
Heuristic Optimisation
Revision Lecture

Sándor Zoltán Németh

http://web.mat.bham.ac.uk/S.Z.Nemeth

s.nemeth@bham.ac.uk

University of Birmingham

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 1 / 28

Topics

1. Basic difficulties in problem solving. The need for heuristic
optimization

2. Basic concepts: representation, optima, neighbourhood
3. Exhaustive search and local search
4. Greedy algorithm
5. A* search
6. Simulated annealing
7. Tabu search
8. Evolutionary algorithms

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 2 / 28

What this course was about

It was about traditional and modern heuristic optimization
methods for problem solving, but not about telling what the
ultimate method to use is

Some problems are difficult to solve because:

The size of the search space is huge
The problem is very complicated, the solutions to a simplified
model are useless
The evaluation function varies with time, so a set of solutions is
required
There are heavy constraints, it is hard to even construct a
feasible solution

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 3 / 28

Finding the model

Problem ⇒ Model ⇒ Solution

Simplify the model and use a traditional optimizer:

Problem ⇒ Modelapprox ⇒ Solutionprec(Modelapprox)

Keep the exact model and use a non-traditional optimizer to find a
near-optimal solution:

Problem ⇒ Modelprec ⇒ Solutionapprox(Modelprec)

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 4 / 28



Heuristic optimization

The original Greek word means “I found it”

We use some information available about the problem

to reduce the region(s) of the search space
to be checked

or to speed up the search

at the cost of not guaranteeing the optimum

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 5 / 28

Ingredients

Problem ⇒ Model ⇒ Solution

For any algorithmic approach:

The representation - the encoding of alternative solutions
The objective - the purpose (may or may not be minimising
one function)
The evaluation function - how good a solution (given the
representation) is

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 6 / 28

Evaluation function

Generally it is not the same thing as the objective

The evaluation function is a mapping from the space of (feasible)
solutions to a set of numbers (reals). The numeric value indicates quality
of solution

A solution that meets the objective should also have the best evaluation

A solution that fails to meet the objective cannot be evaluated to be
better than a solution that meets the objective

Sometimes it is sufficient to know whether one solution is better than the
other, without knowing how much better

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 7 / 28

Defining the optimisation problem

Search problem = optimisation problem

Given a search space S together with its feasible part F ⊆ S, find
x ∈ F such that

eval(x) ≤ eval(y), ∀y ∈ F (minimisation)

x is a global solution

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 8 / 28



Reasons for using heuristics

We can avoid combinatorial explosion

We rarely need the optimal solution, good approximations are
usually sufficient

The approximations may not be very good in the worst case,
but in reality worst cases occur very rarely

Trying to understand why a heuristic works/does not work
leads to a better understanding of the problem

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 9 / 28

Classification of optimisation algorithms
Algorithms that only evaluate complete solutions:

exhaustive search
local search
hill-climbing
simulated annealing
tabu search

Algorithms that evaluate partially constructed or
approximate solutions:

greedy search
divide & conquer
A*

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 10 / 28

Algorithms on complete solutions

1. Initialise best solution.
2. Generate a solution x according to the specifics of the algorithm.
3. If x is better than best, replace best by x.
4. Repeat steps 2.-3.

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 11 / 28

Algorithms on partial solutions

Incomplete solution to the original problem
A subset of the original problem’s search space with a
particular property hopefully shared by the real solution

Complete solution to a reduced problem
1. We decompose the original problem into smaller & simpler

problems
2. We solve these problems
3. We try to combine the partial solutions into a solution to the

original problem

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 12 / 28



Exhaustive search
Looks at every possible solution in the search space until the global
optimum is found

If the value of the global optimum is not known,
all points in the search space must be checked

The algorithm is very simple!

We have to generate every possible solution to the problem in a
systematic way

How to actually generate the sequence of all possible solutions
depends on the representation!

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 13 / 28

Local search

1. Pick a solution from the search space. Define this as the current solution.

2. Apply a transformation to the current solution to obtain a new solution.

3. If the new solution is better than the current one, replace current solution by
the new solution.

4. Repeat steps 2.-3. until no improvement is possible.

Small neighbourhood - quick, but we might get stuck in local optima

Large neighbourhood -less chance for getting stuck, but takes longer

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 14 / 28

Greedy algorithm

A very simple algorithm that constructs the solution step by step

At each step the value for one decision variable is assigned by
making the best available decision

A heuristic is needed for making the decision at each step: what is
the best now?

The best ’profit’ is chosen at every step - the algorithm is greedy!

We cannot expect the greedy algorithm to obtain the overall
optimum

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 15 / 28

Divide and conquer

Divide&conquer(P)
1. Split problem P into subproblems P1,P2, . . . ,Pk .

