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Chapter 1

Field extensions

1.1 Fields, subfields, extensions

Definition 1.1.1 A field is a commutative ring L such that every a ∈ L∗ =

L \ {0} is a unit, that is, it has a multiplicative inverse a−1.

We will also write 1
a

for a−1.

Example 1.1.2 1. R, Q and C are fields with respect to the operations

of addition and multiplication.

2. Z is not a field, as the only nonzero integers that have multiplicative

inverse in Z are ±1. However, the quotient ring Z/pZ is a field, where

p is a prime. It is often denoted by GF(p) or, in this course, by Fp. Fp

is a finite field, as it has a finite number of elements, p.

3. Let K be any field, and form the polynomial ring in n indetermi-

nates K[x1, x2, . . . , xn]. Then the field of fractions of this polyno-

mial ring is called the rational function field in x1, x2, . . . , xn. Then

K(x1, x2, . . . , xn) = {f
g
| f, g ∈ K[x1, x2, . . . , xn], g 6= 0}.
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Definition 1.1.3 Let L be a field. A subfield is a subring K which is a field

with respect to the operations inherited from L.

To see that K ⊆ L is a subfield of L, it suffices to check the following:

1. 0, 1 ∈ K;

2. if k1, k2 ∈ K then k1 − k2, k1k2 ∈ K;

3. if k ∈ K \ {0} then k−1 ∈ K.

In Galois theory, we are often concerned with constructing fields contain-
ing a given field K. It is because of this, that we want an opposite notion to
that of a subfield. If K is a subfield of L then we say that L is a field exten-
sion (or just an extension) of K. We may also refer to the pair K ⊆ L as to
a field extension. One more notation for such a pair is L/K (pronounced “L
over K”). This is not to be mixed with the notation for the factor rings.

Example 1.1.4 1. C is an extension of R and Q, and R is an extension

of Q. We can express all of these at once by writing down a tower of

extensions Q ⊆ R ⊆ C.

2. Let M = {a + b
√

2 | a, b ∈ Q}. Then M is a subfield of R containing

Q, hence it is a field extension of Q (and R is a field extension of M).

Indeed, M clearly contains Q. So we just need to see that M is a

subfield. Manifestly, M is closed under subtraction and also it is closed

under multiplication (indeed, multiply two arbitrary elements ofM and

then expand the product using (
√

2)2 = 2; the results will again be of

the form a+b
√

2 for suitable a, b ∈ Q). This means that M is a subring

of R. Since R is commutative, so is M . Finally, if u = a + b
√

2 ∈ M

and u 6= 0 then u−1 (as defined in R) is equal to 1
a+b

√
2

= a−b
√

2
a2−2b2

=
a

a2−2b2
+ −b

a2−2b2

√
2 ∈ M . (Here we use that a2 − 2b2 6= 0, since

√
2 is

irrational.) Thus, M is a commutative subring, in which every nonzero

element is a unit, that is, M is a field.
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3. To see that L = {a+b21/3 +c22/3 | a, b, c ∈ Q} is a subfield of R, and an

extension of Q, we first show (similarly to the above) that L is a subring

of R. For the final statement, that every nonzero element u ∈ L is a

unit, we have to use a more elaborate proof, involving linear algebra.

Consider the map θ : x 7→ ux from L to L. This map is Q-linear, since

for a, b ∈ Q and v, w ∈ L we have

θ(av + bw) = u(av + bw)

= a(uv) + b(uw)

= aθ(v) + bθ(w).

The map θ is also injective, since if θ(v) = 0, we have uv = 0 with u

non-zero, and so v = 0, giving a trivial kernel for θ.

The rank–nullity formula says that if φ : U → V is linear and dimU

is finite, then the rank of φ (dimension of imφ) plus the nullity of

φ (dimension of ker θ) is equal to dimU . In our example, L is finite

dimensional, of dimension (at most) three over Q. Also, the nullity of

θ is zero, and so im θ is a subspace of L of dimension equal to dimL.

Thus, im θ = L, that is, θ is surjective. In particular, there exists an

element v ∈ L such that θ(v) = 1; but then uv = 1, and v is the inverse

of u.

1.2 Degree of extension, finite extensions

Linear algebra plays an important role in the Galois Theory. Suppose K ⊆ L
is a field extension. We can view L as a vector space over K as follows:
The addition in the vector space L is the usual addition in L, while the
scalar multiplication (scalars are elements of K) is the restriction of the
usual multiplication from L to the set of pairs (a, v), where a ∈ K (a scalar)
and v ∈ L (a vector).
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Definition 1.2.1 Let L be a field extension of K. If dimK L is finite we

say that L is a finite extension of K, or that L over K is a finite extension.

Then the degree of the extension, written [L : K] is the dimension dimK L.

If L is infinite dimensional over K then we write [L : K] = ∞.

Example 1.2.2 1. For any field K, we have [K : K] = 1. Reversely, if

[L : K] = 1 then L = K.

2. [C : R] = 2; a basis for this vector space is {1, i}.

3. Let M be as in Example 1.1.4(2). Then [M : Q] = 2, and as a basis

for M over Q, one may choose {1,
√

2}.

4. Let L be as in Example 1.1.4(3). Then [L : Q] = 3; a basis for this

vector space is {1, 21/3, 22/3}.

5. We know that π is transcendental, that is, it is not a root of any

nonzero polynomial from Q[x]. This implies that all powers of π,

{1, π, π2, π3, . . . }, are linearly independent over Q. Thus, [R : Q] = ∞
(and also [C : Q] = ∞).

The degree of the field extension provides a measure of how “big” the
extension is. Suppose we are given a tower of finite extensions. The following
important result tells us how the degrees combine.

Theorem 1.2.3 [Tower Law for Finite Field Extensions] Let L be a finite

extension of K, and M be a finite extension of L. Then

[M : K] = [M : L][L : K].

In particular, M is a finite extension of K.

Proof: Let {e1, e2, . . . , en} be a basis of M over L and {f1, f2, . . . , fm} be a
basis of L over K. Since [M : L] = n and [L : K] = m, in order to show that
[M : K] = [M : L][L : K] = mn, it suffices to establish that

T = {eifj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
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is a basis for M over K. Let u be an element of M . Write u =
∑n

i=1 aiei,
with ai ∈ L. Then each ai can be expressed in the form

ai =
m∑

j=1

bijfj,

with bij ∈ K. We can substitute this expression for ai into our expression
for u to get

u =
n∑

i=1

m∑
j=1

bijfjei =
∑
i,j

bijeifj.

Thus, T spans M as a vector space over K.
Now we prove that the set T is linearly independent over K. Suppose

that ∑
i,j

cijeifj = 0,

with each cij ∈ K. For each i, write

wi =
m∑

j=1

cijfj,

and notice that each wi ∈ L. Then

n∑
i=1

wiei =
∑
i,j

cijeifj = 0,

and so
∑n

i=1wiei = 0. Since {e1, e2, . . . , en} is a basis for M over L, wi = 0
for all i, yielding

∑m
j=1 cijfj = 0 for all i. So, since {f1, f2, . . . , fm} is a basis

for L over K, we conclude that each cij = 0, as required.

1.3 Adding elements to a field

Suppose K ⊆ L is a field extension and suppose A be a subset of L. In this
section we construct an intermediate field M = K(A) (“intermediate” means
that K ⊆M ⊆ L), obtained by “adding” the elements of A to K.

Lemma 1.3.1 Let L be a field and {Fλ}λ∈Λ be a family of subfields. Then⋂
λ Fλ is also a subfield.
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Proof: Let F =
⋂

λ Fλ. We have that 0, 1 ∈ Fλ for all λ, and so 0, 1 ∈ F .
Let k1, k2 ∈ F with k2 6= 0. Then k1 and k2 are in each Fλ and so k1−k2 ∈ Fλ

and k1k
−1
2 ∈ Fλ for each λ, and so they are both elements of F . Hence F is

a subfield.

Theorem 1.3.2 Let L be an extension of K, and A ⊆ L be a subset. Among

all subfields of L containing K and A, there is a unique minimal one, denoted

K(A). The minimality of K(A) means that if M ⊆ L is a subfield containing

K ∪ A then K(A) ≤M .

Proof: Consider the family {Fλ}λ∈Λ of all subfields of L containing K ∪ A.
Since K ∪ A ⊆ L, we have that L itself is in this family, and so this family
is non-empty. Let F =

⋂
λ Fλ. By Lemma 1.3.1, F is a subfield of L. Since

K ∪ A ⊆ Fλ for all λ, K ∪ A ⊆ F , that is, F belongs to the family {Fλ}.
Finally, suppose K ∪A ⊆M , where M is a subfield of L. Then M = Fλ for
some λ, and so it contains F .

Definition 1.3.3 The subfield K(A) is called the subfield generated by A

over K. If A = {a1, a2, . . . , an} then we simply write K(a1, a2, . . . , an) in

place of K({a1, a2, . . . , an}).

Example 1.3.4 1. Since C is the only subfield of itself containing R and

i, we have by definition that C = R(i). To determine Q(i), observe

that every subfield containing Q and i also contains all elements of

M = {a + bi | a, b ∈ Q}. So it suffices to see that this subset, M , is

in fact a subfield. First of all, M is a subring, since it is closed with

respect to subtraction and multiplication. Thus, we just need to see

that for every u ∈M , the inverse u−1 (as found in C) is also contained

in M . Notice that (a + bi)−1 = 1
a+bi

= a−bi
a2+b2

= a
a2+b2

+ −b
a2+b2

i ∈ M .

Hence M is a subfield, smallest among the subfields containing Q and

i. Thus, Q(i) = M = {a + bi | a, b ∈ Q}. The field Q(i) has a special

name, it is called the field of Gaussian numbers.
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2. The field M = {a+ b
√

2} from Example 1.1.4 (ii) is in fact Q(
√

2).

3. Similarly, the field L = {a+ b2
1
3 + c2

2
3 | a, b, c ∈ Q} from Example 1.1.4

(iii) is simply Q(2
1
3 ).

4. One can show that Q(
√

2, i) = {a+ b
√

2 + ci+ di
√

2 | a, b, c, d ∈ Q}.

We will now present a number of simple, but important observations
concerning generation of fields.

Proposition 1.3.5 Suppose L is an extension of K and A and B are two

subsets of L. If B ⊆ K(A) then K(B) is a subfield of K(A).

Proof: Since K(A) contains K and, by condition, contains B, it follows from
the definition of K(B) that K(B) ⊆ K(A).

Corollary 1.3.6 Suppose L is an extension of K and A and B are two

subsets of L. If B ⊆ K(A) and A ⊆ K(B) then K(A) = K(B).

This shows that the same extension can be generated by many different
sets of elements.

Example 1.3.7 1. Since
√

2i is contained in Q(
√

2, i), we conclude that

Q(
√

2i) ⊆ Q(
√

2, i). It can be shown that neither
√

2, nor i is contained

in Q(
√

2i), so the inclusion is strict.

2. Clearly, 1 + i ∈ Q(i), but also i = (1 + i) − 1 ∈ Q(1 + i). This means

that Q(i) = Q(1 + i). In fact, Q(i) = Q(a + bi) for all a, b ∈ Q, with

b 6= 0.

3. Here is a more complex example: Let A = {± 4
√

2,± 4
√

2i} be the set

consisting of the four complex roots (zeros) of the polynomial x4 − 2.

Let L = Q(A) (as a subfield of C). Let B = { 4
√

2, 4
√

2i}. Then B

contains only two of the roots, but L = Q(A) = Q(B). Indeed, B ⊆ A

and so Q(B) ⊆ Q(A). On the other hand, − 4
√

2 ∈ Q(B), since 4
√

2 ∈ B,
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and similarly, − 4
√

2i ∈ Q(B), since 4
√

2i ∈ B. Thus, A ⊆ Q(B), and so

Q(A) = Q(B) by Corollary 1.3.6. Thus, we only need two of the four

roots to generate L.

Furtheremore, let C = { 4
√

2, i}. Clearly, B ⊆ Q(C), since 4
√

2 ∈ C,

while 4
√

2i is the product of 4
√

2 and i. Reversely, since 4
√

2 ∈ B and

i =
4√2i
4√2

, we also have C ⊆ Q(B). Thus, we can also write L = Q(C).

In particular, L contains Q(i), the Gaussian numbers.

The final observation demonstrates then one does not need to add all
generators at once, but rather can increase the field in steps.

Proposition 1.3.8 Suppose L = K(A), where A = A1 ∪ A2. Then M =

K(A1) is a subfield of L, and furthermore, L = M(A2).

