Heuristic Optimisation Part 7: Properties of A*

Sándor Zoltán Németh

http://web.mat.bham.ac.uk/S.Z.Nemeth

s.nemeth@bham.ac.uk

University of Birmingham

The properties to be studied

- Completeness
- Admissibility
- Monotonicity
- Informedness

Completeness and optimality

• Greedy search:

minimizes the estimated cost to the goal, h(n)

\Rightarrow neither optimal nor complete, but low search cost

A*: minimizes f(n) = g(n) + h(n)

 \Rightarrow optimal and complete with a restriction on *h*

Properties of h

- If h is a perfect estimator of the distance from the current node to the goal node, A* will never leave the optimal path.
- The better *h* estimates the real distance, the closer A* is to the "direct" path.
- If *h* never overestimates the real distance, A* is guaranteed to find the optimal solution.

• If *h* may overestimate the real distance, the optimal path can be found only if ...

化苯基苯基基苯

Properties of h

- If h is a perfect estimator of the distance from the current node to the goal node, A* will never leave the optimal path.
- The better *h* estimates the real distance, the closer A* is to the "direct" path.
- If h never overestimates the real distance, A* is guaranteed to find the optimal solution.

• If *h* may overestimate the real distance, the optimal path can be found only if ... all paths in the search graph longer than the optimal solution are expanded.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

A heuristic *h* is admissible if it never overestimates the cost to reach the goal.

An admissible heuristic is optimistic: ...

A heuristic *h* is admissible if it never overestimates the cost to reach the goal.

An admissible heuristic is optimistic: ... it "thinks" the cost of solving the problem is less than it actually is.

A heuristic *h* is admissible if it never overestimates the cost to reach the goal.

An admissible heuristic is optimistic: ...

If *h* is admissible, f(n) never overestimates the cost of the best solution through *n*.

A heuristic *h* is admissible if it never overestimates the cost to reach the goal.

An admissible heuristic is optimistic: ...

If *h* is admissible, f(n) never overestimates the cost of the best solution through *n*.

So A* will find the optimal solution.

A heuristic *h* is admissible if it never overestimates the cost to reach the goal.

An admissible heuristic is optimistic: ...

If *h* is admissible, f(n) never overestimates the cost of the best solution through *n*.

Example admissible heuristic: straight-line distance.

A* example

OPEN=[M,GP,V,E] CLOSED=[P,BaS,NHG,BoS,WaS,OC,TCR]

h-values:

Р	BaS	WaS	NHG	BoS	OC
7	5	4	7	5	5
TCR	GP	V	We	Е	М
3	5	5	4	3	0

イロト イポト イヨト イヨト

æ

Observations

• A* expands all nodes with $f(n) < f^*$

→ ∃ → < ∃</p>

Observations

• A* expands all nodes with $f(n) < f^*$

 A* might expand some of the nodes with f(n) = f* before selecting a goal node

Observations

• A* expands all nodes with $f(n) < f^*$

 A* might expand some of the nodes with f(n) = f* before selecting a goal node

• A* expands no nodes with $f(n) > f^*$

If h is admissible and there is a path with finite cost from the start node to a goal node, A^{*} is guaranteed to terminate with a minimal-cost path to the goal.

If h is admissible and there is a path with finite cost from the start node to a goal node, A^{*} is guaranteed to terminate with a minimal-cost path to the goal.

Proof:

Let G an optimal goal state with path cost f^* . Let G' a suboptimal goal state, $g(G') > f^*$. Suppose A* selected G' from the OPEN list.

If h is admissible and there is a path with finite cost from the start node to a goal node, A^{*} is guaranteed to terminate with a minimal-cost path to the goal.

Proof:

Let G an optimal goal state with path cost f^* . Let G' a suboptimal goal state, $g(G') > f^*$. Suppose A* selected G' from the OPEN list.

It can be shown (see Russell & Norvig) that this is not possible.

If h is admissible and there is a path with finite cost from the start node to a goal node, A^{*} is guaranteed to terminate with a minimal-cost path to the goal.

Proof:

Let G an optimal goal state with path cost f^* . Let G' a suboptimal goal state, $g(G') > f^*$. Suppose A* selected G' from the OPEN list.

It can be shown (see Russell & Norvig) that this is not possible.