2. For i taking all the values from 1 to k

get the solution Si to problem Pi

3. Combine S1,S2, . . . ,Sk into the solution S for problem P.

4. Return the solution S.

The algorithm is cost effective only if its cost is less than the cost
of solving the original problem

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 16 / 28



A*

f(n) = g(n) + h(n)

g(n) is a measure of the cost of getting from the initial state to the
current state n.

h(n) is an estimate of the cost of getting from the current state n to
the goal state.

The better h estimates the real distance, the closer A* is to the
”direct” path

If h never overestimates the real distance, A* is guaranteed to find
the optimal solution

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 17 / 28

A* example

Paddington

Notting Hill

Gate

Victoria Westminster Embankment

Oxford

CircusGreen 

Park

Bond

Street

Baker Street Warren Street

Tottenham

Court Road

Monument

2

3

5

4

1

1

2

1

1

1

2

2

1

1

2

3

1
5

3

4

1

2

5

3

1
2

2

1 3 1V

NHG

P

BaS

OC

TCR

M

EGP

BoS

f(GP)=10

f(V)=12

f(E)=11

f(M)=10

WaS

4

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 18 / 28

Simulated annealing: analogy

Methods for simulation of the physical annealing process can be
directly applied to solve optimisation problems.

Physical system Optimisation problem

state feasible solution
energy evaluation function value
ground state optimal solution
temperature control parameter T
careful annealing simulated annealing

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 19 / 28

Properties of SA

In contrast to hill-climbing, simulated annealing accepts some
deterioration in the quality of solutions. This helps avoiding
local optima.

Initially, at high temperatures, large deteriorations are
accepted.
As temperature decreases, only smaller deteriorations are
accepted.
As temperature approaches 0, SA behaves as local
optimisation.

Simulated annealing is a generalisation of local search.

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 20 / 28



Tabu search

Accepts non-improving solutions deterministically in order to
escape from local optima (where all the neighbouring solutions
are non-improving) by guiding a hill-climbing algorithm

Uses memory in two ways:

to prevent the search from revisiting
previously visited solutions

to explore the unvisited areas of the
solution space

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 21 / 28

Tabu search extensions

Aspiration criterion:

In specific circumstances an ”outstanding” tabu can be accepted as
the next point to be visited

The memory discussed so far is recency-based

Frequency-based memory can be used to diversify the search:

H(i) = j

”during the last h iterations of the algorithm variable i was flipped j
times”

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 22 / 28

Tabu search vs simulated annealing

Both were designed to escape local optima
Both work on complete solutions

Tabu search only selects worse moves if it is stuck, whereas
simulated annealing can do that all the time

Simulated annealing is stochastic
Tabu search is deterministic

The parameters must be carefully chosen for both

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 23 / 28

Evolutionary algorithms

Nature Evolutionary algorithms
Individual Solution to a problem
Population Collection of solutions
Fitness Quality of a solution
Chromosome Representation of a solution
Gene Part of representation of a solution
Crossover Binary search operator
Mutation Unary search operator
Reproduction Reuse of solutions
Selection Keeping good subsolutions

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 24 / 28



Genetic Algorithm

of the population

Evaluate each member 

Create initial random 

population

yes

no

Designate solutioncriterion

Termination 

by reproduction, 

Create new population

crossover, mutation

satisfied?

Previously evolved
good parts of solu-
tions (schemata) can
be transferred to sub-
sequent generations
through crossover.

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 25 / 28

Genetic Algorithms for TSP
Adjacency representation: City j is in position i ⇔ the tour
contains (i, j)

I Alternating edges crossover
I Alternating random length subtours
I Heuristic crossover

Ordinal representation: The ith element of the list is city j
from the remaining cities, unvisited so far

I One-point-crossover
Path representation

I With two cut points
F Partially-mapped crossover (PMX)
F Order crossover (OX)

I Cycle crossover (CX): Preserves the absolute position of
elements in parent sequence

Edge recombination based on the precedence binary
matrix M (mij = 1↔ city i before city j): intersection and
union operators

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 26 / 28

Constraints in GAs

In the simplest case, constraints occur as well-defined intervals for
design parameters.

Methods for handling constraints in GAs:

Reject individuals that violate constraints
(infeasible individuals).

Repair infeasible individuals.

Penalize infeasible individuals.

Incorporate constraints in the representation.

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 27 / 28

Recommended reading

Z. Michalewicz & D.B. Fogel
How to Solve It: Modern Heuristics

Chapters 1-7, 9

S. Russell and P. Norvig: Artificial Intelligence, A Modern Approach

Section 4.1

S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University of Birmingham 28 / 28


