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ABSTRACT

A new concept of exceptional family for nonlinear variational inequalities over
polyhedral sets is introduced in this paper. It generalizes the concepts for comple-
mentarity problem introduced by Smith and Isac. We applied the new analytical tool
to the study of existence problem for variational inequalities. It is shown that our
existence condition is weaker than most of the sufficient conditions which have been
known. © Elsevier Science Inc., 1997

1. INTRODUCTION

The variational inequality problems have been successfully applied in
PIES model, traffic equilibria, spatial price equilibria, the prediction of
interregional commodity flows, the solution of Nash equilibria, and the
Walrasian or general equilibrium model of economic activities during the
last three decades. It is well-known that both complementarity problems
and convex nonlinear programs can be considered as special cases of the
variational inequality problems (see, [1].

The development of solution conditions for the problem has played a very
important role in both theory and practical applications. So far, a large body
of literature has developed on the existence (and uniqueness) of solutions to
the problem, including the works by Cottle [2], Eaves [3] and [4], Karamar-
dian [5], [6] and [7], Moré [8] and [9], Habetler and Price [10], Pang [11] and
[12], Smith [13], Isac [14] and an article by Isac, Bulavski and Kalashnikov
(to appear).
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In order to study the existence of economic equilibria, Smith [13] intro-
duced the ezceptional sequence for complementarity problem and applied
his result to spatial price equilibrium. Independently, G. Isac discovered the
exceptional sequence under the name of opposite radial sequence. As an-
other application different from [13], Harker [15] presented an alternative
proof of the existence of a solution to the network equilibrium problem by
using Smith’s result [13]. Recently, Isac, et al. (to be published) introduced
the concept of (regular) exceptional family of elements, which generalized
the concept in [13], and applied it to explicit /implicit complementarity and
order complementarity problems. Specializing the results in [13] and Isac, et
al. to linear complementarity problem (LCP) is discussed in [16). However,
the concept of exceptional family used by [13] and Isac, et al. can only be
applied to complementarity problem, i.e., the set in problem is a cone.

In this paper, we develop a new concept of exceptional family for
variational inequality over polyhedral set. We discover that the concepts in
[12] and Isac, et al. are a special case of our concept of exceptional family.
Moreover, we will establish a sufficient existence condition for the solution
to variational problem and show that our sufficient condition is weaker than
most of the well-known existence conditions. Indeed, we have also presented
the alternative proof for many existence theorems.

2. EXCEPTIONAL FAMILY

We consider the following finite-dimensional variational inequality prob-
lem, denoted by VI(S, F), which is defined to find a vector z* such that

(z—2*)"F(z*) >0 forall z€ S (2.1)
where S is polyhedral convex set, i.e.,
S={ze R™ Az < b}. (2.2)

F: S — R" is a function, A is an m X n matrix and b € R™ When b # 0,
the set S is not convex cone. But if b =0 and A = —I (identity matrix),
then the set S reduces to the nonnegative orthant, namely, R} = {z € R™

z > 0}. In this case (2.1) reduces to the well-known nonlinear complementar-
ity problem NCP(F)

>0, f(z)=0, z'F(zx)=0.
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If S is a bounded set, then by theorem 3.1 in [1], the problem (2.1) has at
least one solution for any continuous function on §, and there is nothing to
discuss. Throughout the paper, we assume that the polyhedral set S is
unbounded and the interior int(S) # ¢ Our main goal is to develop some
sufficient existence conditions for the solution to the problem (2.1) by a new
analytical tool (exceptional family, see definition 2.1).

Let || - || denote the Euclidean norm function and the set B, = {z € R™
Il zll < @} be the Euclidean ball with radius a > 0, let S, be defined by

S,=8SNnB,={zeR" Az< b n{ze R" |4l < a}.
Obviously, S, is convex compact set provided that S, # §. Since S is
unbounded, there exists some a; such that int(S, ) # P for a > ao.

