

sparsity of solutions of the scaled system (26) is exactly the same as that of Ax = b. However, as

we have seen before, a scaling matrix may change the mutual coherence, and a suitable scaling may

improve the mutual-coherence-based uniqueness claims for sparsest solutions of a linear system.

Through a scaling matrix dependent on b, the contribution of b to the uniqueness of sparsest

solutions can be demonstrated by the next two corollaries.

Corollary 4.5. If the system Ax = b, where A ∈ Rm×n with m < n, has a solution satisfying

∥x∥0 <
(
1 + 1

µ(ΦbA)

)
/2, then x is the unique sparsest solution to the linear system.

Applying to the scaled system (26), this corollary follows from Theorems 4.2 and 1.1 straight-

away, and this result can be improved when the scaled coherence rank α(ΦbA) is relatively small,

as indicated by the next result.

Corollary 4.6. Let A be an m× n matrix with m < n.
(i) Suppose that either α(ΦbA) ≤ 1

µ(ΦbA) and β(ΦbA) < α(ΦbA) or α(Φb(A)) <
1

µ(ΦbA) . If the

system Ax = b has a solution x obeying

∥x∥0 <
1

2

1 + 2
(
1− α(ΦbA)β(ΦbA)µ̃(ΦbA)

2
)

µ(2)(ΦbA)

{
µ̃(ΦbA)(α(ΦbA) + β(ΦbA)) +

√
[µ̃(ΦbA)(α(ΦbA)− β(ΦbA))]

2
+ 4

}
 ,

where µ̃(ΦbA) := µ(ΦbA)−µ(2)(ΦbA), then x is the unique sparsest solution to the linear system.

In particular, the same conclusion holds if x obeys

∥x∥0 <
1

2

[
1 +

1

µ(ΦbA)
+

(
1

µ(2)(ΦbA)
− 1

µ(ΦbA)

)
(1− α(ΦbA)µ(ΦbA))

]
,

(ii) If ϕ is chosen such that µ(ΦbA) < 1 and α(ΦbA) = 1, then the solution x of Ax = b

satisfying

∥x∥0 <
1

2

[
1 +

1

µ(ΦbA)
+

(
1

µ(2)(ΦbA)
− 1

µ(ΦbA)

)
(1− µ(ΦbA))

]
(28)
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is the unique sparsest solution of the linear system.

The next example shows that when b is involved, the uniqueness claim for sparsest solutions

can be improved in some situations.

Example 4.7. Consider the system Ax = b where A is a 3× 5 matrix given by

A =

 1 −3 −6 4 −3
2 3 −2 −2 3
3 −2 1 0 4

 , abs(G) =


1 0.1709 0.2922 0 0.6875

0.1709 1 0.3330 0.8581 0.3656
0.2922 0.3330 1 0.6984 0.4285

0 0.8581 0.6984 1 0.6903
0.6875 0.3656 0.4285 0.6903 1

 ,

where abs(G) is the absolute Gram matrix of the normalized A. From abs(G), we see that µ(A) =

0.8581, µ(2)(A) = 0.6984, and α(A) = β(A) = 1. Thus the standard bound (2) is 1.0827, which

is improved to 1.1016 by (17). In order to see which b can further improve these bounds, let us

randomly generate a vector b, for instance, b = (3.6159,−3.5189, 2.6954)T . Let ϕ be given by (27).

Then the absolute Gram matrix of the scaled matrix ΦbA with normalized columns is given by

abs(G(ΦbA)) =


1.0000 0.3180 0.1608 0.0107 0.7833
0.3180 1.0000 0.2454 0.8042 0.1178
0.1608 0.2454 1.0000 0.6784 0.4231
0.0107 0.8042 0.6784 1.0000 0.5928
0.7833 0.1178 0.4231 0.5928 1.0000

 ,

from which we see that after this b-involved scaling, the coherence has changed to µ(ΦbA) =

0.8042 and µ(2)(ΦbA) = 0.7833, and the coherence rank remains unchanged. The scaled bound

(1 + 1
µ(ΦbA))/2 = 1.1217 and the scaled bound (28) equal to 1.1250 both improve the unscaled

bound (2) and (17).

5 A further improvement via support overlap

Many uniqueness conditions for sparsest solutions of a linear system were derived from Theorem

1.1 by using the lower bound of Spark(A). In this section, we point out that Theorem 1.1 itself

might be improved in some situations by the support overlap of solutions of a linear system,

leading to an enhanced spark-type uniqueness condition. We use Supp(x) to denote the support

of x, i.e., Supp(x) = {i : xi ̸= 0}.

Definition 5.1. The support overlap S∗ of the solution of Ax = b is the index set

S∗ =
∩
x∈Y

Supp(x),

where Y = {x : Ax = b}, the solution set of the linear system.

Clearly, S∗ might be empty if there is no common index for the support of solutions. However,

when some columns of A are crucial, and they must be used for the representation of b, the support

overlap S∗ is nonempty for these cases.
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Theorem 5.2. Let S∗ be the support overlap of the solution of the system Ax = b. If the

system has a solution x satisfying

∥x∥0 <
1

2
(|S∗|+ Spark(A)), (29)

then x is the unique sparsest solution of the linear system.