Proof: Since A1 ⊆ A, Proposition 1.3.5 implies thatM ⊆ L. Since L contains
M and A2, we have M(A2) ⊆ L. On the other hand, M(A2) contains A2, and
also M(A2) contains M , which contains K and A1. Hence, M(A2) contains
K and A = A1 ∪ A2, and hence M(A2) contains L = K(A).

Example 1.3.9 The extension Q(
√

2, i) of Q can be viewed as the extension

Q(i)(
√

2), that is, it is generated by
√

2 over the Gaussian numbers. Another

way to look at it is that it is generated by i over the (fully real) subfield

Q(
√

2).
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Chapter 2

Polynomials, evaluation,

minimal polynomial

2.1 Ring of polynomials

Let K be a field. A polynomial in the indeterminate x over K of degree n ≥ 0
is a formal expression anx

n + an−1x
n−1 + · · · + a1x + a0, where all ai ∈ K,

and an 6= 0. The zero polynomial is a0 = 0, and its degree is defined to be
−∞. The degree of a polynomial f is denoted deg (f). The polynomials of
degree zero and the zero polynomial are called the constant polynomials. In
general, the ais are called the coefficients of the polynomial and, if the degree
n is greater than or equal to zero, then an is called the leading coefficient and
anx

n is called the leading term of the polynomial. The zero polynomial has
no leading coefficient. If the leading coefficient of a polynomial is equal to
one (that is, 1K) then the polynomial is called monic.

Polynomials in x form a commutative ring with respect to the usual addi-
tion and multiplication. This ring is denoted K[x]. We identify every a ∈ K
with the corresponding constant polynomial. Under this identification, K is
a subring of K[x]. Similarly, for a field extension K ⊆ L, we can view K[x]
as a subring of L[x]. That is, every polynomial over K is at the same time a
polynomial over L.

In the remainder of this section we review without proofs some properties
of the ring of polynomials K[x].
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We first remark that the degree function on polynomials satisfies the
following rules:

deg (f + g) ≤ max(deg (f) , deg (g)),

deg (fg) = deg (f) + deg (g) .

The second of these rules implies that K[x] is an integral domain, i.e., a
commutative ring with one, that has no zero divisors. The latter condition
means that if fg = 0, for f, g ∈ K[x], then f = 0, or g = 0.

We next review the Euclidean Algorithm for polynomials.

Proposition 2.1.1 (Euclidean Algorithm) If f, g ∈ K[X] with g 6= 0,

then there exist unique q, r ∈ K[X] with deg (r) < deg (g), such that f =

qg + r.

Recall that an ideal I of a commutative ring R (such as, say, the ring of
polynomials, K[x]) is an additive subgroup of R, such that for all elements
r ∈ R and i ∈ I we have that ri is again in I.

An application of the Euclidean Algorithm yields the following important
result.

Theorem 2.1.2 If K is a field then K[x] is a principal ideal domain, that

is, for every ideal I of K[x] there is a polynomial p ∈ K[x] such that I is

expressible as

I = (p) = pK[x] = {pf | f ∈ K[x]}.

We remark that if I 6= {0} then the polynomial p is always a nonzero
polynomial of the smallest possible degree in I. All such polynomials in I
differ only by a constant factor, and exactly one of them is monic.

If I is an ideal of a (commutative) ring R then the factor ring R/I has
as elements all cosets a + I = {a + i | i ∈ I} for a ∈ R. The operations on
R/I are defined by: (a+ I) + (b+ I) = a+ b+ I and (a+ I)(b+ I) = ab+ I.

Recall that an ideal I of R is maximal if the only ideal of R properly
containing I is R itself.
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Proposition 2.1.3 Suppose R is a commutative ring with one and I is an

ideal of R. Then R/I is a field if and only if I is a maximal ideal.

Since we are going to apply this theorem with R = K[x], we need to know
which ideals of K[x] are maximal. Recall that a nonconstant polynomial
f ∈ K[x] is irreducible if, whenever f = gh for g, h ∈ K[x], we have that
g is constant (and hence deg (h) = deg (f), or h is constant (and hence
deg (g) = deg (f)).

Proposition 2.1.4 An ideal (p) of F [x] is maximal if and only if p is an

irreducible polynomial.

2.2 Roots (zeros) of polynomials

Consider a field extension K ⊆ L and suppose f =
∑n

i=0 aix
i ∈ K[x]. For

u ∈ L, we write f(u) for the value of the polynomial f at x = u, that is, the
element of L given by

f(u) =
n∑

i=0

aiu
i.

An element u ∈ L is a root (or a zero) of f if and only if f(u) = 0.

Proposition 2.2.1 For a field extension K ⊆ L, if f ∈ K[x] has a root

u ∈ L then f = (x − u)q for a unique q ∈ L[x]. Furthermore, u ∈ K if and

only q ∈ K[x].

Proof: By the Euclidean Algorithm, there exist unique q, r ∈ L[x] such that
deg (r) < 1 = deg (x− u) and f = q(x − u) + r. Since deg (r) < 1, the
polynomial r is a constant polynomial. Evaluating both sides at x = u yields

0 = f(u) = q(u)(u− u) + r.

Hence r = 0. If u ∈ K then the above applies to L = K, which means that
the unique q (and r = 0) are in fact in K[x]. Similarly, if q ∈ K[x] then q′

and r′, such that deg (r′) < deg (q) and f = q′q+ r′, are unique regardless of
whether we apply the Euclidean Algorithm to K[x], or to L[x]. This means
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that q′ and r′ lie, in fact, in K[x]. Now, since f = (x − u)q, we have that
r′ = 0 and q′ = x− u. Thus, x− u ∈ K[x], and hence u ∈ K.

Polynomials of degree one are called linear polynomials, and hence factors
x− u in a polynomial f will be called linear factors of f . Proposition 2.2.1
tells us that a polynomial f ∈ K[x] has linear factors in L[x] if and only if f
has a root in L.

Corollary 2.2.2 Suppose F ⊆ L is a field extension, and let u1, u2, . . . , uk

be all roots of f ∈ K[x] in L. Then

f = (x− u1)
s1 · · · (x− uk)

skg,

where all si ≥ 1, g ∈ L[x] and g has no root in L.

In particular, f has at most deg (f) roots in L.

Proof: Decompose f in L[x] as a product (x − v1)
s1 · · · (x − vm)smg with

as many linear factors as possible (as big s1 + · · · + sm as possible). Here
all vi are distinct and si ≥ 1. Since s1 + · · · + sm is maximal possible, g
cannot have a linear factor in L[x], which means, by Proposition 2.2.1, that
g has no root in L. Clearly, v1, . . . , vm are roots of f and so every vi lies
in {u1, . . . , uk}. Assuming that some ui does not belong to {v1, . . . , vm},
evaluate f at x = ui. This gives 0 = f(ui) = (ui − v1)

s1 · (ui − vm)smg(ui),
yielding g(ui) = 0, since none of the factors ui − vj is zero. However, g has
no root in L, a contradiction. Thus, k = m, and up to reordering, ui = vi

for all i.
The last claim follows, since k ≤ s1 + · · ·+ sk ≤ deg (f).

Roots are useful when we need to verify irreducibility of a polynomial of
a low degree. The proof of the following result is left to the reader as an
exercise.

Proposition 2.2.3 Suppose f ∈ K[x] and deg (f) ≤ 3 then f is irreducible

in K[x] if and only if f has no root in K.

Example 2.2.4 1. The roots of f = x2 + 1 in C are ±i. Neither of

the two roots is in Q, hence f is irreducible over Q by Proposition

2.2.3. Similarly, f is irreducible over Q(
√

2) and Q(2
1
3 ). However, Q(i)
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(and an even larger field Q(
√

2, i)) contains the roots of f and so f

is not irreducible over Q(i) (and Q(
√

2, i)). In fact, over these fields

f = x2 + 1 = (x− i)(x+ i) can be written as a product.

2. The polynomial g = x3 − 5x2 + 2x + 2 has root 1. Hence it is not

irreducible even over Q. Since 1 lies in every field, g is always reducible.

In fact, x3 − 5x2 + 2x+ 2 = (x− 1)(x2 − 4x− 2).

3. When the degree of the polynomial is greater than three, the conclusion

of Proposition 2.2.3 becomes wrong. For example, x4 − 4 has no roots

in Q, but it is not irreducible. Indeed, x4 − 4 = (x2 − 2)(x2 + 2).

4. If we interpret f = x2 + 1 as a polynomial over Fp, p a prime, is this

polynomial irreducible or not? It depends on p. For example, over F2

the polynomial f is equal to (x − 1)2 (1 is a double root), while over

F3 f again has no roots, and hence it is again irreducible.

5. Similarly, irreducibility of f = x2+x+1 over Fp depends on p. However,

this time f has no roots in F2 and hence it is irreducible over this field,

while over F3 it is reducible, since 1 is a root. In fact, x2 + x + 1 =

x2 − 2x− 1 = (x− 1)2 in F3[x].

2.3 Evaluation map, minimal polynomial

Definition 2.3.1 Let again K ⊆ L be a field extension and u ∈ L. The

function εu : K[x] −→ L defined by f 7→ f(u) is called the evaluation map

at u ∈ L.

Proposition 2.3.2 The evaluation mapping εu is a ring homomorphism.

Proof: Indeed, εu(f + g) = (f + g)(u) = f(u) + f(u) = εu(f) + εu(g) and
similarly for the product.
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Since εu is a homomorphism, its kernel, ker εu = {f ∈ K[x] | εu(f) = 0},
is an ideal of K[x]. Set I = Iu = ker εu. Since εu(f) = 0, the ideal I consists
of all polynomials from f ∈ K[x], such that f(u) = 0.

We now recall from Section 2.1 that K[x] is a principal ideal domain
(PID). Therefore, I is a principal ideal, namely, either I = {0} or I = (f),
where f ∈ I is a nonzero polynomial of the smallest possible degree. Since
this f is only defined up to a constant factor, we prefer to make it unique by
requiring that f be monic.

This discussion show that there are two completely different possibilities:

Definition 2.3.3 Either Iu = {0}, which means that there exists no polyno-

mial in K[x], for which u is a root, or such polynomials exist and so Iu 6= {0}.
In the first case, u is called transcendental over K; in the second case u is

algebraic over K.

If u is algebraic then there exists a unique monic polynomial p ∈ K[x]
(in fact, p ∈ Iu), such that Iu = (p). This polynomial p is called the minimal
polynomial of u over K. Its definition can be restated as follows:

Definition 2.3.4 The minimal polynomial of u over K is the monic poly-

nomial p ∈ K[x] of the smallest possible degree, such that u is a root of

f .

We will use a special notation for the minimal polynomial, minu,K . In
order to work effectively with the minimal polynomial, we need to know its
properties.

Proposition 2.3.5 Suppose K ⊆ L is a field extension and u ∈ L is alge-

braic over K. Set p = minu,K.

1. If u ∈ K then p = x− u; if u 6∈ K then deg (p) ≥ 2.

2. p is irreducible over K.

3. If f ∈ K[x] and f(u) = 0 then p divides f .
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Proof: We start with claim 2. Suppose p = gh for some g, h ∈ K[x]. Since
p 6= 0, both g and h are nonzero. Since p(u) = 0, we have (gh)(u) =
g(u)h(u) = 0 and hence g(u) = 0 or h(u) = 0. Without loss of generality we
may assume that g(u) = 0, that is, g ∈ Iu. Since p has the smallest degree
among the nonzero polynomials from Iu, we conclude that deg (g) ≥ deg (p).
This means that deg (g) = deg (p) and deg (h) = 0, that is, h is a constant
polynomial. This proves that p is irreducible.

For claim 3, suppose g ∈ K[x] and g(u) = 0. By the Euclidean Algo-
rithm, there exist q, r ∈ K[x] with deg (r) < deg (p), such that g = qp + r.
Evaluating at x = u gives 0 = q(u)0 + r(u), that is, r(u) = 0 and hence
r ∈ Iu. Since deg (r) < deg (p) and since p has the minimal degree among
all nonzero elements of Iu, we conclude that r = 0. Thus, g = qp, that is, p
divides g.

Finally, if u ∈ K then x− u ∈ K[x]. Clearly, u is a root of x− u, hence
x − u ∈ Iu. Since no nonzero polynomial in Iu can have degree less than
1 = deg (x− u), we have p = x− u. If u 6∈ K, then u cannot be a root of a
linear polynomial from K[x]. Hence, deg (p) ≥ 2.

Let us now see some examples.

Example 2.3.6 1. First of all, π is transcendental. The powers of π are

linearly independent over Q. The minimal polynomial minπ,Q is not

defined.