A^{*} expands the nodes in order of increasing *f*, so it will eventually reach the goal state if the number of nodes with $f(n) < f^*$ is finite.

< ロ > < 同 > < 三 > < 三 > 、

Monotonicity (Consistency)

If along any path in the search tree of A* the *f*-cost never decreases then the heuristic is said to be monotonic.

 $f(A) \le f(B) \iff h(A) \le h(B) + c(A, B)$ (Can you prove this?)

Monotonicity (Consistency)

If along any path in the search tree of A* the *f*-cost never decreases then the heuristic is said to be monotonic.

 $f(A) \le f(B) \iff h(A) \le h(B) + c(A, B)$ (Can you prove this?)

A

Can we transform a nonmonotonic heuristic into a monotonic heuristic?

h(A)

 \Rightarrow *f* is a nonmonotonic heuristic.

 \Rightarrow *f* is a nonmonotonic heuristic.

But any path through *B* passes through its parent *A*, too.

 \Rightarrow *f* is a nonmonotonic heuristic.

But any path through *B* passes through its parent *A*, too.

 $f(B) = \max(f(A), g(B) + h(B))$

 \Rightarrow *f* is a nonmonotonic heuristic.

But any path through *B* passes through its parent *A*, too.

 $f(B) = \max(f(A), g(B) + h(B))$ is never decreasing along any path from the root if *h* is admissible.

 \Rightarrow *f* is a nonmonotonic heuristic.

But any path through *B* passes through its parent *A*, too.

 $f(B) = \max(f(A), g(B) + h(B))$ is never decreasing along any path from the root if *h* is admissible.

This is called the pathmax equation.

A* is optimally efficient for any consistent *h* function:

No other optimal algorithm is guaranteed to expand fewer nodes than A^{*} (except possibly nodes with $f(n) = f^*$)

If a monotonic heuristic h is used, when A^{*} expands a node n, it has already found an optimal path to n.

Important: in this case, the current path to a node will never be better than some previously found path.

Consequences:

→ ∃ → < ∃</p>

If a monotonic heuristic h is used, when A^{*} expands a node n, it has already found an optimal path to n.

Important: in this case, the current path to a node will never be better than some previously found path.

Consequences:

• No modifications will be made after a node is expanded.

If a monotonic heuristic h is used, when A^{*} expands a node n, it has already found an optimal path to n.

Important: in this case, the current path to a node will never be better than some previously found path.

Consequences:

 No modifications will be made after a node is expanded. (step 2.(b)ii. not needed)

If a monotonic heuristic h is used, when A^{*} expands a node n, it has already found an optimal path to n.

Important: in this case, the current path to a node will never be better than some previously found path.

Consequences:

- No modifications will be made after a node is expanded. (step 2.(b)ii. not needed)
- Searching a graph will be the same as searching a tree.

Informedness

If two versions of A^{*}, A_1^* and A_2^* , differ only in $h_1 < h_2$ for all nodes that are not goal nodes then A_2^* is more informed than A_1^* .

Example – the 8-puzzle

Compare A* based on the Manhattan distance and A* based on the number of tiles in wrong position.

Which one is more informed?

If A_2^* is more informed than A_1^* , then at the termination of their searches on any graph having a path from the start node to a goal node, every node expanded by A_2^* is also expanded by A_1^* .

If A_2^* is more informed than A_1^* , then at the termination of their searches on any graph having a path from the start node to a goal node, every node expanded by A_2^* is also expanded by A_1^* .

• A_1^* expands at least as many nodes as A_2^* .

If A_2^* is more informed than A_1^* , then at the termination of their searches on any graph having a path from the start node to a goal node, every node expanded by A_2^* is also expanded by A_1^* .

- A_1^* expands at least as many nodes as A_2^* .
- A more informed algorithm is more efficient.

If A_2^* is more informed than A_1^* , then at the termination of their searches on any graph having a path from the start node to a goal node, every node expanded by A_2^* is also expanded by A_1^* .

- A_1^* expands at least as many nodes as A_2^* .
- A more informed algorithm is more efficient.
- The most efficient heuristic is the perfect estimator!

Recommended reading

N. Nilsson: Artificial Intelligence, A New Synthesis Section 9.2

S. Russell and P. Norvig: Artificial Intelligence, A Modern Approach Section 4.1

E. Rich and K. Knight: Artificial Intelligence Section 3.3