Proof. Let x be a solution of the system Ax = b satisfying (29). We now prove that it is

the unique sparsest solution of the linear system. We assume the contrary that the linear system

has a solution y ̸= x with ∥y∥0 ≤ ∥x∥0. Since A(y − x) = 0, which implies that the columns

ai, i ∈ Supp(y − x) of A are linearly dependent, we have

∥y − x∥0 = |Supp(y − x)| ≥ Spark(A). (30)

Note that for any u, v ∈ Rn, the value of ∥diag(u)v∥0 is the number of i’s such that uivi ̸= 0. So

it is easy to see that

S∗ = min {∥diag(x)u∥0 : x, u ∈ Y} .

Thus, for any u, v ∈ Rn, we have

∥u− v∥0 ≤ ∥u∥0 + ∥v∥0 − ∥diag(u)v∥0,

and hence

∥y − x∥0 ≤ ∥y∥0 + ∥x∥0 − ∥diag(x)y∥0
≤ 2 ∥x∥0 − ∥diag(x)y∥0
≤ 2∥x∥0 − |S∗|, (31)

where the first inequality follows from ∥y∥0 ≤ ∥x∥0 and the second inequality follows from the fact

∥diag(x)y∥0 ≥ |S∗| for any x, y ∈ Y. It follows from (30) and (31) that 2∥x∥0 − |S∗| ≥ Spark(A),

which contradicts with (29). Thus x is the unique sparsest solution of the linear system. 2

As a result, all previous mutual-coherence-type uniqueness criteria for sparsest solutions of

a linear system can be further improved when the value of |S∗| or its lower bound is available.

Taking Theorem 2.9 (iii) as an example, we have the following result.

Corollary 5.3. Let A ∈ Rm×n, where m < n, be a matrix with µ(A) < 1 and α(A) = 1.

Suppose that |S∗| ≥ γ∗ where γ∗ is known. Then if the system Ax = b has a solution x satisfying

∥x∥0 <
1

2

[
γ∗ +

(
1 +

1

µ(A)

)
+

(
1

µ(2)(A)
− 1

µ(A)

)
(1− µ(A))

]
, (32)

x is the unique sparsest solution of the linear system.

When the support overlap S∗ is nonempty, we have |S∗| ≥ 1. All the aforementioned mutual

coherence type bounds for uniqueness of sparsest solutions can be further improved by at least

0.5. Such an improvement can be crucial, as shown by the next example.

Example 5.4. Consider the system Ax = b where

A =

 −1 0 −4 2 4
0 −1 −1 1 2
0 0 −1 0 0

 , b =

 2
1/2
1/2


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Clearly, the last two columns are linearly dependent. So Spark(A) = 2, and Theorem 1.1 cannot

confirm the uniqueness of any sparsest solution. However, note that the third column of A is vital

and must be used to represent b. This means that x3 ̸= 0 for any solution of the linear system.

So, |S∗| ≥ 1 = γ∗. Note that the solution x∗ = (0, 0, 1/2, 0, 0)T satisfies that

∥x∥0 = 1 < 1.5 = (γ∗ + Spark(A))/2 ≤ (|S∗|+ Spark(A))/2.

By Theorem 5.2, x∗ is the unique sparsest solution of the linear system. This example shows that

by incorporating the support overlap S∗, the result of Theorem 1.1 can be remarkably improved

when S∗ ̸= ∅.

6 Uniqueness via range property of AT

The exact recovery of all k-sparse vectors in Rn by a single matrix A is called the uniform

recovery. To uniformly recover sparse vectors, some matrix properties should be imposed on A.

The restricted isometry property (RIP) [8] and null space property [10, 30] are two well-known

conditions for the uniform recovery. Recently, the so-called range space property (RSP) of order k

was proposed in [31, 32], which can also characterize the uniform recovery. All uniform recovering

conditions imply that the linear system Ax = y := Ax0 has a unique sparsest solution. In fact,

these conditions have more capability than just ensuring the uniqueness of sparsest solutions of a

linear system. For instance, they also guarantee that a linear system has a unique least ℓ1-norm

solution, leading to the strong equivalence between ℓ0- and ℓ1-minimization problems, which is

fundamental for the development of compressed sensing theory. In this section, we briefly discuss

and develop certain more relaxed range properties of AT that guarantee the uniqueness of sparsest

solutions. Our first range property is defined as follows, which was first introduced in [33] for a

convergence analysis of reweighted ℓ1-methods for the sparse solution of a linear system.

Definition 6.1 (Range Property (I)). Let A be a full-rank m× n matrix with m < n. Let B

be an (n −m) × n matrix consisting of the basis of the null space of A. BT is said to satisfy a

range space property (RSP) of order k with a constant ρ > 0 if

∥ξJ∥1 ≤ ρ∥ξJ∥1

for all ξ ∈ R(BT ), the range space of BT , where J ⊆ {1, ..., n} with |J | = k is the indices of k

smallest absolute components of ξ, and J = {1, ..., n}\J.