2. Since i is a root of x2 + 1, which is a monic of degree two, we see i is

algebraic over Q and that mini,Q = x2 + 1. Indeed, if this polynomial

were not the minimal polynomial, then the minimal polynomial would

have degree less then two (that is, it would have to have degree one).

However, this is only possible if i ∈ Q, which is not the case. Similarly,

x2 + 1 is the minimal polynomial of i over Q(
√

2), since i 6∈ Q(
√

2).

This also means that x2 + 1 is irreducible over both Q and Q(
√

2).

However, x2 + 1 is not irreducible over Q(i) and indeed the minimal

polynomial of i over Q(i) is x − i. Since i is still a root of x2 + 1, we

must have that x− i divide x2 + 1, and indeed, x2 + 1 = (x− i)(x+ i).

15



3. Similarly, x2 − 2 is the minimal polynomial of u =
√

2 over Q, since

u 6∈ Q and u is a root of x2 − 2. Furthermore, x2 − 2 divides every

polynomial from Q[x], of which u is a root. Also, x2 − 2 is irreducible

over Q and it remains irreducible over Q(i).

4. Observe that x3 + 2x− x− 1 is irreducible over Q. Let u be one of its

roots from C. Although we don’t know a nice expression for u itself,

but we can claim that x3 + 2x2 − x− 1 is the minimal polynomial of u

over Q (see below).

The last example is so important that we make it into a separate state-
ment, a corollary to Proposition 2.3.5.

Corollary 2.3.7 Under the assumptions of Proposition 2.3.5, if f ∈ K[x]

is monic irreducible and f(u) = 0 then f = p is the minimal polynomial of u

over K.

Proof: By Proposition 2.3.5 (3), f = ph for some h ∈ K[x] (here p = minu,K).
Since f is irreducible h must be a constant, since p isn’t. Furthermore, since
f and p are both monic, we must have h = 1, hence f = p.

This discussion gives us a lot of information about the minimal polynomial
of u, but all of it relies on the assumption that u is algebraic over K (or else
the minimal polynomial is not defined). How can we decide whether u is
algebraic or transcendental? There is one case where we can be sure, and
the help again come from linear algebra.

Theorem 2.3.8 Suppose K ⊆ L is a field extension and u ∈ L. View L as

a vector space over K. Then u is transcendental over K if and only if the

powers of u, that is, the elements 1, u, u2, . . . , uk, . . . , are linearly independent

as vectors. In particular, if [L : K] <∞ then all elements of L are algebraic

over K.

Proof: Observe that linear relations among 1, u, u2, . . . , uk, . . . are in a bijec-
tive correspondence with the polynomials from the ideal Iu. Indeed, suppose∑∞

i=1 aiu
i = 0 is a linear relation among the powers of u. If it is the trivial
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relation (all ai = 0) then it clearly corresponds to the zero polynomial from
Iu. So suppose now that the relation is nontrivial. Notice that only finite
relations are being considered in linear algebra, so there exists n, such that
an 6= 0, but ak = 0 for all k > n. Then the polynomial corresponding to this
relation is f = anx

n + an−1x
n−1 + · · · + a1x + a0. Manifestly, f ∈ K[x] and

f(u) = 0, so f ∈ Iu. This correspondence works in reverse as well, so it is a
bijection, as claimed.

By definition, u is transcendental if and only if Iu = {0}, that is, if and
only if the only linear relation among the powers 1, u, u2, . . . , uk, . . . is the
trivial one, which means linear independence of the set of powers of u.

If [L : K] <∞ then the infinitely many vectors 1, u, u2, . . . , uk, . . . cannot
be linearly independent, so every u ∈ L is algebraic.

Example 2.3.9 Since [Q(
√

2) : Q] = 2, we now know that all elements, a+

b
√

2, of Q(
√

2) are algebraic over Q. We know that the minimal polynomial

of
√

2 is x2 − 2. If a + b
√

2 is a random element from Q(
√

2) then it will

likely have a different minimal polynomial, and it may not be so immediate

to find that polynomial, but in any case, we can be sure that the minimal

polynomial exists for every a + b
√

2. (And as we will soon see, the minimal

polynomial of a+ b
√

2 has degree at most 2 = [Q(
√

2) : Q].)

The final topic in this section is what happens with the minimal polyno-
mial when we pass from the base field K to a larger field.

Proposition 2.3.10 Suppose K ⊆ M ⊆ L be a tower of field extensions

and u ∈ L. Let p = minu,K and r = minu,M . Then r divides p in M [x]. In

particular, either r = p, or deg (r) < deg (p) and r 6∈ K[x].

Proof: We first remark that, since K ⊆ M , we have K[x] ⊆ M [x], so p is
an element of M [x]. By Proposition 2.3.5, r divides every polynomial from
M [x] that evaluates to zero at x = u. Thus, r divides p, as p(u) = 0.

Suppose r 6= p. Since r divides p, we have p = gr for some g ∈M [x]. If g
is a constant polynomial then g = 1, since both p and r are monic. Hence g
is nonconstant, that is, deg (g) ≥ 1 and hence deg (r) < deg (p). If r ∈ K[x]
then p divides r in K[x], since r(u) = 0 (we again use Proposition 2.3.5).
This means that deg (p) ≤ deg (r), a contradiction. Hence r 6∈ K[x].
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Example 2.3.11 1. We know that the minimal polynomial of i over Q
is p = x2 + 1. If we increase the base field to Q(i) then the minimal

polynomial becomes r = x − i, a polynomial of a smaller degree and

with at least one coefficient not in Q (so that r 6∈ Q[x]). We also have

that x− i divides x2 + 1 in Q(i)[x].

2. If we instead increase the base field to Q(
√

2) then p = x2 + 1 remains

the minimal polynomial of i over this larger base field. Hence in this

case we have r = p.
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Chapter 3

Simple extensions, splitting

field

3.1 Simple extensions

Definition 3.1.1 A field extension K ⊆ L is a simple extension if L = K(u)

for some u ∈ L.

Let K ⊆ L be an arbitrary field extension, not necessarily simple. Within
this extension, for every u ∈ L, the subfield M = K(u) is a simple extension
of K. Let εu be the the evaluation homomorphism (at x = u) from K[x] to
L, and let Iu = ker εu = {f ∈ K[x] | f(u) = 0} be its kernel. Recall that u is
transcendental if Iu = {0}, and u is algebraic if Iu 6= {0}. In the latter case,
Iu = (p) = {pg | g ∈ K[x]}, where p = minu,K is the minimal polynomial of
u over K.

We will be mainly interested in the case where u is algebraic.

Proposition 3.1.2 Suppose K ⊆ L is a field extension and M = K(u),

where u ∈ L is algebraic over K with the minimal polynomial p. Then

M = im εu ∼= K[x]/(p).

Proof: Let M0 = im εu. By the first isomorphism theorem for rings, M0
∼=

K[x]/ ker εu = K[x]/(p). By Proposition 2.3.5, p = minu,K is irreducible.
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Now Proposition 2.1.4 implies that Iu = (p) is a maximal ideal of K[x],
which, in turn, implies via Proposition 2.1.3 that K[x]/Iu is a field. Thus,
M0 is isomorphic to a field and hence it is itself a field.

Clearly, M0 contains K, as the elements of K are the images of the
constant polynomials from K[x], and M0 contains u, as u = εu(x) (that is,
u is what the polynomial x evaluates to when we substitute u for x, isn’t
it?!). Since M0 contains K and u, we have M = K(u) ⊆ M0. It remains to
show that also M0 ⊆ M . Recall that M0 = im εu, that is, M0 = {εu(f) =
f(u) | f ∈ K[x]}. Let f ∈ K[x], say, f = anx

n + an−1x
n−1 · · · + a1x + a0,

where all ai ∈ K. Since K ⊆ M and since u ∈ M (indeed, u ∈ K(u) = M),
every summand of f(u) = anu

n +an−1u
n−1 · · ·+a1u+a0 lies in M , and hence

εu(f) = f(u) ∈M . Thus, M0 ⊆M , and hence M = M0 = im εu.

We will exploit the fact that K(u) = im εu in order to find a nice basis in
K(u) and determine the degree [K(u) : K].

Theorem 3.1.3 Suppose K ⊆ L is a field extension and u ∈ L is algebraic

over K with the minimal polynomial p. Set n = deg (p). Then

1. Elements 1, u, u2, . . . , un−1 form a basis of M = K(u) as a vector space

over K.

2. [M : K] = n.

Proof: We first show that 1, u, u2, . . . , un−1 span M . Let v ∈M . Since M =
im εu, there exists f ∈ K[x], such that v = εu(f) = f(u). By the Euclidean
Algorithm, there are polynomials q, r ∈ K[x] with deg (r) < deg (p), such
that f = qp + r. Since deg (r) < deg (p) = n, we have p = an−1x

n−1 +
· · · + a1x + a0 for some coefficients ai ∈ K. Observe that v = f(u) =
q(u)p(u)+r(u) = r(u), since p(u) = 0. Thus, v = an−1u

n−1 + · · ·+a1u+a0 =
a01 + a1u+ · · ·+ an−1u

n−1 is a linear combination of 1, u, . . . , un−1.
For linear independence, suppose a01+a1u+ · · ·+an−1u

n−1 = 0 for some
coefficients a0, . . . , an−1 ∈ K. Consider the polynomial g = an−1x

n−1 + · · ·+
a1x + a0. Then g(u) = an−1u

n−1 + · · · + a1u + a0 = 0. This means that the
minimal polynomial p of u divides g. Since deg (p) = n and deg (g) ≤ n− 1,
we conclude that g = 0, that is, all ai = 0.

We have shown that 1, u, . . . , un−1 form a basis of M over K. Since this
basis consists of n vectors, [M : K] = n.
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Example 3.1.4 1. Since x2 + 1 is the minimal polynomial of i over Q,

Theorem 3.1.3 gives us that the familiar description of the Gaussian

numbers, Q(i) = {a + bi | a, b ∈ Q}. Indeed, in this case n = 2 and

hence 1 and i form a basis (over Q) of Q(i).

2. Similarly, since x2 − 2 is the minimal polynomial of
√

2, we see that 1

and
√

2 form a basis of Q(
√

2). That is, every element of Q(
√

2) has a

unique expression as a+ b
√

2 for a, b ∈ Q (cf. Example 1.1.4 (2)).

3. Since x3 − 2 is the minimal polynomial of 3
√

2 = 2
1
3 , the numbers 1,

2
1
3 , and (2

1
3 )2 = 2

2
3 form a basis of Q( 3

√
2). Thus, every element of

Q( 3
√

2) can be written uniquely as a + b2
1
3 + c2

2
3 for some a, b, c ∈ Q,

see Example 1.1.4 (3).

The following important result is also based on the ideas from Proposition
3.1.2, namely on the observation that K(u) ∼= K[x]/(p), where p = minu,K .

Theorem 3.1.5 (Kronecker) Let K be a field, and f ∈ K[x] be an arbi-

trary nonconstant polynomial. Then there exists a field extension K ⊆ L,

such that L contains a root of f .

Proof: Since deg (f) > 0, f has an irreducible factor m ∈ K[x]. Consider the
factor ring L = K[x]/I, where I = (m), the ideal of K[x] generated by m.
Since m is irreducible, Proposition 2.1.4 implies that I is a maximal ideal of
K[x]. Now Proposition 2.1.3 yields that L is a field. The mapping a 7→ a+ I
is a homomorphism from K to L. It is injective, since if a maps to the zero
coset, I, then a ∈ K ∩ I = {0}. Thus, the image of this mapping is a copy
of K. We will identify every a ∈ K with its image a+ I in L. In this way K
becomes a subfield of L, and L becomes an extension of K.

Set u = x + I ∈ L. Assuming that m = anx
n + · · · + a0, we compute

m(u) = an(x+ I)n +an−1(x+ I)n−1 + · · ·+a1(x+ I)+a0 = m+ I = I. (The
last equality holds since m ∈ I.) Since the coset I is the zero of L, we see
that u is a root of m, hence also a root of f .
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Example 3.1.6 The polynomial f = x2 + x+ 1 ∈ F2[x] is irreducible. (Re-

call, that F2 is the finite field of order two.) Indeed, neither 0, nor 1 is a root

of f , and hence f is irreducible by Proposition 2.2.3. Let F = F2[x]/(f).

