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Introduction

In the early 80’s Kirkpatrick, Gelatt, and Vecchi and independently Cerny

introduced the concepts of annealing in combinatorial optimisation.

In condensed matter physics annealing is known as a thermal process for

obtaining low energy states of a solid in a heat bath.

The concept of Simulated Annealing is based on a strong analogy

between the physical annealing process of solids and the problem of

solving large combinatorial optimisation problems.
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Physical annealing

In order to reach a low energy state:

1. The temperature of the heat bath is increased to a maximum value at

which the solid melts.

In this liquid phase the particles of the solid arrange themselves

randomly.

2. The temperature of the heat bath is carefully decreased until the

particles arrange themselves in the ground state of the solid.
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Physical annealing cont’d

The goal of the physical annealing process is to reach the ground state of

the solid where the particles are arranged in a highly structured lattice and

the energy of the system is minimal.

The ground state of the solid is obtained only if the maximum temperature

is sufficiently high and the cooling is done sufficiently slowly.

Otherwise the solid will be frozen into a meta-stable state rather than into

the ground state.
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Analogy

Methods for simulation of the physical annealing process can be directly

applied to solve optimisation problems.

Physical system Optimisation problem

state feasible solution

energy evaluation function value

ground state optimal solution

temperature control parameter T

careful annealing simulated annealing
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Iterated hill-climbing

1. Choose a starting solution istart and initialise best

2. k := 0; i := istart

3. Repeat until k = MAX :

(a) Repeat until local optimum is found:

i. select j as the neighbour of i with best value of evaluation function F(j)

ii. if F(j) is better than F(i) then i := j

else local optimum found

(b) k := k + 1

(c) if j is better than best then best := j

(d) i :=new random solution
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Modification to iterated hill-climbing

Instead of checking all neighbours of a current point i, select just one point

j from the neighbourhood

Accept the new point with some probability depending on the relative merit

of the two points i and j
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Stochastic hill-climbing

Maximisation:

1. Choose a starting solution istart and evaluate it

2. k := 0; i := istart

3. Repeat until k = MAX :

(a) select j as a neighbour of i

(b) i := j with probability 1

1+e
F(i)−F(j)

T

(c) k := k + 1
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Properties of stochastic hill-climbing

For F(i) = 107, F(j) = 120:

if T = 1 the probability of acceptance is close to 1

if T = 1010 the probability of acceptance is 0.5

For T = 10 and F(i) = 107:

if F(j) = 80 the probability of acceptance is 0.06

if F(j) = 100 the probability of acceptance is 0.33

what if F(j) = F(i)?

if F(j) = 150 the probability of acceptance is 0.99
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Basic structure of SA algorithm

1. Choose a starting solution istart

2. Initialize T0,M0

3. k := 0; i := istart

4. Repeat until halting criterion is satisfied:

(a) Repeat Mk times:

i. generate j as a neighbour of i

ii. if F(j)isbetterthanF(i) then i := j

else if e
− |F(i)−F(j)|

Tk > random(0, 1) then i := j

(b) k := k + 1

(c) Calculate Mk

(d) Calculate temperature Tk
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Properties of SA

For maximisation the inequality in step (a)ii is equivalent to

F(j) > F(i) + Tk log(random(0, 1)).

In contrast to hill-climbing, simulated annealing accepts some

deterioration in the quality of solutions. This helps avoiding local

optima.

Initially, at high temperatures, large deteriorations are accepted.

As temperature decreases, only smaller deteriorations are accepted.

As temperature approaches 0, SA behaves as local optimisation.

Simulated annealing is a generalisation of local search.
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Difficulties of SA

Problem specific questions:

What is a solution?

What are the neighbours of a solution?

What is the value of a solution?

How do we determine the initial solution?

Adjusting the control parameters:

How do we initialise Tk and Mk ?

How do we determine cooling (get next value for Tk )?

How do we calculate Mk in each step?

What should be the halting criterion?
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SA for SAT

1. Repeat steps 2.-4. MAX TRIES times:

2. Assign values to X =< x1, . . . , xn > randomly

3. k := 0

4. Repeat until Tk < Tmin
If the formula is satisfied, return X

else

Tk := Tmax × e−kr

compute the increase in the number

of satisfied clauses δ, if xi was flipped

flip xi with probability (1 + e
− δ

Tk )−1

k := k + 1

5. Return “No solution found”
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SA for TSP

The basic SA algorithm can be used.

Differences between implementations:

the methods of generating the initial solution

the definition of a neighbourhood for a given tour

the selection of a neighbour

the methods for decreasing temperature

the halting condition

possible postprocessing

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 15 / 17



SA for NLP

Neighbourhood can be defined using a Gaussian distribution for each

variable:

x = (x1, . . . , xn), li ≤ xi ≤ ui

x ′i ← xi + N(0, σi),

N(0, σi) being and independent random Gaussian number with mean 0

and standard deviation σi =
ui−li

6

For the maximisation of G2,

x
′ is definitely accepted if G2(x′) > G2(x)

otherwise with probability e
G2(x

′)−G2(x)
T

If the probability of acceptance is P, then

G2(x′) = G2(x) + T log P.
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Recommended reading

Z. Michalewicz & D.B. Fogel
How to Solve It: Modern Heuristics

Chapter 5. Escaping Local Optima

Section 5.1 Simulated Annealing
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