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The properties to be studied

Completeness

Admissibility

Monotonicity

Informedness
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Completeness and optimality

Greedy search:

minimizes the estimated cost to the goal, h(n)

⇒ neither optimal nor complete,

but low search cost

A*:

minimizes f(n) = g(n) + h(n)

⇒ optimal and complete with a restriction on h
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Properties of h

If h is a perfect estimator of the distance from the current node to the
goal node, A* will never leave the optimal path.

The better h estimates the real distance, the closer A* is to the
”direct” path.

If h never overestimates the real distance, A* is guaranteed to find
the optimal solution.

If h may overestimate the real distance, the optimal path can be
found only if ...
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Properties of h

If h is a perfect estimator of the distance from the current node to the
goal node, A* will never leave the optimal path.

The better h estimates the real distance, the closer A* is to the
”direct” path.

If h never overestimates the real distance, A* is guaranteed to find
the optimal solution.

If h may overestimate the real distance, the optimal path can be
found only if ... all paths in the search graph longer than the optimal
solution are expanded.
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Admissibility

A heuristic h is admissible if it never overestimates the cost to reach
the goal.

An admissible heuristic is optimistic: ...
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Admissibility

A heuristic h is admissible if it never overestimates the cost to reach
the goal.

An admissible heuristic is optimistic: ... it ”thinks” the cost of solving
the problem is less than it actually is.
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Admissibility

A heuristic h is admissible if it never overestimates the cost to reach
the goal.

An admissible heuristic is optimistic: ...

If h is admissible, f(n) never overestimates the cost of the best
solution through n.
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Admissibility

A heuristic h is admissible if it never overestimates the cost to reach
the goal.

An admissible heuristic is optimistic: ...

If h is admissible, f(n) never overestimates the cost of the best
solution through n.

So A* will find the optimal solution.
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Admissibility

A heuristic h is admissible if it never overestimates the cost to reach
the goal.

An admissible heuristic is optimistic: ...

If h is admissible, f(n) never overestimates the cost of the best
solution through n.

Example admissible heuristic: straight-line distance.
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A* example
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f(GP)=10

f(V)=12

f(E)=11

f(M)=10

WaS

OPEN=[M,GP,V,E]

CLOSED=[P,BaS,NHG,BoS,WaS,OC,TCR]

4
f(TCR)=9

f(NHG)=9

f(BoS)=9 f(WaS)=9

1

f(OC)=10

f(P)=7

f(BaS)=8

h-values:

P BaS WaS NHG BoS OC

7 5 4 7 5 5

TCR GP V We E M

3 5 5 4 3 0
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Observations

A* expands all nodes with f(n) < f∗

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 7 / 15



Observations

A* expands all nodes with f(n) < f∗

A* might expand some of the nodes with f(n) = f∗ before
selecting a goal node
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Observations

A* expands all nodes with f(n) < f∗

A* might expand some of the nodes with f(n) = f∗ before
selecting a goal node

A* expands no nodes with f(n) > f∗
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Completeness and optimality of A*

If h is admissible and there is a path with finite cost from the start node to
a goal node, A* is guaranteed to terminate with a minimal-cost path to the
goal.
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Completeness and optimality of A*

If h is admissible and there is a path with finite cost from the start node to
a goal node, A* is guaranteed to terminate with a minimal-cost path to the
goal.

Proof:

Let G an optimal goal state with path cost f∗. Let G’ a suboptimal goal
state, g(G′) > f∗. Suppose A* selected G’ from the OPEN list.
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Completeness and optimality of A*

If h is admissible and there is a path with finite cost from the start node to
a goal node, A* is guaranteed to terminate with a minimal-cost path to the
goal.

Proof:

Let G an optimal goal state with path cost f∗. Let G’ a suboptimal goal
state, g(G′) > f∗. Suppose A* selected G’ from the OPEN list.

It can be shown (see Russell & Norvig) that this is not possible.
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Completeness and optimality of A*

If h is admissible and there is a path with finite cost from the start node to
a goal node, A* is guaranteed to terminate with a minimal-cost path to the
goal.

Proof:

Let G an optimal goal state with path cost f∗. Let G’ a suboptimal goal
state, g(G′) > f∗. Suppose A* selected G’ from the OPEN list.

It can be shown (see Russell & Norvig) that this is not possible.