Then F is a field, an extension of F2. Let ζ be a root of f in F (we can take

ζ = x + (f) ∈ F ). Then f is the minimal polynomial of ζ over F2. This

means that [F : F2] = deg (f) = 2 and furthermore 1 and ζ form a basis

of F over F2. Hence every element of F can be written uniquely as a + bζ,

a, b ∈ F2. Since there are two choices for each of a and b, the size of F is

four. Thus, we have constructed a finite field of size four. Our description of

F is completely explicit and it allows us to perform efficiently all operations

in F .

Similarly, g = x3+x+1 ∈ F2[x] is irreducible, which means that F2[x]/(g)

is a field, namely, an extension of F2 of degree three. The elements 1, ξ, ξ2,

where ξ = x + (g), form a basis of this field over F2, and hence the size of

this new field is 23 = 8.

Similarly, if f ∈ Fp[x], p a prime, is an irreducible polynomial of degree

k then Fpk = Fp/(f) is a finite field of size q = pk. It can be shown that

irreducible polynomials exist for all primes p and all degrees k. Thus, for all

prime powers pk, finite fields of size pk exist.

3.2 Polynomial rewriting, uniqueness of the

simple extension

There was a bit of “cheating” in the proof of Kronecker’s Theorem, and before
we have moved too far ahead with our course, let us clarify the details of
what we actually did. The “cheating” occurred, when we identified elements
a ∈ K with the corresponding elements of L, namely, with the cosets a+ I.
By doing this, we hid the important fact that L is in fact an extension of the
field K ′ = {a + I | a ∈ K}, isomorphic to K, and not of K itself. If so, how
can we then plug x = u into m = anx

n + · · ·+a0? The coefficients ai being in
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K, while ui being in L, how can we multiply one with the other? The answer
is, we multiply ui not with ai, but rather with the corresponding coset ai +I,
which is in L. That is, in place of m, we plug x = u into the polynomial
m′ = (an +I)xn +(an−1 +I)xn−1 + · · ·+(a1 +I)x+(a0 +I) ∈ K ′[x], which we
have to identify with m, once we identify K with K ′. Thus, the identification
of K with K ′ forces also the identification of K[x] with K ′[x].

The identification in the proof of Theorem 3.1.5 is an instance of the gen-
eral concept of field isomomorphism. Just like an identification of two fields
forces an identification of polynomials defined over the two fields, an arbi-
trary field isomorphism induces an isomorphism between the corresponding
rings of polynomials.

Definition 3.2.1 Suppose K and K ′ are isomorphic fields and θ : K −→ K ′

is an isomomorphism. The polynomial rewriting associated with θ is the

mapping θ̄ : K[x] −→ K ′[x] defined by

θ̄(anx
n + · · ·+ a0) = θ(an)xn + · · ·+ θ(a0).

Proposition 3.2.2 For fields K,K ′ and an isomorphism θ : K −→ K ′,

let θ̄ : K[x] −→ K ′[x] be the corresponding polynomial rewriting. Then the

following hold:

1. θ̄ is an isomorphism of rings;

2. θ̄|K = θ (that is, θ̄ extends θ) and θ̄(x) = x.

3. The inverse of θ̄ is θ−1.

4. θ̄ sends ideals to ideals; namely, the ideal (f) of K[x] is mapped onto

the ideal (θ̄(f)) of K ′[x].

5. If f ∈ K[x] is irreducible then θ̄(f) is irreducible in K ′[x]; equivalently,

θ̄ sends maximal ideals of K[x] to maximal ideals of K ′[x].

Proof: Claims 2 and 3 follow directly from the definition of θ̄. In particular,
θ is bijective. The check that θ̄ preserves addition and multiplication is left
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to the reader. (This gives claim 1.) Since θ̄ is an isomorphism of rings, it
sends ideals to ideals. Recall that K[x] is a principal ideal domain (Theorem
2.1.2). Suppose I = (p) = pK[x], for p ∈ K[x], is an ideal of K[x]. Then
θ̄(I) = θ̄(pK[x]) = θ̄(p)θ̄(K[x]) = θ̄(p)K ′[x] = (θ̄(p)), proving claim 4.

Suppose I is a maximal ideal ofK[x] and suppose I ′ = θ̄(I) is not maximal
in K ′[x]. Then I ′ is contained in a larger ideal J ′ of K ′[x]. Let φ = θ−1 and
set J = φ̄(J ′). By claim 3 applied to φ (in place of θ), J is an ideal of K[x]
and, clearly, J ⊃ I. Hence I is not maximal. The contradiction yields the
second part of claim 5. Since f ∈ K[x] is irreducible if and only if (f) is
maximal (and the same applies to polynomials in K ′[x]), we conclude that f
is irreducible in K[x] if and only if θ̄(f) is irreducible in K ′[x].

We also remark that θ̄ sends monic polynomials again to monic polyno-
mials.

The rewriting isomorphism θ̄, induced by θ, induces in its turn isomor-
phisms on the corresponding factor rings of K[x] and K ′[x].

Proposition 3.2.3 Suppose K, K ′, θ and θ̄ be as above. Then for every

f ∈ K[x], θ̄ induces a ring isomorphism φf : K[x]/(f) −→ K ′[x]/(θ̄(f)). In

particular, if f is irreducible then φf is a field isomorphism between the fields

K[x]/(f) and K ′[x]/(θ̄(f)).

Proof: Let I = (f) and I ′ = θ̄(I) = (θ̄(f)). Every element of the factor ring
K[x]/I is a coset g+I. Its image under θ̄ is θ̄(g+I) = θ̄(g)+ θ̄(I) = θ̄(g)+I ′,
a coset of I ′ and hence an element of F ′[x]/I ′. This means that θ̄ indeed
induces a mapping φf : K[x]/I −→ K ′[x]/I ′ defined by g + I 7→ θ̄(g) + I ′.
Since θ̄ is bijective, φf is bijective, too. The check that φf preserves addition
and multiplication is left to the reader.

The last claim corresponds to the case where I and I ′ are maximal in
K[x] and K ′[x], respectively.

We now return to the simple extensions.

Theorem 3.2.4 Suppose K ⊆ L and K ′ ⊆ L′ are two field extensions and

suppose θ : K −→ K ′ is an isomorphism. Let u ∈ L and u′ ∈ L′ be algebraic

over K and K ′ with minimal polynomials p and p′, respectively. Then θ

extends to an isomorphism φ : K(u) −→ K ′(u′) sending u to u′ if and only

if p′ = θ̄(p). Furthermore, such an extension, if exists, is unique.
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Proof: Recall that φ is an extension of θ if φ|K = θ. Suppose an extension
φ sending u to u′ exists. Then 0 = φ(0) = φ(p(u)) = φ(anu

n + · · · + a0) =
φ(an)φ(u)n+· · ·+φ(a0) = θ(an)(u′)n+· · ·+θ(a0) = θ̄(p)(u′). This means that
u′ is a root of θ̄(p). Since p is irreducible and monic, θ̄(p) is also irreducible
and monic (cf. Proposition 3.2.2 and the remark after it). According to
Corollary 2.3.7, this means that θ̄(p) is the minimal polynomial of u′, that
is, θ̄(p) = p′.

Reversely, suppose θ̄(p) = p′. According to Proposition 3.1.2, K(u) =
im εu, where εu is the evaluation homomorphism from K[x] to L. By the first
isomorphism theorem, this leads to the isomorphism α : K[x]/(p) −→ K(u),
since (p) = Iu = ker εu. Note that α(a + (p)) = a for all a ∈ K and
α(x + (p)) = u. Similarly, there is an isomorphism α′ : K ′[x]/(p′) −→
K ′(u′), such that α′(a + (p′)) = a for all a ∈ K ′ and α′(x + (p′)) = u′.
Furthermore, according to Proposition 3.2.3, polynomial rewriting θ̄ induces
an isomorphism φp : K[x]/(p) −→ K ′[x]/(p′) (here we use that θ̄(p) = p′).
Observe that φp(a + (p)) = θ̄(a) + (p′) = θ(a) + (p′) for all a ∈ F , and
φp(x+ (p)) = θ̄(x) + (p′) = x+ (p′).

We now put everything together: the composition φ = α′φpα
−1 is an

isomorphism fromK(u) ontoK ′(u′) and, furthermore, α′φpα
−1(a) = α′φp(a+

(p)) = α′(θ(a) + (p′)) = θ(a) for all a ∈ K (so φp is an extension of θ) and
α′φpα

−1(u) = α′φp(x+ (p)) = α′(x+ (p′)) = u′. Thus, φ is as claimed.
To establish the uniqueness of φ, suppose ψ is a second extension of θ

and ψ(u) = u′. By Proposition 3.1.2, K(u) = im εu and so every v ∈ K(u)
can be written as v = anu

n + · · · + a0 for some an, . . . , a0 ∈ K. Then
φ(v) = φ(anu

n+· · ·+a0) = θ(an)(u′)n+· · ·+θ(a0) = ψ(anu
n+· · ·+a0) = ψ(v).

Thus, ψ = φ.

As a corollary to this important theorem, we obtain the following result
on the uniqueness of simple extension corresponding to the given irreducible
polynomial. This result complements Kronecker’s Theorem.

Corollary 3.2.5 Suppose K ⊆ L is a field extension and suppose u, u′ ∈ L

are two roots of the same irreducible polynomial f . Then K(u) and K(u′)

are isomorphic; namely, there is an isomorphism φ : K(u) −→ K(u′), such

that φ|K = id and φ(u) = u′.

Proof: Since u and u′ are roots of f and f is irreducible, elements u and u′

have the same minimal polynomial, 1
a
f , where a is the leading coefficient of
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f . Now apply Theorem 3.2.4 with K ′ = K, L′ = L, and θ = id. Clearly,
θ̄ = id and so θ̄(p) = p.

Example 3.2.6 1. Consider the Gaussian numbers Q(i). We have that

Q(i) = Q(−i) and, clearly, i and −i have the same minimal polynomial

x2 + 1. Thus, there must exist an automorphism (isomorphism onto

itself) of Q(i) sending i to −i. And indeed, such an automorphism is

induced by complex conjugation.

2. Similarly,
√

2 and −
√

2 have the same minimal polynomial x2 − 2 and

hence Q(
√

2) = Q(−
√

2) has an automorphism sending
√

2 to −
√

2.

Since an arbitrary element of Q(
√

2) can be written as a + b
√

2 for

a, b ∈ Q, we conclude that this automorphism acts as follows: a +

b
√

2 7→ a− b
√

2 for all a, b ∈ Q.

3. A slightly more complicated example: The three roots of x3−2 are 3
√

2,
3
√

2ζ, and 3
√

2ζ2, where ζ = e
2πi
3 is the primitive cubic root of unity. By

Corollary 3.2.5, there is an isomorphism from Q( 3
√

2) onto Q( 3
√

2ζ),

even though the first field is fully real and the second one is not.

4. Both i and
√

2 are roots of f = x4−x2−2 = (x2 +1)(x2−2). However,

there is no isomorphism from Q(i) onto Q(
√

2). Indeed, if φ is such an

isomorphism then φ(i) ∈ Q(
√

2) is a root of x2 + 1; a contradiction,

since x2 + 1 has no root in Q(
√

2). This shows that the analog of

Corollary 3.2.5 for arbitrary polynomials f is false.

3.3 Splitting field

Definition 3.3.1 Let K be a field, f ∈ K[X], and L be an extension of K.

Then we say that f splits in L if f factorizes into linear factors over L; that

is, f = a(x−u1)
s1 · · · (x−uk)

sk for some a ∈ K, u1, . . . , uk ∈ L, and positive
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integers s1, . . . , sk. Moreover, L is a splitting field for f if f splits in L and

L is generated by K and the elements u1, . . . , uk.

Notice that u1, . . . , uk are roots (zeros) of f and, in fact, they form a full
set of roots, meaning that in any extension of L the set of roots of f will
always be restricted to {u1, . . . , uk}. Indeed, if L′ is an extension of L and if
u ∈ L then, after plugging x = u into f = a(x − u1)

s1 · · · (x − uk)
sk , we see

that u is a root of f if and only if one of the factors u − ui is zero, that is,
u = ui.

We also remark that a in f = a(x − u1)
s1 · · · (x − uk)

sk is simply the
leading coefficient of f and so it is independent of L. The integers s1, . . . , sk

are the multiplicities of the roots u1, . . . , uk.
If K = Q then every polynomial f ∈ K[x] splits in C. Thus, a splitting

field for f can be constructed by adding to Q all complex roots of f . Here
are some examples of this sort.

