
Heuristic Optimisation

Part 3: Classification of algorithms. Exhaustive search

Sándor Zoltán Németh

http://web.mat.bham.ac.uk/S.Z.Nemeth

s.nemeth@bham.ac.uk

University of Birmingham

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 1 / 19



Overview

Classification of classic algorithms

Algorithms on complete solutions

Algorithms on partial solutions

Exhaustive search

Examples: SAT, TSP, NLP

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 2 / 19



Classification of classic algorithms

Classic optimisation methods can be very effective if appropriate to the

task

Algorithms that only evaluate complete solutions

Algorithms that evaluate partially constructed or approximate

solutions

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 3 / 19



Algorithms on complete solutions

All decision variables are specified

SAT: a binary string of length n

TSP: a permutation of n cities

NLP: a vector of n real numbers

If the algorithm is stopped at any time, we do have a solution

Two complete solutions can be compared easily

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 4 / 19



Algorithms on complete solutions cont’d

1. Initialise best solution.

2. Generate a solution x according to the specifics of the algorithm.

3. If x is better than best, replace best by x.

4. Repeat steps 2-3.

Examples:

exhaustive search

local search

hill-climbing

gradient-based optimisation methods

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 5 / 19



Algorithms on partial solutions

Incomplete solution to the original problem

A subset of the original problem’s search space with a particular

property hopefully shared by the real solution

Complete solution to a reduced problem

1. We decompose the original problem into smaller & simpler problems

2. We solve these problems

3. We try to combine the partial solutions into a solution to the original

problem

Examples: greedy search, divide and conquer, A* algorithm, dynamic

programming, (branch and bound)

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 6 / 19



Incomplete solution to the original problem

SAT: all binary strings of length n that start with 11

TSP: all permutations that start with 7 − 5 − 11

NLP: all solutions having x2 = 3.4567

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 7 / 19



Complete solution to a reduced problem

SAT: if the formula is in conjunctive normal form, try the conjuncts

TSP: consider only k < n cities and try to find the shortest route i → j

passing through all k cities

NLP: limit the domain of some variables

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 8 / 19



Problems with partial solutions

A way for organising the subspaces of the search space to assure

effective search has to be devised

Tree?

Depends on representation

A new evaluation function is needed that can assess the quality of partial

solutions

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 9 / 19



Choosing the representation

SAT:

Vectors of real numbers in the range [−1, 1]

xi ≥ 0 ⇒ TRUE

xi < 0 ⇒ FALSE

NLP:

Binary strings of length kn, where each variable xi ∈ [li , ui ] is encoded as

a binary string of length k

(< bk−1 . . . b0 >)2 = (∑k−1
j=0 bj × 2j)10 = x ′

xi = li + x ′ ×
ui−li
2k−1

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 10 / 19



Exhaustive search

Looks at every possible solution in the search space until the global

optimum is found

If the value of the global optimum is not known,

all points in the search space must be checked

Really exhausting

TSP for 50 cities has search space size 1062

But the algorithm is very simple!

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 11 / 19



Exhaustive search cont’d

We have to generate every possible solution to the problem in a

systematic way

Backtracking reduces the amount of work:

If after assigning values to some variables it turns out that there is no

solution that has those values, we do not continue assigning values to the

remaining variables but we go back one step and try a different option

How to actually generate the sequence of all possible solutions depends

on the representation!

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 12 / 19



Enumerating the SAT

We have to generate all binary strings of length n, from < 00 . . . 0 > to

< 11 . . . 1 >

Easy: we just have to generate all the integers from 0 to 2n − 1 and

convert them into the matching binary string

Evaluation function:

1 if the Boolean statement is satisfied

0 otherwise

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 13 / 19



Partitioning the search space for SAT

Into a tree:

3

x =1

x =0
x =1

x =0
x =1

x =0
x =1

x =01 1

2

2

2
2

3

Depth-first search:

1. Visit current node

2. For each child of current node perform depth-first search

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 14 / 19



Enumerating the TSP

How to generate all permutations of 1, 2, . . . , n?

1. Fix 1 in the first position

2. Generate all permutations of numbers 2, . . . n for positions 2, . . . , n

3. Fix 1 in the second position

4. Now list the permutations found in step 2. in positions 1, 3, 4, . . . , n

5. Repeat with 1 fixed in all positions.

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 15 / 19



Enumerating the TSP cont’d

More suitable for the TSP:

Enumerate by successively exchanging adjacent elements

Then the cost of evaluating the next solution is reduced to calculating the

effect of the change on the previous solution

But how can we deal with the situation when not all pairs of cities are

connected?

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 16 / 19



Enumerating the NLP

There is an infinite number of alternatives

We can divide the continuous domain for each variable into a finite number

of intervals

⇒ The search space becomes a set of cells

We can evaluate each cell as one point (a corner or the center)

With the best cell found, the whole procedure can be repeated

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 17 / 19



Problems with enumerating NLP

Fine granularity – a large number of small cells

Impractical

Coarse granularity – fewer large cells

The possibility of missing the best

solution increases

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 18 / 19



Recommended reading

Z. Michalewicz & D.B. Fogel
How to Solve It: Modern Heuristics

Chapter 3. Traditional methods - Part 1, pp. 54-64

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 19 / 19