A* expands the nodes in order of increasing f , so it will eventually reach
the goal state if the number of nodes with f(n) < f∗ is finite.
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Monotonicity (Consistency)

If along any path in the search tree of A* the f -cost never decreases
then the heuristic is said to be monotonic.

f(A) ≤ f(B) ⇐⇒ h(A) ≤ h(B) + c(A ,B)

(Can you prove this?)

c(A,B) h(B)

h(A)A

B
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Monotonicity (Consistency)

If along any path in the search tree of A* the f -cost never decreases
then the heuristic is said to be monotonic.

f(A) ≤ f(B) ⇐⇒ h(A) ≤ h(B) + c(A ,B)

(Can you prove this?)

c(A,B) h(B)

h(A)A

B

Can we transform a nonmonotonic heuristic into a monotonic
heuristic?
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Restoring monotonicity

h(B)=2
g(B)=3
f(B)=5 B

A

f(A)=6
g(A)=2
h(A)=4

⇒ f is a nonmonotonic heuristic.
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Restoring monotonicity

h(B)=2
g(B)=3
f(B)=5 B

A

f(A)=6
g(A)=2
h(A)=4

⇒ f is a nonmonotonic heuristic.

But any path through B passes through its parent A , too.
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Restoring monotonicity

h(B)=2
g(B)=3
f(B)=5 B

A

f(A)=6
g(A)=2
h(A)=4

⇒ f is a nonmonotonic heuristic.

But any path through B passes through its parent A , too.

f(B) = max(f(A), g(B) + h(B))
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Restoring monotonicity

h(B)=2
g(B)=3
f(B)=5 B

A

f(A)=6
g(A)=2
h(A)=4

⇒ f is a nonmonotonic heuristic.

But any path through B passes through its parent A , too.

f(B) = max(f(A), g(B) + h(B)) is never decreasing along any path from
the root if h is admissible.
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Restoring monotonicity

h(B)=2
g(B)=3
f(B)=5 B

A

f(A)=6
g(A)=2
h(A)=4

⇒ f is a nonmonotonic heuristic.

But any path through B passes through its parent A , too.

f(B) = max(f(A), g(B) + h(B)) is never decreasing along any path from
the root if h is admissible.

This is called the pathmax equation.
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Efficiency of A*

A* is optimally efficient for any consistent h function:

No other optimal algorithm is guaranteed to expand fewer nodes
than A* (except possibly nodes with f(n) = f∗)
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Monotonicity theorem

If a monotonic heuristic h is used, when A* expands a node n, it has
already found an optimal path to n.

Important: in this case, the current path to a node will never be better than
some previously found path.

Consequences:
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Monotonicity theorem

If a monotonic heuristic h is used, when A* expands a node n, it has
already found an optimal path to n.

Important: in this case, the current path to a node will never be better than
some previously found path.

Consequences:

No modifications will be made after a node is expanded.
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Monotonicity theorem

If a monotonic heuristic h is used, when A* expands a node n, it has
already found an optimal path to n.

Important: in this case, the current path to a node will never be better than
some previously found path.

Consequences:

No modifications will be made after a node is expanded. (step 2.(b)ii.
not needed)
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Monotonicity theorem

If a monotonic heuristic h is used, when A* expands a node n, it has
already found an optimal path to n.

Important: in this case, the current path to a node will never be better than
some previously found path.

Consequences:

No modifications will be made after a node is expanded. (step 2.(b)ii.
not needed)

Searching a graph will be the same as searching a tree.
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Informedness

If two versions of A*, A∗
1 and A∗

2 , differ only in h1 < h2 for all nodes
that are not goal nodes then A∗

2 is more informed than A∗
1 .

Example – the 8-puzzle

Compare A* based on the Manhattan distance and A* based on the
number of tiles in wrong position.

Which one is more informed?
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Informedness theorem

If A∗
2 is more informed than A∗

1 , then at the termination of their
searches on any graph having a path from the start node to a goal
node, every node expanded by A∗

2 is also expanded by A∗
1 .
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Informedness theorem
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1 , then at the termination of their
searches on any graph having a path from the start node to a goal
node, every node expanded by A∗
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1 .

A∗
1 expands at least as many nodes as A∗

2 .
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Informedness theorem
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2 is more informed than A∗

1 , then at the termination of their
searches on any graph having a path from the start node to a goal
node, every node expanded by A∗

2 is also expanded by A∗
1 .

A∗
1 expands at least as many nodes as A∗

2 .

A more informed algorithm is more efficient.

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 14 / 15



Informedness theorem

If A∗
2 is more informed than A∗

1 , then at the termination of their
searches on any graph having a path from the start node to a goal
node, every node expanded by A∗

2 is also expanded by A∗
1 .

A∗
1 expands at least as many nodes as A∗

2 .

A more informed algorithm is more efficient.

The most efficient heuristic is the perfect estimator!
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Recommended reading

N. Nilsson: Artificial Intelligence, A New Synthesis

Section 9.2

S. Russell and P. Norvig: Artificial Intelligence, A Modern Approach

Section 4.1

E. Rich and K. Knight: Artificial Intelligence

Section 3.3
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