Example 3.3.2 1. Let f = X3 − 2 ∈ Q[x]. Then the roots of f are 3
√

2,
3
√

2ζ, and 3
√

2ζ2, where ζ = e
2πi
3 . Clearly, L = Q( 3

√
2, 3
√

2ζ, 3
√

2ζ2) is

a splitting field for f . Indeed, f splits over L as follows: f = (x −
3
√

2)(x− 3
√

2ζ)(x− 3
√

2ζ2).

We can also write L = Q( 3
√

2, ζ). With this expression, it is eas-

ier to find the degree [L : Q]. By the Tower Law [L : Q] = [L :

Q( 3
√

2)][Q( 3
√

2) : Q]. Clearly, the minimal polynomial of 3
√

2 is x3 − 2

(since this monic polynomial is irreducible; cf. Proposition 2.2.3).

Thus, [Q( 3
√

2) : Q] = 3 by Theorem 3.1.3. Since L = M(ζ), where

M = Q( 3
√

2), it remains to determine the minimal polynomial of ζ over

M . We claim that the minimal polynomial of ζ over M (as well as

over Q) is x3−1
x−1

= x2 + x + 1. Indeed, ζ is a root of this polynomial,

so minζ,M must divide x2 + x + 1. On the other hand, ζ is not real,

so ζ 6∈ M and hence minζ,M cannot have degree less than two. Thus,

x2 + x+ 1 = minζ,M and hence [L : M ] = [L : Q( 3
√

2)] = 2. This yields

[L : Q] = 6.
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2. Let f = xn − 1 and let ζ = e
2πi
n be the primitive complex nth root of

unity. Then the roots of f are 1, ζ, . . . , ζn−1. Thus, Q(ζ, . . . , ζn−1) =

Q(ζ) is a splitting field for f . For example, if n = 8, then f = x8− 1 =

(x− 1)(x+ 1)(x2 + 1)(x4 + 1), where all factors are irreducible over Q.

Since ζ is not a root of either of the first three factors, it must be a

root of x4 + 1, which is, therefore, the minimal polynomial of ζ. Thus,

for n = 8, the degree of Q(ζ) over Q is four.

3. If f = x4 + 1 then its roots are ζ = e
πi
4 , ζ3, ζ5, and ζ7. Thus, the same

Q(ζ) is also a splitting field for x4 + 1.

We have already seen that the splitting field can be constructed inside C
when K = Q (or, in fact, any subfield of C). The following theorem contains
the general result for splitting fields.

Theorem 3.3.3 Let K be a field and f ∈ K[x]. Then there exists a splitting

field for f over K.

Proof: We use induction on deg (f) = n. If n = 1 then f is linear and so it
already splits in K, and so K itself is a splitting field for f . Now suppose that
n > 1. By Theorem 3.1.5, there is an extension field M containing a root
u of f . Consider K(u). Now f ∈ K[x] ⊆ K(u)[x], and as f(u) = 0, there
exists a polynomial g ∈ K(u)[x], such that f = (x − u)g. Now deg (g) < n,
and so by induction we have a splitting field L for g over K(u). Since g splits
in L, so does f . Also, L is generated by K(u) and the roots of g. Hence L is
generated by K, u, and the roots of g, and so L is a splitting field for f over
K.

There is a subtlety in this proof: mid-way through we change from one
base field to another, and use the inductive argument on this new field. This
is perfectly allowable, since we are proving simultaneously by induction that
all polynomials f over all fields K have splitting fields. We have to assume
this when we take our inductive step.

Next we prove the uniqueness of the splitting field. Note that every
splitting field L is a finite extension of the base field K. Indeed, if deg (f) = n
then f has at most n roots, and so L can be obtained as a result of a series
of at most n simple extensions. Furthermore, at each step the minimal
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polynomial divides f and so the total degree [L : K] does not exceed nn (a
more careful estimate yields the bound [L : K] ≤ n!).

Theorem 3.3.4 Let K and K ′ be isomorphic fields and let θ : K → K ′ be

an isomorphism. Let θ̄ be the polynomial rewriting induced by θ. Suppose

that f ∈ K[x] and let f ′ = θ̄(f). Let L and L′ be splitting fields of f and

f ′ over K and K ′, respectively. Then θ extends to an isomorphism from L

onto L′.

Proof: We use induction on the degree [L : K] (which is finite by the remark
above). Let [L : K] = m. If m = 1, then L = K and so f splits over K.
That is, f = a(x−u1)

s1 · · · (x−uk)
sk for some a, u1, . . . , uk ∈ K and positive

integers s1, . . . , sk. Hence f ′ = θ̄(f) = θ̄(a)θ̄(x − u1)
s1 · · · θ̄(x − uk)

sk =
θ(a)(x − θ(u1))

s1 · · · (x − θ(uk))
sk also splits over K ′. Thus, L′ = K ′ and

there is nothing to prove.
Now suppose that n > 1 and that the result holds for all extensions of

lesser degree. Let u ∈ L be a root of f with u 6∈ K. Let p ∈ K[x] be the
minimal polynomial of u over K. Since f(u) = 0, p divides f in K[x], thus,
there exists g ∈ K[x] such that f = pg.

Let p′ = θ̄(p) and g′ = θ̄(g). By Proposition 3.2.2, we have f ′ = p′g′.
Since f ′ splits in L′, L′ contains a root of p′, say u′. By Proposition 3.2.2,
p′ is irreducible. Also, p′ is monic, since p is monic. Thus, p′ is the minimal
polynomial of u′. Now Theorem 3.2.4 gives an isomorphism φ : K(u) →
K ′(u′) extending θ and sending u to u′. By the Tower Law, we have [L :
K] = [L : K(u)][K(u) : K]. So [L : K(u)] < [L : K]. We know that
f ∈ K(u)[x] and f ′ = θ̄(f) = φ̄(f) ∈ K ′(u′)[x]. Now L and L′ are splitting
fields for f and f ′ over K(u) and K ′(u′), respectively. By induction, there
exists an isomorphism from L onto L′ extending φ (and hence also extending
θ).

The important case is when K ′ = K and θ = id.

Corollary 3.3.5 Let K be a field and f ∈ K[x]. Then any two splitting

fields of f over K are isomorphic and the isomorphism can be chosen so that

its restriction to K is the identity mapping.

Thus, splitting fields are unique up to isomorphism. So we can refer to
the splitting field of f over K.
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Chapter 4

Galois groups and normal

extensions

4.1 Prime subfield, characteristic

Suppose K is a field. Let ρ : Z → K be the mapping defined as follows:

ρ(n) =


0, if n = 0;
1 + · · ·+ 1︸ ︷︷ ︸

n

, if n > 0;

−1− · · · − 1︸ ︷︷ ︸
|n|

, if n < 0.

Proposition 4.1.1 The mapping ρ is a ring homomorphism.

We will now discuss the kernel and the image of this homomorphism.
Recall that a zero divisor in a commutative ringR is an element 0 6= a ∈ R

such that there exists 0 6= b ∈ R with ab = 0. An ideal I ⊆ R is prime if the
factor ring R/I has no zero divisors.

Proposition 4.1.2 The subring im ρ of K has no zero divisors, and hence

ker ρ is a prime ideal of Z.

Proof: K contains no zero divisors, since every nonzero element of K is
invertible. Hence im ρ ∼= Z/ ker ρ has no zero divisors.
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Proposition 4.1.3 An ideal I of Z is prime if and only if either I = {0},
or I = (p) for some prime number p.

Combining Propositions 4.1.2 and 4.1.3 together, we conclude that either
ker ρ = {0}, or ker ρ = (p) for some prime p.

Definition 4.1.4 If ker ρ = {0} then we say that K has zero characteristic,

and we write char(K) = 0. Similarly, if ker ρ = (p) then we say that K has

positive characteristic p, and write char(K) = p.

Proposition 4.1.5 Every field K contains a unique smallest subfield K0. If

K has a positive characteristic p then K0 = im ρ ∼= Fp. If charK = 0 then

K0
∼= Q is the field of fractions of im ρ ∼= Z.

Proof: If M is a subfield of K then 1 ∈ M and hence ρ(n) ∈ M for all
n ∈ Z. Thus, im ρ is contained in M , and hence in every subfield of K. If
char(K) = p then im ρ ∼= Z/ ker ρ = Z/(p) = Fp. Therefore, im ρ is itself a
subfield, and it is the unique smallest subfield. Thus, K0 = im ρ ∼= Fp. Now
suppose char(K) = 0. By definition, this means that ker ρ = {0}, that is,
ρ is injective. Thus, in this case im ρ ∼= Z. Since im ρ is contained in every
subfield of K, its field of fractions, {a

b
| a, b ∈ im ρ, b 6= 0}, is also contained

in every subfield of K, that is, the field of fractions of im ρ is F0, the unique
smallest subfield of K. Since im ρ ∼= Z, we have that K0

∼= Q.

Definition 4.1.6 The unique smallest subfield of K is called the prime sub-

field of K.

We repeat that the prime subfield is isomorphic to Fp if char(K) = p > 0,
and Q if char(K) = 0. The proof of the following fact is left to the reader.

Proposition 4.1.7 If K ⊆ L is a field extension then K and L have the

same prime subfield and hence the same characteristic.

Example 4.1.8 1. Q, R, and C are fields of zero characteristic. It follows

from Proposition 4.1.7 that all subfields of C (which appear in a wide

majority of our examples) are of zero characteristic.
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2. On the other hand, if K is a finite field then K cannot contain a copy

of Q and hence K has characteristic p for some prime p. Let K0
∼= Fp

be the prime subfield of K and let n = [K : K0]. Choose a basis

u1, . . . , un for K over K0 and observe that every element of K can be

expressed uniquely as u = a1u1 + · · ·+ anun for a1, . . . , an ∈ K0. Thus,

the number of elements in K coincides with the number of ways the

coefficients of the linear combination can be chosen, that is, with qn.

We have shown that the size of every finite field K is a prime power pn,

where p = char(K) and n is the degree of K over its prime subfield.

3. Since K is a subfield of the ring K[x1, . . . , xn], it is also a subfield of its

field of fractions, K(x1, . . . , xn). Thus, K and K(x1, . . . , xn) have the

same characteristic. This leads to more examples both in characteristic

zero and in the positive characteristic. In particular, this gives infinite

fields of positive characteristic.

4.2 Galois groups

Recall that an automorphism of a field L is an isomorphism from L to L.
The set of all automorphisms of a field L is denoted by Aut(L). We leave it
to the reader to verify that Aut(L) is a group with respect to the operation
of multiplication given by composition.

Definition 4.2.1 Let K ⊆ L be a field extension. The Galois group of

this extension, denoted by Gal(L/K), consists of all automorphisms α of L,

satisfying α(k) = k for all k ∈ K (that is, α|K = id).

The group Gal(L/K) is a subgroup of Aut(L), the elementwise stabilizer
in Aut(L) of K. Note that α ∈ Aut(L), such that α|K = id, is called a
K-automorphism of L. Thus, Gal(L/K) consists of all K-automorphisms of
L.

The proof of the following basic properties of Galois groups is left as an
exercise.
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Proposition 4.2.2 Let L be a field.

1. Gal(L/L) = 1.

2. If L0 denotes the prime subfield of L then Gal(L/L0) = Aut(L).

3. If K ⊆M are two subfields of L then Gal(L/M) ≤ Gal(L/K).

Example 4.2.3 1. The complex conjugation is an R-automorphism of C
and hence an element of Gal(C/R). We will soon see that it is the only

nonidentity element of Gal(C/R) (that is, |Gal(C/R)| = 2).

2. It can be shown that C has infinitely many automorphisms. Since Q
is the prime subfield of C, we conclude that Gal(C/Q) = Aut(C) is an

infinite group.

3. It can also be shown that R has no nonidentity automorphisms and so

Gal(R/Q) = 1.

4. The automorphism a+ b
√

2 7→ a− b
√

2 (cf. Example 3.2.6 (2)) is a Q-

automorphism of Q(
√

2). Notice that Q is the prime subfield of Q(
√

2)

and so every automorphism of Q(
√

2) is a Q-automorphism.

We will now study the action of Gal(L/K) on the elements of L.

Proposition 4.2.4 Suppose K ⊆ L is a field extension and f ∈ K[x]. Then

Gal(L/K) acts on the set of roots of f in L.

Proof: Clearly, G = Gal(L/K) acts on the set of elements of L. Thus,
in order to establish the claim, we need to show that G leaves R = {a ∈
L | f(a) = 0} invariant.

