
Heuristic Optimisation

Part 12: Constraints in genetic algorithms

Sándor Zoltán Németh

http://web.mat.bham.ac.uk/S.Z.Nemeth

s.nemeth@bham.ac.uk

University of Birmingham

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 1 / 20

Overview

Introduction

Designing the evaluation function

Rejecting infeasible individuals

Repairing infeasible individuals

Penalising infeasible individuals

Using special representation, variation operators

Using decoders

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 2 / 20

Introduction

In GAs better solutions have better chance of survival

The final solution must be feasible

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 3 / 20

Example

(a, f , g, h, i, k , l,m, n, o) are infeasible

(b, c, d, e, j) are feasible

X is the global optimum

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 4 / 20

Questions

How should we compare two feasible individuals (c and j)?

How should we compare two infeasible individuals (a and n)?

Should we assume that a feasible individual is always better than an

infeasible one?

Should we eliminate infeasible individuals from the population?

Should we repair infeasible individuals?

If we repair an infeasible individual, should we replace it by its

repaired version?

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 5 / 20

Questions cont’d

Should we penalise infeasible individuals?

Should we start with a population of feasible solutions and maintain

feasibility by using specialised operators?

Should we use decoders?

Should we consider individuals and constraints separately?

Should we concentrate on searching the boundary between feasible

and infeasible parts of the search space?

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 6 / 20

Evaluating feasible solutions

Which path is better for a robot?

For the SAT problem:

F(x) = (x1

∨

x2

∨

x3)
∧

(x1

∨

x3)

evalf (x) = x2
1 (x2 − 1)2(x3 − 1)2 + x2

1 x2
3

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 7 / 20

Evaluating infeasible solutions

eval(x) = evalf (x)± Q(x)

Q(x) can be a penalty or the cost of repairing x

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 8 / 20

Knapsack problem

Weight capacity 99 kilograms. Two infeasible solutions with the same total

value

First: Total weight 100 kilograms

Second: Total weight 105 kilograms

Which is better?

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 9 / 20

Knapsack problem

Weight capacity 99 kilograms. Two infeasible solutions with the same total

value

First: Total weight 100 kilograms

Second: Total weight 105 kilograms

Which is better?

First: Five items of 20 kilograms each

Second: An item of 6 kilograms of low profit

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 9 / 20

Feasible vs infeasible solutions

Which path is better for a robot?

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 10 / 20

Rejecting infeasible solutions

”Death penalty” is simple

Works well if the feasible part is convex and constitutes a reasonable part

of the search space

Random sampling might give an initial population with infeasible solutions

only

Variation operators might work better, if allowed to cross the infeasible

region

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 11 / 20

Repairing infeasible solutions

The repaired version can be used for evaluation only or can replace the

infeasible solution

The method is popular for combinatorial optimisation problems - TSP

Disadvantage: the method is problem dependent

Sometimes repairing an infeasible solution is just as hard as solving the

problem

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 12 / 20

Penalising infeasible individuals

eval(x) = evalf (x)± Q(x)

The penalty should depend on:

the ratio between the size of the feasible region and the size of the

search space

the type of the evaluation function

the number of variables

the number of constraints

the types of constraints

the number of active constraints at the optimum

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 13 / 20

Different penalty factors

Maximize G8(x) =
sin3(2πx1) sin(2πx2)

x3
1 (x1 + x2)

subject to c1(x) = x2
1 − x2 + 1 ≤ 0

c2(x) = 1 − x1 + (x2 − 4)2 ≤ 0

0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10

G
p
8 (x) = G8(x)− α(c1(x)+ + c2(x)+)

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 14 / 20

Maintaining a feasible population

Use specialised representation and variation operators to keep within the

feasible region

The variation operators transform feasible individuals into other feasible

individuals

Works well for convex feasible region and linear constraints

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 15 / 20

Using decoders

The representation is not for a solution, but for building a feasible solution

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 16 / 20

Example decoder

For continuous domains:

One-to-one mapping

Points that are close before the mapping are close after mapping

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 17 / 20

Decoder equation

y0 = (y0,1, . . . , y0,n) ∈ [−1, 1]n

y = ty0, t ∈ [0, tmax], (1)

where

tmax =
1

max {|y0,1|, . . . , |y0,n|}

(1) = line segment from 0 to the boundary of the cube.

x0 = r0 + τy0, (2)

where τ = τmax/tmax.

(2) = decoder equation.

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 18 / 20

Summary

In the majority of optimisation problems we encounter constraints

There are many possible methods for handling constraints

A careful analysis of the problem and the search space is needed

before deciding which method to use

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 19 / 20

Recommended reading

Z. Michalewicz & D.B. Fogel
How to Solve It: Modern Heuristics

Chapter 9. Constraint-handling techniques

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 20 / 20