Let PS() denote the projection operator on the set S,, ie., for any
2€ R" Ps ( 2) in the unique solution to the following problem

min{llz — z|l: z€ S,}. (2.3)

The lemma given below characterizes some property of the projection
operator.

LEMMA 2.1. Let int(S,) # §, z € S, and z € R", then z= Py (2) if
and only if there exist some nonnegative vector A = (A, ..., A )T € RT
and some scalar p > 0 such that

2[(1 + p)z— 2] = — AN (24)
A>0=(Az—1b),=0, i=1,...,m (2-5)
w> 0=z’ - a?=0. (2.6)

PROOF. By the definition of Pg(2), == Pg(2) if and only if z is the
unique solution to the problem (2. 3) which is equlvalent to the following
convex programming

min{ll z — A Az < b, 2z < @?, z€ R". (2.7)
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Since int(S,) # ¢ the Slater optimality condition holds, therefore z =
Py (2) if and only if x is the Kukn-Tucher point of the convex programming
@.7. Namely, there exist some scalar u > 0 and nonnegative vector A € RY
such that

-2(z—z) + AN +2uz=0 (o)
Az <b, zz-a?’<0 (ay)
A(Az—b);,=0 foralli=1,...,m (a)
w(z'z—a®) =0. (@)

Since z € §,, (a;) through (a,) are easily seen to be equivalent to (2.4)
through (2.6). The proof is completed.
By the same argument as lemma 2.1, it is easy to show the next result.

LEMMA 2.2. Letz € Sandz € R", S is given by (2.2), thenz = Py(2) if
and only if there exists some vector A € RT such that x and z satisfy the
following

2(z—1) = AN (2.8)
A, >0= (Az—b),=0. (2.9)

It is well-known that z* solves the problem VI(S, F) if and only if z* is
the fixed point to the mapping H(z) = P(z — F( 1)), ie.,

* = Pg( z* — F(z*)) (2.10)
(see, [1], Proposition 2.3). Setting z = z* — F(z*) and z = z*, then by

lemma 2.2, z* is the solution to variational inequality problem VI(S, F) if
and only if there exists some vector A* € R such that

1
F(z*) = — EATX* (2.11)
A > 0= (Az* —b),=0. (2.12)
Similarly, z* solves the variational problem VI(S,, F), namely

(z—-2*)(F(z*) >0 forall z€ 8,
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if and only if

g% = Pg(z" — F(z")) (2.13)

Replacing z and z in lemma 2.1 by % — F(z%) and £, respectively. From
(2.4) through (2.6), it follows that (2.13) can be equivalently formulated as
follows: there exists some vector A € RT and some scalar u > 0 such that

F(z*) = —3AN — pz° (2.14)
A>0=(Az*—b),=0 (2.15)
w>0=llz* = a’ (2.16)

Motivated by the above observation, now we develop the concept of excep-
tional family for VI(S, F).

DEFINITION 2.1. For any F: S— R", S is a polyhedral conver set
defined by (2.2), we say the sequence{z®},. , C S is an exceptional family
for the variational inequality problem (2.1) if for each @ > 0, || z°|l = a, and
there exist some positive scalar p, > 0 and some vector A* € R such that

F(z%) = —p,z* — ; A° (2.17)
A >0 = ( Az® - b), = 0. (2.18)

Clearly, our concept of exceptional family is the generalization of the
corresponding concept introduced in [13] and Isac for nonlinear complemen-
tarity problem NCP(F). The latter is a special case of the above definition.
In fact, when b =0 and A = —1I, VI(S, F) reduces to NCP(F) and (2.17)
and (2.18) reduce to

F(z%) = —p 2% ifzf>0 (2.19)

13

F(z%) >0 if &= 0. (2.20)

It is the exceptional family introduced by Smith [13] and Isac. The next
lemma establishes the relations between variational inequality VI(S, F) and
VI(S,, F).
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LeEmmA 2307, Let F be a continuous mapping from S into R", then
VI(S, F) has at least one solution if and only if there exists an a > 0 such
that z* € S, is the solution to VI(S,, F) with |z < a.

