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Introduction

Problem⇒ Model ⇒ Solution

For any algorithmic approach:

The representation - the encoding of alternative solutions

The objective - the purpose (may or may not be minimising one

function)

The evaluation function - how good a solution (given the

representation) is
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Representation

SAT problem:

n binary variables⇒ a bit string of length n

Search space has size 2n, each point corresponds to a feasible solution

TSP:

A permutation of natural numbers 1, 2, . . . , n (each number corresponds to

one city)

Search space has size (n− 1)!/2 for symmetric TSP

NLP:

All real numbers in n dimensions

Infinite search space; for approximate representation with precision of six

digits size 107n
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Representation cont’d

The size of the search space is determined by the representation and its

corresponding interpretation

The problem itself does not determine the search space size

Choosing the right representation is of utmost importance!
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Objective

The mathematical statement of the task

SAT: find the bit vector for which the Boolean statement evaluates to TRUE

TSP: minimise the total distance, when visiting each city exactly once and

returning to the starting city

min ∑ dist(x, y)

NLP: minimise or maximise a nonlinear function
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Evaluation function

Generally it is not the same thing as the objective

The evaluation function is a mapping from the space of (feasible) solutions

to a set of numbers (reals). The numeric value indicates quality of solution

TSP: tour← the sum of distances along the route - exact

Sometimes it is sufficient to know whether one solution is better than the

other, without knowing how much better
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How to choose the evaluation function?

The evaluation function is not given with the problem, only the objective is

A solution that meets the objective should also have the best

evaluation

A solution that fails to meet the objective cannot be evaluated to be

better than a solution that meets the objective

The objective may suggest the evaluation function (TSP, NLP) or may

not (SAT)

The feasible region of the search space must be considered
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Defining the optimisation problem

Search problem = optimisation problem

Given a search space S together with its feasible part F ⊆ S , find x ∈ F

such that

eval(x) ≤ eval(y), ∀y ∈ F (minimisation)

x is a global solution
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Reasons for using heuristics

We can avoid combinatorial explosion

We rarely need the optimal solution, good approximations are
usually sufficient

The approximations may not be very good in the worst case,
but in reality worst cases occur very rarely

Trying to understand why a heuristic works/does not work leads
to a better understanding of the problem
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Neighbourhoods

dist : S × S → R

N(x) = {y ∈ S : dist(x, y) < ε}, given ε ≥ 0

NLP: Euclidean distance

dist(x, y) =
√

∑
n
i=1(xi − yi)2

SAT: Hamming distance (number of bit positions with different truth

assignments)
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Neighbourhood as mapping

Alternatively the neighbourhood can be defined as a mapping

m : S → 2S

TSP: 2-swap mapping generates for any potential solution x the set of

potential solutions obtained by swapping two cities in x

SAT: 1-flip mapping (flipping one bit)
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Local optima

A potential solution x ∈ F is a local optimum with respect to

neighbourhood N(x) iff

eval(x) ≤ eval(y), ∀y ∈ N(x)

Local search methods operate on neighbourhoods:

They try to modify the current solution x into

a better one within its neighbourhood N(x)
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Hill climbing
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Hill climbing analogy

Orientation and moving on a surface

Height: the quality of a node (the evaluation function)

Peaks: optimal solutions

Orientation: evaluating neighbouring positions
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Basic hill climbing algorithm

1. Evaluate the initial point x. If the objective is met, return x. Otherwise

set x as the current point.

2. Loop until a solution is found:

(a) Generate all the neighbours of x. Select the best one y.

(b) If y is not better than x return x

else set y as the current point.

For better efficiency, the algorithm can be restarted a predefined number

of times (iterative hill climbing)
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Example of hill climbing
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Example of hill climbing
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Example of hill climbing
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Example of hill climbing
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Example of hill climbing
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Example of hill climbing
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Example of hill climbing
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Example of hill climbing
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Example of hill climbing
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Example of hill climbing
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Properties of hill climbing

Can get stuck in local maxima −→ backtrack

Plateaus (areas of search space where the evaluation function
is flat) are a problem −→ big jumps

There is no information about how far the found local optimum
from the global optimum is

The solution depends on the initial configuration
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Summary

Choosing the right representation is essential for success

The evaluation function must also be carefully chosen

Effective search balances exploitation of the best solutions so far and

exploration of the search space

Hill climbing is an easy local search method that is good at exploitation but

neglects exploration

Random search is good at exploration, but does no exploitation
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Recommended reading

Z. Michalewicz & D.B. Fogel
How to Solve It: Modern Heuristics

Chapter 2. Basic concepts

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 20 / 20