Let α ∈ G and suppose u ∈ R. Then f(u) = 0 and hence 0 = α(0) =
α(f(u)). Suppose f = anx

n+· · ·+a0. Since the coefficients of f are in K and
hence they are fixed (left unchanged) by α, we have 0 = α(f(a)) = α(anu

n +
· · · + a0) = α(an)(α(u))n + · · · + α(a0) = an(α(u))n + · · · + a0 = f(α(a)).
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Thus, α(u) is again a root of f . That is, α(u) ∈ R for all u ∈ R and all
α ∈ G.

Let us now look at the action of G = Gal(L/K) on L from a different
angle. Suppose u ∈ L. Recall that the orbit of u under the action of G is the
set {α(u) |α ∈ G}. What can we say about this orbit? How big can it be?

Corollary 4.2.5 Suppose K ⊆ L is a field extension, G = Gal(L/K), and

u ∈ L. Then the orbit of u under the action of G is contained in the set of

roots of the minimal polynomial p = minu,K. In particular, the size of the

orbit is at most k = deg (p) = [K(u) : K].

Proof: Applying Proposition 4.2.4 with f = p, we see that the set of roots
of p is invariant under the action of G. Since u is a root of p, the entire orbit
of u must be contained in the set of roots of p.

By Corollary 2.2.2, p has no more than deg (p) roots, so the last claim
follows as well.

When a group acts on a set, a lot of important information about the ac-
tion is contained in the stabilizers of particular elements. Recall that Gu1,...,uk

denotes the (elementwise) stabilizer in G of the elements u1, . . . , uk.

Proposition 4.2.6 Suppose K ⊆ L is a field extension and G = Gal(L/K).

If u1, . . . , uk ∈ L then Gu1,...,uk
= Gal(L/K(u1, . . . , uk)).

Proof: Clearly (cf. Propposition 4.2.2), H = Gal(L/K(u1, . . . , uk)) is a
subgroup of G = Gal(L/K) and, furthermore, H stabilizes every element ui,
since ui ∈ K(u1, . . . , uk). Thus, H ≤ Gu1,...,uk

.
For the reverse inclusion, we will first deal with the case k = 1. Let u = u1.

Let α ∈ Gu. Then α acts trivially on K (since all elements of G = Gal(L/K)
do) and α fixes (stabilizes) u. By Proposition 3.1.2, K(u) = im εu, where εu
is the evaluation map at x = u. This means that every v = εu(g) = g(u) for
some g ∈ K[x]. Assuming g = anx

n + · · ·+a0, we obtain v = anu
n + · · ·+a0.

Since a1, . . . , an ∈ K, the automorphism α fixes every term on the right and
therefore α fixes v. Thus, α fixes every v ∈ K(u), that is, α ∈ Gal(L/K(u)),
yielding Gu ≤ H = Gal(L/K(u)).

Now, let us do the case of arbitrary k. We will use induction. The case
k = 1 supplies the basis of induction. If k > 1, let α ∈ Gu1,...,uk

and set
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K ′ = K(u1, . . . , uk−1). By induction, α fixes every element of K ′, hence α ∈
G′ := Gal(L/K ′). Furthermore, α ∈ G′

uk
. Hence, by the above (case k = 1),

α fixes every element of K ′(uk). However, K ′(uk) = K(u1, . . . , uk−1, uk).
Thus, α ∈ H, yielding the reverse inclusion Gu1,...,uk

≤ H.

An important case is where u1, . . . , uk generate the entire L.

Corollary 4.2.7 Suppose K ⊂ L is a field extension, G = Gal(L/K) and

L = K(u1, . . . , uk) for some u1, . . . , uk ∈ L. Then Gu1,...,uk
= 1.

Proof: According to Proposition 4.2.6, Gu1,...,uk
= Gal(L/K(u1, . . . , uk)) =

Gal(L/L) = 1 (cf. Proposition 4.2.2).

When a groupG acts on a set R, the action of each α ∈ G is a permutation
σα ∈ Sym(R). The mapping α 7→ σα is a homomorphism from G to Sym(R).
We say that the action of G on R is faithful if the associated homomorphism
G→ Sym(R) is injective, that is, the kernel of this homomorphism is trivial,
that is, the identity element is the only element of G that fixes all elements of
R. If the action of G is faithful then G is isomorphic to its image in Sym(R)
(this follows from the first isomorphism theorem).

The following is the main result of this section.

Proposition 4.2.8 Let K be a field, and f ∈ K[x]. Let L be the splitting

field for f over K. Let R be the set of roots of f in L. Then G = Gal(L/K)

acts faithfully on R. In particular, G is isomorphic to a subgroup of the

(finite) group Sym(R).

Proof: The claim that G acts on R follows from Proposition 4.2.4. The fact
that this action is faithful follows from Corollary 4.2.7, since L = K(R).

Definition 4.2.9 Suppose K is a field and f ∈ K[x]. The Galois group of

f is the group Gal(L/K), where L is the splitting field for f over K.

Example 4.2.10 1. Consider the extension R ⊆ C. Note that C = R(i).

Since ±i ∈ C are the roots of the polynomial x2 + 1, we conclude

that C is the splitting field for x2 + 1 over R. Let R = {i,−i}. By

Proposition 4.2.8, there is an injective homomorphism θ : Gal(C/R) →
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Sym(R) ∼= S2. So |Gal(C/R)| ≤ 2. Note that the complex conjugation

is an element of Gal(C/R). This means that Gal(C/R) ∼= S2 has order

two. Note also that this means that the complex conjugation is the

only nontrivial R-autmomorphism of C.

2. Similarly, Q(
√

2) is the splitting field of f = x2 − 2 and so the Galois

group of f , Gal(Q(
√

2)/Q), acts faithfully on R = {
√

2,−
√

2}. We

have seen that the mapping a + b
√

2 7→ a − b
√

2 is a nontrivial Q-

automorphism of Q(
√

2). Therefore, Gal(Q(
√

2)/Q) ∼= S2.

3. The splitting field of the polynomial f = x3 − 2 coincides with L =

Q( 3
√

2, ζ), where ζ = e
2πi
3 is the primitive cubic root of one. By

Proposition 4.2.8, we know that G = Gal(L/Q) acts faithfully on

R = { 3
√

2, 3
√

2ζ, 3
√

2ζ2}, the set of roots of f . Thus, G is isomorphic

to a subgroup of S3. Which one? At the moment we only know that

G contains the automorphism of L induced by complex conjugation (it

fixes the real root 3
√

2, and interchanges the two complex roots). So

|G| ≥ 2.

4.3 Normal extensions

In this section we introduce normal field extensions and study their prop-
erties. In a sense, normal extensions are not new objects for us, because
normal finite extensions are exactly the extensions K ⊆ L, where L is the
splitting field of some polynomial from K[x]. Thus, normal extensions have
to do with splitting fields.

We can take this as a temporary definitions of normal extensions. Later
in this section we give a different definition, that also applies to infinite
extensions, and we will show the equivalence of that new definition and the
current definition, when the extension is finite.

Proposition 4.3.1 Suppose K ⊆ L ⊆ M is a tower of field extensions,
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where L is the splitting field over K of some polynomial f ∈ K[x]. Then

α(L) = L for all α ∈ Gal(M/K).

Proof: Since α is an automorphism of M and since L is a subfield of M , we
get that L′ = α(L) is again a subfield of M . We need to show that L′ = L.

We first note that [L′ : K] = [L : K]. Indeed, considering M as a vector
space over K and noticing that α is a K-linear mapping of nullity zero, the
subspaces L and L′ = α(L) must have the same dimension over K, which is
exactly the statement [L : K] = [L′ : K].

By Definition 3.3.1, L is the smallest subfield of M containing K and R,
where R is the set of roots of f in M (same as in L, since f splits over L).
Clearly, α(K) = K (in fact, α(a) = a for all a ∈ K). Also, α(R) = R by
Proposition 4.2.4. Thus, K ∪ R ⊆ α(L) = L′. By the minimality of L, we
have L ⊆ L′.

Since [L′ : K] = [L : K], the Tower Law implies [L′ : L] = 1, that is,
L′ = L.

We next show that a splitting extension has a significant number of au-
tomorphisms.

Proposition 4.3.2 Let K be a field and L be the splitting field for f ∈ K[x]

over K. Suppose that M and M ′ are two subfields of L, both containing K.

Suppose further that θ : M → M ′ is an isomorphism such that θ|K = id.

Then θ extends to an automorphism of L.

Proof: Since L is the splitting field for f over K, we also have that L is
the splitting field for f over M (and similarly, over M ′). Notice that since
θ|K = id, we have θ̄(f) = f , where θ̄ is the polynomial rewriting associated
with θ. Thus, by Theorem 3.3.4 there is an isomorphism φ from L (the
splitting field for f over M) to L (the splitting field for f = θ̄(f) over M ′)
extending θ.

Note that this automorphism φ is a K-automorphism, that is, an element
of Gal(L/K). Indeed, φ|K = θ|K = id.

Recall that a group G acting on a set R is transitive if for all u, v ∈ R
there exists α ∈ G such that α(u) = v.
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Corollary 4.3.3 Suppose K is a field and L is the splitting field for f ∈ K[x]

over K. Suppose g ∈ K[x] is irreducible and let R be the set of roots of g in

L. Then Gal(L/K) is transitive on R.

Proof: By Proposition 4.2.4, G = Gal(L/K) acts on R. Suppose u, v ∈ R.
Then 1

a
g, where a is the leading coefficient of g, is the minimal polynomial of

both u and v. By Corollary 3.2.5, there is an isomorphism θ from M = K(u)
to M ′ = K(v) such that θ(u) = v and θ|K = id. Applying Proposition 4.3.2
to this θ, we obtain an element of Gal(L/K) taking u to v.

Corollary 4.3.4 Let K be a field, f ∈ K[x] and let L be the splitting field

for f over K. Write f as ags1
1 g

s2
2 · · · gsk

k , where a ∈ K and all gi ∈ K[x] are

monic irreducible and pairwise different. (Since all gi are monic, a is the

leading coefficient of f .) Let R be the set of roots of f in L, and Ri be the

set of roots of gi, i = 1, . . . , k. Then

1. {Ri | 1 ≤ i ≤ k} is a partition of R; and

2. the orbits of Gal(L/K) on R are precisely the sets R1, . . . , Rk.

Proof: Clearly, R is the union of all Ri. If u ∈ Ri ∩ Rj, where i 6= j, then u
is a root of both gi and gj. Since gi and gj are irreducible and monic, they
must be both the minimal polynomial of u, a contradiction. This proves (1).

Now Corollary 4.3.3 applied to g = gi shows that Gal(L/K) is transitive
on each Ri, yielding (2).

Example 4.3.5 1. Let L be the splitting field over Q of f = x4−x2−2 =

(x2 +1)(x2−2). Then G = Gal(L/Q) acts faithfully on the set of roots

of f , which is R = {i,−i,
√

2,−
√

2}. By Corollary 4.3.4, G has two

orbits on R, namely, R1 = {i,−i} and R2 = {
√

2,−
√

2}. Thus, the

order of G is two or four. Observe that L is the splitting field for x2−2

over the Gaussian numbers Q(i). Since
√

2 6∈ Q(i), x2 − 2 remains

irreducible over Q(i). This means that Gal(L/Q(i)) is transitive on

the set {
√

2,−
√

2}. hence there is an automorphism of L that fixes
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±i and interchanges
√

2 with −
√

2. Similarly, one can show that there

exists an automorphism of L, which fixes ±
√

2 and which interchanges

i with −i. We conclude that G has order four, namely, G ∼= S2 × S2.

2. We can now finish Example 4.2.10 (3). We already know that G =

Gal(L/Q) contains an element of order two, namely, the complex conju-

gation. Corollary 4.3.4 implies thatG is transitive on { 3
√

2, 3
√

2ζ, 3
√

2ζ2}.
Hence the order of G is also divisible by three. Therefore, |G| is at least

six, implying that G ∼= Sym(R) ∼= S3.

We now start working towards the formal definition of normal extensions.

Proposition 4.3.6 Let K be a field, f ∈ K[x], and L be the splitting field

for f over K. If g ∈ K[x] is irreducible and has one root in L, then g splits

in L.

Proof: Let M be the splitting field for g over L. Since M is generated by
L and the roots of g and since L is generated by K and the roots of f , we
conclude that M is the splitting field for fg over K. (Indeed, the roots of fg
are the roots of f plus the roots of g.)

By assumption, g has a root u ∈ L. Let v be any other root of g in M .
By Corollary 4.3.3 (applied to the entire M), Gal(M/K) is transitive on the
set of roots of g and so there exists α ∈ Gal(M/K), such that α(u) = v.
According to Proposition 4.3.1, α(L) = L, since L is the splitting field for f .
This means that v ∈ L, since u ∈ L. Thus, all roots of g are in L. Hence
M = L and g splits in L.