Now we prove our main result on the existence of the solution to
variational inequality problem (2.1). In fact the theorem below generalized
the results concerning NCP(F) established in [13] and Isac et al.

THEOREM 2.1. Let F be a continuous mapping from S into R", then
either the variational inequality VI(S, F) has a solution or there erists an
exceptional family.

PROOF. Suppose that the problem (2.1) has no solution. Then by lemma
2.3, there exists no a > 0 such that z* € S, is the solution to VI(S,, F)
with property || z*|| < a. But F is continuous and for each a > 0 the set S,
is compact convex set. By theorem 3.1 in [1], VI(S,, F) has a solution for
each a > 0. Therefore, there exists sequence {z%},,, C S with property
|z*Il = @ and each z* is the solution to VI(S,, F). Now we prove that
{z°}, -, is an exceptional family for VI(S, F). Actually, for each a > 0, by
(2.14)—(2.16), there exist A®> € R™ and m, > 0 such that

F(z*) = —3 A" — p, z° (2.21)
AF> 0= (Az" —b),=0. (2:22)

It suffices to show u, > 0 for all @ > 0. But if u, = 0 for some a > 0, then
(2.21) and (2.22) reduce to (2.11) and (2.12), respectively. Hence z“ is a
solution to VI(S, F). It is a contradiction. Therefore {z°}, . , is an excep-
tional family for VI(S, F).

COROLLARY 2.1. Let F be a continuous function from S into R", if the
variational inequality VI(S, F) has no exceptional family, then VI(S, F)
has at least one solution.

Because of the above results, it is of interest to decide when the problem
VI(S, F) has no exceptional family and hence guarantee the existence of
solution to VI(S, F). In the next section, we point out that this sufficient
condition, namely, without exceptional family, is weaker than most of the
well-known existence conditions discussed extensively in literature. Isac et
al. gave an NCP(F) example to demonstrate the condition “without excep-
tional family’’ is strictly weaker than the well-known coercivity condition.



Finite- Dimensional Variational Inequalities 117

3. NONEXISTENCE OF EXCEPTIONAL FAMILY

PropoSITION 3.1. Let F: § = R" be a continuous function, if for every
sequence {(z%, A*)}), ., © S X RT with property || z°|| = o, the following
condition holds

F(z*) 2% + 100" >0 for some a > 0,

then VI(S, F) has no exceptional family.

PROOF. Suppose that there exists an exceptional family {z*},., C S,
then by definition for each a > 0 there exists a scalar u, > 0 and a vector
A% € R7 such that (2.17) and (2.18) hold. Therefore

F(z*) 2o = —pllzol” — 1(z*) " AT, (3.1)
Furthermore, since (2.18) implies that (z*)7AA* = bA°, we have
F(z) 2o+ 200 = —p llz** <0 forall >0.  (3.2)
This is contradiction.

CoOROLLARY 3.1. If the vector b € RT and the function satisfies the
following condition: for every sequence{z%)}, . , C S with propertyll z%|| — o
and F(z*)Tz* > 0 and some a > 0, then the problem (2.1) has no excep
tional family.

The above result can be viewed as an extension of corollary 4.5 in [13].
Specializing it to linear complementarity problem, we have the following,

COROLLARY 3.2. Let F(z) = Mz + q, where M is an n X n matriz,
g € R} and b € R7, then VI(S, Mz + ¢) has no exceptional family.
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PROPOSITION 3.2. Let F be a mapping from S into R™ (not necessarily
continuous). If there exists some 1° € S such that one of the following two
conditions hold

(¢) 2% ={ze 8 (z— z")TF(z) < 0} is nonempty and bounded
(cy)  for each infinite sequence || 2| — », where {z®} C S, F satisfies

(z — 2°) " F( z*) > 0 for some a such that || x|l > || 2°l,

then the variational inequality VI(S, F) has no exceptional family.

