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Introduction

In GAs better solutions have better chance of survival

The final solution must be feasible
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Example

(a,f,g,h,i k,1,m, n, o) are infeasible
(b,c,d, e,j) are feasible

X is the global optimum

S Z Németh (s.nemeth@bham.ac.uk)

Heuristic Optimisation

DA




Questions

® How should we compare two feasible individuals (¢ and j)?
@ How should we compare two infeasible individuals (a and n)?

@ Should we assume that a feasible individual is always better than an
infeasible one?

@ Should we eliminate infeasible individuals from the population?

@ Should we repair infeasible individuals?

@ If we repair an infeasible individual, should we replace it by its
repaired version?
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Questions cont'd

@ Should we penalise infeasible individuals?

@ Should we start with a population of feasible solutions and maintain
feasibility by using specialised operators?

@ Should we use decoders?

@ Should we consider individuals and constraints separately?

@ Should we concentrate on searching the boundary between feasible
and infeasible parts of the search space?
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Evaluating feasible solutions

Which path is better for a robot?
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For the SAT problem:
F(x) = (x1Vx2V x3) A(X1 V X3)

evali(x) = x2(xo — 1)2(x3 — 1)% + x2x3
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Evaluating infeasible solutions

eval(x) = evali(x) £ Q(x)

Q(x) can be a penalty or the cost of repairing x
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Knapsack problem

Weight capacity 99 kilograms. Two infeasible solutions with the same total
value

First: Total weight 100 kilograms

Second: Total weight 105 kilograms

Which is better?
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Knapsack problem

Weight capacity 99 kilograms. Two infeasible solutions with the same total

value

First: Total weight 100 kilograms

Second: Total weight 105 kilograms

Which is better?

First: Five items of 20 kilograms each
Second: An item of 6 kilograms of low profit
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Feasible vs infeasible solutions
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Which path is better for a robot?
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Rejecting infeasible solutions

"Death penalty” is simple

Works well if the feasible part is convex and constitutes a reasonable part
of the search space

Random sampling might give an initial population with infeasible solutions
only

Variation operators might work better, if allowed to cross the infeasible
region
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Repairing infeasible solutions

The repaired version can be used for evaluation only or can replace the
infeasible solution

The method is popular for combinatorial optimisation problems - TSP

Disadvantage: the method is problem dependent

Sometimes repairing an infeasible solution is just as hard as solving the
problem
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Penalising infeasible individuals
eval(x) = eval(x) £ Q(x)

The penalty should depend on:

@ the ratio between the size of the feasible region and the size of the
search space

@ the type of the evaluation function
@ the number of variables

@ the number of constraints

@ the types of constraints

@ the number of active constraints at the optimum
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Different penalty factors
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subjectto ¢i(x) =x2 —xo+1<0
Cg(X) =1-—x —|—(X2—4)2 <0
0<x <10
0<x <10

Maximize Gg(x) =

Gg(x) = Ga(x) —a(c1(x)* +c2(x) ")
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Maintaining a feasible population

Use specialised representation and variation operators to keep within the
feasible region

The variation operators transform feasible individuals into other feasible
individuals

Works well for convex feasible region and linear constraints
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Using decoders

The representation is not for a solution, but for building a feasible solution
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S Z Németh (s.nemeth@bham.ac.uk)

Heuristic Optimisation

DA



Example decoder

For continuous domains:

One-to-one mapping

Points that are close before the mapping are close after mapping
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Decoder equation

Yo= (Yo1.,---.¥on) € [-1,1]"

y=1yo te [0: tmax]: (1)

where
1

max {[yo,1[,-- . |Yonl}
(1) = line segment from 0 to the boundary of the cube.

tmax -

Xo = Fo + TYo, (2)

where T = Tax/ tmax-
(2) = decoder equation.
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Summary

@ In the majority of optimisation problems we encounter constraints

@ There are many possible methods for handling constraints

@ A careful analysis of the problem and the search space is needed
before deciding which method to use
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Recommended reading

Z. Michalewicz & D.B. Fogel
How to Solve It: Modern Heuristics

Chapter 9. Constraint-handling techniques
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