Based on the above definition, we have the next result.

Theorem 6.2. Let A ∈ Rm×n and B ∈ R(n−m)×n be full-rank matrices satisfying ABT = 0,

where m < n. Suppose that BT has a RSP of order (n − k). Then the solution x of the system

Ax = b obeying ∥x∥0 ≤ k/2 is the unique sparsest solution of the linear system.

Proof. First, under the condition of the theorem, we have the following statement (see e.g.,

Proposition 3.6 in [33]): BT has the RSP of order (n − k) with a constant ρ > 0 if and only if

A has the NSP of order k with the same constant τ = ρ. Therefore, by the definition of NSP of

order k, we have ∥ηΛ∥1 ≤ τ∥ηΛ∥1 for all η ∈ N (A) and all Λ ⊆ {1, 2, ..., n} with |Λ| ≤ k, where

Λ = {i : i /∈ Λ}. This implies that the solution x with ∥x∥0 ≤ k/2 must be unique. In fact,
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we note that two (k/2)-sparse solutions x and y satisfy A(x − y) = 0, i.e., x − y ∈ N (A). Let

Λ = Supp(x − y). Since x − y is at most k-sparse, we have |Λ| ≤ k. By the NSP of order k, we

have

∥x− y∥1 = ∥(x− y)Λ∥1 ≤ τ∥(x− y)Λ∥1 = 0,

which implies that x = y. Thus the (k/2)-sparse solution is the uniqueness sparsest solution of

the linear system. 2

The above theorem impose range property on the basis of the null space of A, instead of on

A itself. We now impose a range property on A directly.

Definition 6.3 (Range Property (II)). There exists an integer k such that for any disjoint

subsets Λ1,Λ2 of {1, ..., n} with |Λ1| + |Λ2| = k and |Λ2| ≤ 1, the range space R(AT ) contains a

vector η satisfying ηi = 1 for all i ∈ Λ1, ηi = −1 for all i ∈ Λ2, and |ηi| < 1 for i /∈ Λ1
∪
Λ2.

The above definition is a relaxed version of the range property introduced in [31]. Under the

above range property (II), we can prove the following result.

Theorem 6.4. Suppose that A ∈ Rm×n with m < n satisfies the range property (II). Then if

the system Ax = b has a solution satisfying ∥x∥0 ≤ k/2, x is the unique sparsest solution of the

linear system.

Proof. Under the range property (II), we first prove that any k columns of A are linearly

independent. In fact, let Λ = {γ1, ..., γk} be an arbitrary subset of {1, ..., n} with |Λ| = k.

We now prove that the columns of AΛ are linearly independent. It is sufficient to show that

zΛ = 0 is the only solution to the system AΛzΛ = 0. In fact, let us assume AΛzΛ = 0. Then

z = (zΛ, zΛ = 0) ∈ Rn is in N (A). Consider the disjoint sets Λ1 = Λ, and Λ2 = ∅. By the range

property (II), there exists a vector η ∈ R(AT ) with ηi = 1 for all i ∈ Λ1 = Λ. By the orthogonality

of N (A) and R(AT ), we have

0 = zT η = zTΛηΛ + zT
Λ
ηΛ = zTΛηΛ,

which is nothing but

zγ1 + zγ2 + · · ·+ zγk = 0. (33)

Now we consider an arbitrary pair of disjoint sets:

Λ1 = Λ\{γi}, Λ2 = {γi},

which satisfy that |Λ1| + |Λ2| = k and |Λ2| ≤ 1. By the range property (II), there exists an

η ∈ R(AT ) with ηγj = 1 for every j ̸= i and ηγi = −1. Again, it follows from zT η = 0 that

(zγ1 + · · ·+ zγi−1 + zγi+1 · · ·+ zγk)− zγi = 0,

which holds for every i with 1 ≤ i ≤ k. Combining these relations and (33) implies that zγi = 0

for all i = 1, ..., k, i.e., zΛ = 0. So any k columns of A are linearly independent. This implies that

k < Spark(A). The desired result follows immediately from Theorem 1.1. 2.
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7 Conclusions

Through such concepts as sub-mutual coherence, scaled mutual coherence, coherence rank, and

sub-Babel function, we have developed several new and improved sufficient conditions for a linear

system to have a unique sparsest solution. The key result established in this paper claims that

when the coherence rank of a matrix is low, the mutual-coherence-based lower bound for the spark

of a matrix can be improved. We have also demonstrated that the scaled mutual coherence, which

yields a unified uniqueness claim, may further improve the unscaled coherence-based uniqueness

conditions if a suitable scaling matrix is used. The scaled mutual coherence makes it possible to

integrate the right-hand-side vector b of a linear system into a uniqueness criterion for the sparsest

solution of a linear system. Moreover, the support overlap of solutions and certain range property

of a matrix also play an important role in the uniqueness of sparsest solutions of linear systems.
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