PRrOOF. Conversely, we assume that the problem VI(S, F) has an
exceptional family {z*},,, € S, by definition 2.1, we have ||z*|| = a for
each a > 0 and there exist scalar u, > 0 and nonnegative vector A* € R™
such that (2.17) and (2.18) hold. By (3.2), noting that Az’ — b < 0, we have

(2% — 2°) F(2*) = F(2°) 2% = F(2%)7 2"

= —p Mzl = 260 + p (%) 72" + L( Az°) e

—ia(l221? = (2%)T2%) + $( Az® — B)"A°

IA

— (Il 2l = (2°) ")

IA

= pellz= Iz 1l — 11 2°1l).

For sufficiently large a, i.e., there exists an a, such that for all @ > «,, we
have || 2%/l > || z°|l. From the above, it is easy to see that the condition (¢,)
and (c,) can not be satisfied. This completes the proof.

The condition (c,) in the proposition can be replaced by

(¢5) S(z°)={ze€ S (z~ 2)"F(z) < 0} is bounded.

In this case, it is evident that all solutions to the problem VI(S, F) are
contained in S( z°), i.e., the solution set is a compact set. By theorem 2.1
and the above proposition 3.2, we reobtain the following results (see, [1},
proposition 3.3). But our proof, which bases on exceptional family, is very
simple.
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CoroLLARY 33U Let F: S — R™ be continuous. If there is s vector
1" € S such that the condition (c,) holds, then there exists at least one
solution to VI(S, F). Furthermore if the condition (c;) holds, then the
solution set of VI(S, F) is compact

It should be noted that while the condition ‘‘nonexistence of exceptional
family” is sufficient for the existence of solution to VI(S, F), it is in general
not necessary. Smith [13] gave an example of complementarity problem
which has both a solution and an exceptional family. However, under some
assumption on F, the condition is also necessary. The next result refines
theorem 2.1 in the pseudo-monotonicity case.

COROLLARY 3.4. Let F: §— R" be o continuous pseudo-monotone
mapping, then one and only one of the following alternative holds.

(a,) the variational problem VI(S, F) has at least a solution;
(a,) the variational problem VI(S, F) has an exceptional family.

PrROOF. If (g,) doesn’t hold, then (a,) hold by theorem 2.1. Now assume
that (a,) holds. Let z* be a solution to the problem VI(S, F), then

(z—2*) F(z*) >0 forall z€ &.
Since F is pseudo-monotone, the above inequality implies that
(z—2*) F(z) >0 forall z€ S.

Let z° = z*. It follows obviously that the condition (¢,) in proposition 3.2
holds. Hence (a,) doesn’t hold. The proof is completed.
Denote the dual cone of the set S by S*, i.e.,

S*={yeR" y"z>0 forall z € S}.
COROLLARY 3.5. Suppose of F is pseudo-monotone with respect to S and

there exists 2° € S such that F(z°) € int(S*), then the problem VI(S, F)
has no exceptional family.
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By proposition 3.4 in [1], the above assumption on F implies the solution
existence for VI(S, F), therefore corollary 3.5 is the immediate consequence
of corollary 3.4.

DeFINITION 3,180 A mapping F: § — R™ is said to be a
(1) P-function on § if

max [F(z) — F(y)](z;— y) >0 forall z, y€ S, z# y;

1<i<n

(2) Uniform P-function on § if there exists a scalar ¢ > 0 such that

lmax [E(m) - F( y)](zl —y)=dz— yll5 forall z, y€ S, z+ v.
<ign

(3.3)

Let X be a convex, closed subset in R". For nonlinear P-function, the
variational inequality VI( X, F) has at most one solution, but may not
necessarily have a solution. Moré [8] gave an example to show the case. So in
order to guarantee the nonexistence of exceptional family for P-function,
some other restrictive assumption will be imposed. However, for uniform
P-function the problem VI(S, F) always has a unique solution. In the
following, among other things, we will present a new proof for the results
under some assumption on S by using the concept of exceptional family
(see, proposition 3.3 in detail).