Definition 4.3.7 An extension K ⊆ L is normal if whenever g ∈ K[x] is

irreducible and has at least one root in L, then g splits completely in L.

So Proposition 4.3.6 states simply that if L is the splitting field over K
for some f ∈ K[x], then K ⊆ L is a normal extension.

Example 4.3.8 1. The extensions Q ⊆ Q(i) and Q ⊆ Q(
√

2) are both

normal. In fact all extensions of degree two are normal. Indeed, sup-

pose [L : K] = 2. Let u ∈ L\K. Then L = K(u) and, in particular, the
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minimal polynomial of u over K has degree two. Say, f = x2 + ax+ b

is the minimal polynomial of u. Notice now that the second root of f

is u′ = −a − u ∈ L. Hence L = K(u) = K(u, u′) is the splitting field

for f over K, implying the normality via Proposition 4.3.6.

2. Now consider the degree three extension Q ⊆ Q( 3
√

2). The irreducible

polynomial x3 − 2 has a root in Q( 3
√

2), but since the other two roots

are non-real complex numbers, they cannot be contained in Q( 3
√

2).

Hence x3− 2 does not split in Q( 3
√

2) and this extension is not normal.

Theorem 4.3.9 The following are equivalent for a finite extension K ⊆ L:

1. the extension is normal; and

2. L is the splitting field for some polynomial over K.

Proof: In view of Proposition 4.3.6 it suffices to show that (1) implies (2).
Suppose that K ⊆ L is a finite normal extension. Let {u1, . . . , un} be

a basis for L as a vector space over K. For each i, let gi be the minimal
polynomial of ui over K, and let f = g1 · · · gn. Each gi is irreducible with a
root (namely, ui) in L, so since K ⊆ L is a normal extension, gi splits in L,
that is, it is a product of linear factors in L[x]. Hence f is also a product
of linear factors in L[x], and so f splits in L. It remains to show that L is
generated by the roots of f . However, this is clear, since the roots include
u1, . . . , un, and K(u1, . . . , un) is already all of L. So L is the splitting field
for f .

We conclude this section and the chapter with the following useful obser-
vation.

Corollary 4.3.10 If K ⊆ L is a normal extension and K ⊆ M ⊆ L then

M ⊆ L is also normal.

Proof: By Theorem 4.3.9, L is the splitting field over K for some polynomial
f ∈ K[x]. Clearly, L is also the splitting field for the same f over M .
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Chapter 5

Galois correspondence

5.1 Separable extensions

Definition 5.1.1 Suppose K is a field and f ∈ K[x] is an irreducible poly-

nomial. We say that f is separable if f has no multiple roots. That is, if L

is the splitting field for f over K then f has exactly deg (f) distinct roots in

L.

Definition 5.1.2 For f = anx
n+· · ·+a0 ∈ K[x] its derivative Df is defined

by:

Df = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ 2a2x+ a1.

Here the product of an integer m and a field element a is defined as
follows:

na =


0, if m = 0;
a+ · · ·+ a︸ ︷︷ ︸

n

, if n > 0;

−a− · · · − a︸ ︷︷ ︸
|n|

, if n < 0.

(Cf. Section 4.1, where ρ(n) is simply n1K .)
This operation of differentiation has the familiar algebraic properties that

the usual calculus differentiation has.
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Proposition 5.1.3 A polynomial f ∈ K[x] has a multiple root if and only

if f and Df have a common divisor, that is, the greatest common divisor

(f,Df) is not one.

Here is an example of an inseparable irreducible polynomial.

Example 5.1.4 1. Let K = F (t), the field of rational functions in one

variable over a field F of positive characteristic p. Consider f = xp −
t ∈ K[x]. Notice that this is a polynomial with just two nonzero

coefficients: ap = 1K and a0 = t ∈ K = F (t). It can be shown (using

the so-called Eisenstein criterion, which we don’t cover in this course)

that f is irreducible. On the other hand, Df = pxp−1 = 0, since p1K =

ρ(p) = 0, because K has characteristic p. Clearly, (f,Df) = (f, 0) = f

is not equal to one, and so f has multiple roots by Proposition 5.1.3.

2. We again consider K = F (x), where F has positive characteristic p,

and the same polynomial f = xp−t. This time we outline a direct proof

(without Proposition 5.1.3) that f has multiple roots. Namely, let L be

the splitting field of f over K. Then L has the same characteristic p,

since L contains K. Let u ∈ L be a root of f . Then 0 = f(u) = up− t,
that is, up = t. Now we compute (x−u)p in L[x]. By the binomial law,

(x−u)p = xp +
(

p
1

)
uxp−1 + · · ·+

(
p

p−1

)
up−1x+up = xp +up = xp− t = f .

(We use here that the binomial coefficient
(

p
k

)
, 1 ≤ k ≤ p − 1, is a

multiple of p and hence
(

p
k

)
uk =

(
p
k

)
1Ku = ρ(

(
p
k

)
)u = 0u = 0 in L, since

L has characteristic p.)

Thus, f = (x− u)p in L[x]. This means that u is the only root of f in

L and so indeed f has multiple roots.

Proposition 5.1.5 Let K be a field of characteristic zero and f ∈ K[x] be

an irreducible polynomial. Then f has no repeated roots.
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Proof: Since f is irreducible, Df is a nonzero polynomial of degree n − 1,
where n = deg (f). Indeed, if the leading coefficient of f is a = an 6= 0 then
the leading coefficient of Df is (n − 1)a, since (n − 1)a = (n − 1)1Ka =
ρ(n)a 6= 0, because a 6= 0 and also ρ(n) 6= 0, since K has characteristic zero.

Thus, Df is nonzero, of degree n−1. Suppose f has multiple roots. Then
by Proposition 5.1.3, the greatest common divisor (f,Df) is not one, that
is, it is a polynomial of positive degree. Let g = (f,Df). Then g divides f ,
that is, there exists h ∈ K[x] such that f = gh. Since f is irreducible, either
g or h is a constant polynomial. In fact, it must be h, because g is known to
have positive degree. Thus, h is a constant and hence deg (g) = deg (f) = n.
However, this means that g cannot divide Df , since Df has degree n− 1; a
contradiction.

Note that the general analog of Proposition 5.1.5 for fields of positive
characteristic is not true, as Example 5.1.4 shows. However, the conclusion
of this proposition remains true for some fields of positive characteristic. For
example, it is true for finite fields.

Definition 5.1.6 A finite field extension K ⊆ L is called separable if the

minimal polynomial p = minu,K is separable for each u ∈ L.

Notice that the minimal polynomial p is always irreducible in K[x] (cf.
Proposition 2.3.5) and Definition 5.1.1 can be applied to it.

The following is an immediate consequence of Proposition 5.1.5.

Corollary 5.1.7 Every finite extension K ⊆ L, where char(K) = 0, is

separable.

Suppose in a separable extension we substitute either K or L with an
intermediate field M . Will the resulting extension be again separable? Yes,
it will.

Proposition 5.1.8 Suppose K ⊆ L is a separable extension and suppose

K ⊆M ⊆ L. Then both extensions K ⊆M and M ⊆ L are separable.

Proof: That K ⊆ M is separable follows directly from the definition, since
every element of M is also an element of L.

Let now u ∈ L and let p and r be the minimal polynomials of u over
K and M respectively. Then p has no multiple roots, since K ⊆ L is a
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separable extension. On the other hand, r divides p in M [x] by Proposition
2.3.10. If in some extension of M r has a multiple root then in the same
extension p has the same multiple root; a contradiction. Thus, r = minu,M

has no multiple roots for all u ∈ L.

5.2 Galois extensions, fixed subfields

Definition 5.2.1 A finite field extension K ⊆ L is a Galois extension if it

is normal and separable.

Notice that for fields of zero characteristic (in particular, for all extensions
of Q—which is the main case as far as this course is concerned) all finite
extensions are automatically separable by Corollary 5.1.7. So normality is
all we need to satisfy in this case.

The property of being Galois is inherited by intermediate extensions, in
the following sense.

Proposition 5.2.2 Suppose K ⊆ L is a Galois extension and suppose M is

an intermediate field, that is, K ⊆ M ⊆ L. Then M ⊆ L is also a Galois

extension.

Proof: First of all, M ⊆ L is a finite extension by the Tower Law. Also,
M ⊆ L is separable by Proposition 5.1.8. Finally, Corollary 4.3.10 yields
that M ⊆ L is normal.

Note that the extension K ⊆M , though being finite and separable, does
not need to be normal and hence it does not need to be Galois.

We will now see what this property (being Galois) means for the Galois
group of the extension.

Theorem 5.2.3 Suppose K ⊆ L is a Galois extension. Then |Gal(L/K)| =
[L : K].

Proof: We proceed by induction on n = [L : K]. If n = 1, then L = K, and
so Gal(L/K) = Gal(L/L) = 1. Now suppose that n > 1. It follows from
normality and Theorem 4.3.9 that L is the splitting field for some f ∈ K[x].
Since L > K and since L is generated by the roots of f , there exists some
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root u with u 6∈ K. Let p ∈ K[x] be the minimal polynomial of u over K.
By Corollary 4.3.3 (or Corollary 4.3.4), the set of roots of p, say R, coincides
with the orbit of u under the action of G = Gal(L/K). Notice that p divides
f , since f(u) = 0. Thus, the roots of p are also roots of f . Since f splits
in L (that is, it has no new roots in any extension of L), so also does p.
By separability, p = minu,K has no multiple roots, which means that p has
exactly deg (f) distinct roots; that is, |R| = deg (p).

Since G acts transitively on R, we have the equality |G| = |R||Gu| by
the Orbit–Stabilizer theorem. By the above, |R| = deg (p), which, in turn,
is equal to [K(u) : K] by Theorem 3.1.3. Also, Gu = Gal(L/K(u)) by
Proposition 4.2.6. Notice that M = K(u) > K and so [L : M ] < [L :
K] = n by the Tower Law. Notice also that the extension M ⊆ L is Galois
by Proposition 5.2.2. So it satisfies the assumptions of our theorem. By
induction, since [L : M ] < n, we have that |Gal(L/M)| = [L : M ].

Putting everything together, we obtain the sequence of equalities: |G| =
|R||Gu| = deg (p) |Gu| = [K(u) : K]|Gu| = [K(u) : K]|Gal(L/K(u))| = [M :
K]|Gal(L/M)| = [M : K][L : M ]. By the Tower Law, the latter is [L : K].

Definition 5.2.4 Let L be a field and H a subgroup of Aut(L). The fixed

subfield of H in L is Fix(H) = {a ∈ L |α(a) = a for all α ∈ H}.

We leave it as an exercise to check that Fix(H) is indeed a subfield. The
following proposition summarizes the basic properties of fixed subfields.

Proposition 5.2.5 Suppose L is a field and G = Aut(L).

1. If H = 1 is the trivial (identity) subgroup of G then Fix(H) = L.

2. If J ≤ H ≤ G then Fix(H) ⊆ Fix(J)

3. If H ≤ G and K = Fix(H) then H ≤ Gal(L/K).

4. If K is a subfield of L and H = Gal(L/K) then K ⊆ Fix(H).

How does one compute the fixed subfield for a given subgroup H? For
α ∈ Aut(L) set Fix(α) = {a ∈ L |α(a) = a}. Thus, Definition 5.2.4 just tells
us that

Fix(H) = ∩α∈HFix(α).
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As the following statement (also left as an exercise) shows, we can leave
in this intersection only a small set of α′s that generates H (instead of all
elements of H).

Proposition 5.2.6 Suppose A is a subset of Aut(L) and H = 〈A〉. Then

Fix(H) = ∩α∈AFix(α).

This allows us to ignore most of the elements of H. Next, suppose that A
and H = 〈A〉 lie in G = Gal(L/K) for a finite extension K ⊆ L. Then every
α ∈ A is a K-automorphism of L, that is, α turns into a linear transformation
Tα : L→ L, where L is viewed as a vector space overK. (This transformation
is, really, α itself, that is, Tα(v) = α(v) for v ∈ L.) From the linear algebra
point of view, Fix(α) is a subspace of L, namely, Fix(α) is the eigenspace of
Tα corresponding to the eigenvalue 1 (since Tα(v) = α(v) = v = 1Kv, for
v ∈ Fix(α).) Thus, finding the fixed subfield is essentially a linear algebra
problem, which can be done efficiently on a computer (but not by hand,
unless [L : K] is small).

The following important result will be needed in the next section. We
skip the proof because it would take us out of the boundaries set for the
course.