Now we introduce the concept of uniform diagonal dominance function.
This class of functions seems to have similar property to uniform P-function.
Denote the max-norm by |-k, ie., || zll. = max, ;2] Let f(z)Xi=
1,..., n) be the component of the map F.

DEFINITION 3.2. A mapping F: S — R" is said to be a uniform diagonal
dominance function with respect to S if for any z, y € §, = # y and any
index k with |z, — y,| = llz — yll, there exists a positive scalar ¢ such that

(2 = 4 (S @) = £ 9)) > dlz — yllz. (3.4)

These maps can be viewed as the nonlinear generalization of the strictly
diagonally dominant matrix with positive diagonal entrices, i.e., M =
(a;;),x, With property

a;> Y la,l foralli=1,..., n. (3.5)

Fiak]
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In fact, if M satisfies (3.5), let

c= Y, {aii— Elaij|}>0.

1<i<n ik

Then for any z # y and index k with |z, — y,| = ||z — ylls, we have

n

(e —9)(A(z—y))r = Z akj( Tp — yk)(zj - ?Jj)

Jj=1

2
> aylz — yl” - ) |akj”$k - yk”%‘ - yjl
j*k

> (a’kk - Elakj|)|37k — yl?

j*k
> clz — yli2.

Conversely, suppose that M = (a,,),, satisfies (3.4), namely for any z # y
in R" and any index k with |z, — | = [l z — yllw, it follows that

(2 — y)( Az — ) > clz — yllz. (3.6)

Specially, set y =0 and z; = —sgn a;; for all j#k and z, =1, then
z # 0 and | z;| = || 2ll.. Hence from (3.6)

n
c=cdlzli <z, Y Qp;T; = Qg — 2 lal
j=1 j*k

Note that the above condition holds for all k€ {1, 2,..., n}, therefore M
satisfies (3.5).

PROPOSITION 3.3.  If the continuous mapping F: S — R" satisfies one of
the following

(@) F s a uniform P-function with respect to S,

(a,) Fis a uniform diagonal dominance function with respect to S, and
A is an n X n diagonal matriz, then the variational inequality VI(S, F) has
no exceptional family.
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PROOF. (a;) Let y be a fixed vector in S. Suppose that there exists an
exceptional family {z°}, . ;. Since it is an infinite sequence, there exists a
subsequence {w“:'}aj - o such that for some fixed index ¢,

[E(2%) = B(9)] (= — w,) = max [F(a™) = F()](=] = v)
holds for all a;. Furthermore, since F is a uniform P-function, we have
[F %) = f(»)](z2 — u,) = dlz™ — i3, (3.7)
From (2.17) and (2.18) and notice that A is diagonal and Ay < b. We have
[E(z%) = F(9)](=2 ~ v,)
= F(z®) (2 - y,) — E(9)(=5 — w,)

[_’J' Z‘z] - ”( ATA“ )‘0](1:10 - ylu) - F’o( y)(m?n] - yiu)

]

It

—IL“J[( ZZ])Z - mf{’)] y’n] + %[ yiu( AT}‘U(})% - (]::10])( A’I)\a])l“]
- F(v)(= = v,)

g () = 2w | + H[AD(AY), - AT As®) ]

- E(u)(zy - v,)

_“a][(zg])z _ z;;]yio] + %)\goy( Ay — b)y, — F( y)(zg; - Z/u,)

I

IA

a; 2 N a
_I“"aj[( JTiOJ) — xi‘? .T/il)] - Fln( y)( Ty — yto)
Combining (3.7) and the above inequality, we have

_P"“J[(mlf:]])z _ z;:)J yio] — EO( y)(zlaoz — yi(,)

lz% — yli3

> c> 0.

But | z%] = o« and Mo, > 0 for all @, > 0. This is a contradiction.
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(a,) Let F be a uniform diagonal dominance mapping and y be a fixed
vector in S. If these exists an exceptional family {z°}, ., then there is a
subsequent { %}, ,  such that for some index %y, |z — y, | = 2% — yll
for all j=1,+. by (3.4), we have

(28— y )(E (%) — F(y)) > cllz® - yl2.

By the same argument as in (q,), a contradiction will be obtained. This
completes the proof.
The problem NCP(F)

>0, F(z)>0, z'F(z) =0

is a special case of VI(S, F). It corresponds to the case A = — I, b = 0. The
following consequence is immediate from proposition 3.3.

COROLLARY 3.6. When F' is a uniform P-function or uniformly diago-
nally dominant function, the NCP(F) has no exceptional family.

In proposition 3.3, we only show the case that A is diagonal, but it is
conjectured that the assumption can eventually be eliminated.

The coercivity property of the mapping has played a very important role
in existence theory of variational inequality. Indeed, the variational problem
VI( X, F) has a nonempty compact solution set provided that F is coercive
with respect to X (see, [1], theorem 3.2). It is easy to see that if F is
strongly monotone over X, i.e., there is a a > 0 such that (F(z) —
ATz —y) > allz — yl|* holds for all z, y in X, then F is coercive
with respect to X. It is also evident that when 0 € X and F is strongly
copositive with respect to X, i.e., if there exists a scalar a > 0 such that
(F(z) — F0) "z > allzll3 holds for all z€ X, then F is coercive with
respect to X. In what follows, we will show that for VI(S, F) the sufficient
condition ‘‘nonexistence of exceptional family” is weaker than coercive
condition. The result generalizes the results in [13] and Isac, et al. The
definition of coercivity property can be found in [1], [8], [13] and Isac, et al.,
but for completeness, we state it as follows.

DEeFINITION 3.3. A function F: S — R" is said to be coercive with
respect to S if there exists some z° € § such that

lim (F(2) ~ F(2Y) (2= ) = 400, (3.8)
se 8, llzll» |z — 2%
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ProprosITION 3.4. If F is coercive with respect to S, then the variational
problem VI(S, F) has no exceptional family.

ProOF. Let z' € § such that (3.8) holds. Assume that there is excep-
tional family {z%),. ,, let A* € RT and u, > 0 be defined as in definition
2.1, then by (2.17) and (2.18) for sufficiently large a > 0, we have

(F(z*) = F(2")) (2% - 2°)

|z — 2°l

F(z*) 2% — F(2*) 2 F(2") (2% - )

|z — 2°| Iz — 2°ll

— (2% = 2%) 27+ (172)((A%) T Az® — ((A%) 7 A7)

fz* — 2°li

K :EO)T( z® — 1°)

lz> — 2°

— 2=l = 120l + (1/2)( Az® — b) A

|z — 2°

+ P2

= e (2l 2=l = 11 2°1)

l

lo° — = FIECEDI

< IF( )

which implies that F is noncoercive. This completes the proof.

The above proposition asserts that coercive condition implies that nonex-
istence of exceptional family for VI(S, F), but the converse is not necessar-
ily true. In fact, Isac, et al. give an example concerning NCP(F) to show that
the condition ‘“‘nonexistence of exceptional family”’ can not imply the
coercive condition.
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4. CONCLUSION

The concept of exceptional family for variational inequality introduced in
this paper can be viewed as an extension of the concepts of exceptional
sequence and exceptional family of elements introduced by Smith and Isac,
respectively. It provides a new analytical tool for investigating the existence
theory of variational inequality. We conclude that it also opens an interest-
ing research direction in variational inequality. Considering our discussion in
section 3, it is interesting to note that our concept of exceptional family has
closed relations to optimality condition for convex programming.
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