Proposition 5.2.7 Suppose L is a field and G is a finite subgroup of Aut(L).

Let K = Fix(G). Then [L : K] ≤ |G|.

This result is really all we will need in the final section. However, a lot
more can be proved under the same assumptions, as the following final result
of the section shows.

Theorem 5.2.8 Suppose L is a field and G is a finite subgroup of Aut(L).

Set K = Fix(G). Then K ⊆ L is a Galois extension and G = Gal(L/K). In

particular, |G| = [L : K].

Proof: Let u ∈ L and let T = {α(u) |α ∈ G} be the orbit of u under the
action of G. Clearly, T is a finite set. Define p =

∏
v∈T (x − v) ∈ L[x].

For α ∈ G, let ᾱ be the corresponding polynomial rewriting on L[x]. Then
ᾱ(p) =

∏
v∈T ᾱ(x− v) =

∏
v∈T (x− α(v)) = p. The first equality here is due

to the fact that ᾱ is a homomorphism, and the last equality is due to the
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fact that α permutes the orbit T , so we have the same linear factors, as in
p, but possibly in a different order.

If p = akx
k + · · · + a0 then ᾱ(p) = α(ak)x

k + · · · + α(a0). Thus, the
equality ᾱ(p) = p means that α(ai) = ai for all coefficients ai of p. That is,
every ai is contained in Fix(α) for all α ∈ G. Therefore, every ai is contained
in K = Fix(G). We have established that p ∈ K[x].

Notice that p is monic since it the product of monic linear factors, and
also notice that p(u) = 0, since u ∈ T . By Proposition 5.2.5 (3), G ≤
Gal(L/K), so by Corollary 4.2.5, T is a subset of the set of roots of the
minimal polynomial minu,K . This means that deg (minu,K) ≥ |T | = deg (p).
On the other hand, deg (minu,K) ≤ deg (p), since p(u) = 0 and hence minu,K

divides p. We conclude that deg (p) = deg (minu,K) and hence p = minu,K .
On the one hand, this means that the extension K ⊆ L is separable, since

p = minu,K has exactly deg (p) = |T | distinct roots, for all u ∈ L. On the
other hand, we also get the normality. Indeed, if g ∈ K[x] is irreducible and
g has a root in L, say, u. Then 1

a
g = minu,K = p, where a is the leading

coefficient of g. By the above, p splits in L, and hence so does g, implying by
Definition 4.3.7 that K ⊆ L is normal. Thus, K ⊆ L is a Galois extension
(finiteness of the extension follows from Proposition 5.2.7).

Since G ≤ Gal(L/K), Theorem 5.2.3 implies that |G| ≤ |Gal(L/K)| =
[L : K]. Since |G| ≥ [L : K] by Proposition 5.2.7, we obtain |G| = [L : K],
which yields G = Gal(L/K).

5.3 Fundamental Theorem of Galois Theory

Let K ⊆ L be a Galois extension. The Fundamental Theorem of Galois
Theory (FTGT) relates the structure of the extension K ⊆ L to the structure
of the group Gal(L/K). This is the main theorem of this course, and its
statement and subsequent proof will be split up and summarized at the end.

Let F = {M |K ≤ M ≤ L} be the set of all intermediate subfields of
the extension. Let G be the set of all subgroups of G = Gal(L/K). Define a
map Φ : F → G by

Φ(M) = Gal(L/M),

and a map Ψ : G → F by

Ψ(H) = Fix(H).
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The following result contains the first two parts of the FTGT.

Theorem 5.3.1 1. The mappings Φ and Ψ are bijective; furthermore,

Φ−1 = Ψ; i.e., for all M ∈ F we have M = Fix(Gal(L/M)), and for

all H ∈ G we have H = Gal(L/Fix(H)).

2. Φ and Ψ are both order-reversing; that is, for M1,M2 ∈ F , M1 ⊆ M2,

we have Φ(M2) ≤ Φ(M1), and for H1, H2 ∈ G, H1 ≤ H2, we have

Ψ(H2) ⊆ Ψ(H1).

Proof: We first show that Gal(L/Fix(H)) = H for all H ∈ G. Let M =
Fix(H). Thus, we need to see that H = Gal(L/M). By Proposition 5.2.5
(3), H ≤ Gal(L/M). Notice that M ⊆ L is a Galois extension by Proposition
5.2.2. Hence, by Theorem 5.2.3, |Gal(L/M)| = [L : M ]. Therefore, |H| ≤
|Gal(L/M)| = [L : M ] ≤ |H| (the second inequality is due to Proposition
5.2.7). Clearly, this means that both inequalities here are in fact equalities.
In particular, |H| = |Gal(L/M)|, yielding H = Gal(L/M).

Next, for an arbitrary M ∈ F , let H = Gal(L/M) and M ′ = Fix(H).
We need to see that Fix(Gal(L/M)) = M , that is, M ′ = M . By Proposition
5.2.5 (4), M ⊆M ′. Furthermore, by the above, H = Gal(L/M ′). Since both
extensions M ⊆ L and M ′ ⊆ L are Galois by Proposition 5.2.2, Theorem
5.2.3 now gives [L : M ] = |H| = [L : M ′]. Hence [L : M ] = [L : M ′]. By the
Tower Law we now get [M ′ : M ] = 1, yielding M ′ = M .

Part (2) of our theorem is a combination of Proposition 4.2.2 (3) and
Proposition 5.2.5 (2).

Traditionally, the third part of the FTGT is the claim that |Gal(L/M)| =
[L : M ] for all M ∈ F . Since this has already been proven in Theorem 5.2.3,
we insert here a statement that gives slightly more.

Proposition 5.3.2 If M,M ′ ∈ F and M ⊆ M ′ then [M ′ : M ] = [Φ(M) :

Φ(M ′)]. Equivalently, if H,H ′ ∈ G and H ≥ H ′ then [H : H ′] = [Ψ(H ′) :

Ψ(H)].

Proof: We will prove the first statement. We have [Φ(M) : Φ(M ′) =

[Gal(L/M) : Gal(L/M ′)] = |Gal(L/M)|
|Gal(L/M ′)| = [L:M ]

[L:M ′]
= [M ′ : M ]. The last equality

is due to the Tower Law.

48



Corollary 5.3.3 If M ∈ F then [M : K] = [G : Φ(M)] = [G : Gal(L/M)],

where G = Gal(L/K).

Proof: Apply Proposition 5.3.2 to the subfields K and M .

We discuss two examples.

Example 5.3.4 1. Consider L = Q(
√

2, i). We already know (cf. Ex-

ample 4.3.5 (1)) that L is the splitting field for f = (x2 − 2)(x2 +

1) = x4 − x2 − 2, hence Q ⊆ L is Galois. We also determined that

[L : Q] = |Gal(L/Q)| = 4. More precisely, G = Gal(L/Q) is generated

by two elements: α, induced by the complex conjugation, fixes ±
√

2

and interchanges ±i; similarly, β fixes ±i and interchanges ±
√

2. It

follows that G = 〈α〉 × 〈β〉 ∼= V4, the Klein four group.

The subgroups of G are the trivial subgroup 1, the entire G, and three

intermediate subgroups: 〈α〉, 〈β〉, and 〈αβ〉. Let us determine Ψ(H)

for all these subgroups H. Clearly, Ψ(1) = L and Ψ(G) = Q. Also, α

fixes all of Q(
√

2), hence the latter field is Ψ(〈α〉). Similarly, Q(i) =

Ψ(〈β〉). It remains to determine Ψ(〈αβ〉). Notice that
√

2i ∈ L and

αβ(
√

2i) = α(−
√

2i) = −
√

2(−i) =
√

2i. Clearly,
√

2i 6∈ Q and so

Q(
√

2i) = Ψ(〈αβ〉).

2. Here is a slightly more complicated example. Let L be the splitting

field of x3 − 2. In Example 4.3.5 (2) we determined that Gal(L/Q)

induces on the set R = { 3
√

2, 3
√

2ζ, 3
√

2ζ2}, where ζ = e
2πi
3 , the full

group Sym(R) ∼= S3.

The group Sym(R) can be generated by two elements: α fixes 3
√

2

and interchanges the other two elements of R (α is induced by the

complex conjugation); β induces a 3-cycle on R, namely, β( 3
√

2) =
3
√

2ζ, β( 3
√

2ζ) = 3
√

2ζ2, and β( 3
√

2ζ2) = 3
√

2. Then the subgroups of
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G = Sym(R) are as follows: 1, G, 〈β〉 (of order three), 〈α〉, 〈αβ〉, and

〈αβ2〉 (the last three subgroups are of order two).

Let us determine the subfields of L. Clearly, Ψ(1) = L and Ψ(G) = Q.

Since α fixes 3
√

2, we have Q( 3
√

2) = Ψ(〈α〉) (cf. Proposition 4.2.6).

Similarly, by direct computation, αβ fixes 3
√

2ζ and αβ2 fixes 3
√

2ζ2.

Therefore, Q( 3
√

2ζ) = Ψ(〈αβ〉) and Q( 3
√

2ζ2) = Ψ(〈αβ2〉).

It remains to determine Ψ(〈β〉). However, β does not fix any roots from

R. What should we do? Notice that ζ =
3√2ζ
3√2

∈ L. Furthermore, the

minimal polynomial of ζ is x3−1
x−1

= x2 +x+1. Therefore, [Q(ζ) : Q] = 2

and so [L : Q(ζ)] = [L:Q]
[Q(ζ):Q]

= 6
2

= 3. Thus, the subfield Q(ζ) must

correspond to a subgroup H ≤ G of order three. Since 〈β〉 is the only

such subgroup, we conclude that Ψ(〈β〉) = Q(ζ).

If α ∈ G = Gal(L/K) and M ∈ F then α(M) is also an intermediate
subfield, i.e., it belongs to F . What is the relation between the subgroups
Φ(M) and Φ(α(M)) of G?

Proposition 5.3.5 Let α ∈ G = Gal(L/K), and M ∈ F . Then

Φ(α(M)) = αΦ(M)α−1.

So Gal(L/M) = Φ(M) EG if and only if α(M) = M for all α ∈ G.

Proof: For β ∈ G set β′ = α−1βα.
Suppose first that β ∈ Φ(α(M)) = Gal(L/α(M)). This means that β

fixes every element a ∈ α(M). Suppose b ∈ M . Then β′(b) = α−1βα(b) =
α−1β(α(b)) = α−1(α(b)) = b. Here we used that α(b) ∈ α(M) and hence
β(α(b)) = α(b). Since β′(b) = b for all b ∈M , we have that β′ ∈ Gal(L/M) =
Φ(M), and hence β = αβ′α−1 ∈ αΦ(M)α−1, proving that Φ(α(M)) ≤
αΦ(M)α−1.

For the reverse inclusion, suppose β ∈ αΦ(M)α−1, that is, β′ ∈ Φ(M) =
Gal(L/M). For a ∈ α(M) let b ∈ M be such that a = α(b) (in fact,
b = α−1(a)). Then β(a) = αβ′α−1(a) = αβ′(b) = α(b) = a, where β′(b) = b,
since b ∈ M . Thus, β(a) = a for all a ∈ α(M), that is, β ∈ Gal(L/α(M)) =
Φ(α(M)).
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So Φ(α(M)) = αΦ(M)α−1. If Φ(M) is normal in G, then Φ(α(M)) =
Φ(M) and vice versa. Since Φ is a bijection, α(M) = M for all α ∈ G.

This proposition is needed to prove part four of the FTGT. Recall that
the extension M ⊆ L is Galois for all M ∈ F . However, this is not in general
true for the extension K ⊆M .

Theorem 5.3.6 For M ∈ F , the extension K ⊆ M is Galois if and only if

Gal(L/M) = Φ(M) EG = Gal(L/K).

Proof: Suppose the extension K ⊆ M is Galois. Then K ⊆ M is a normal
extension and hence M is the splitting field of some polynomial f ∈ K[x].
According to Proposition 4.3.1 this means that α(M) = M for all α ∈ G.
By Proposition 5.3.5, it now follows that Gal(L/M) = Φ(M) EG.

Now suppose that Φ(M) = Gal(L/M) is normal in G = Gal(L/K), which
means, by Proposition 5.3.5, that α(M) = M for all α ∈ G. Clearly, the
extension K ⊆M is finite and separable, since K ⊆ L is finite and separable.
So we just need to see that K ⊆M is a normal extension. Suppose g ∈ K[x]
is an irreducible polynomial, having a root, say u, in M . We need to show
that g splits in M . Since K ⊆ L is normal, g splits in L. Let R be the set of
roots of g in L. By Corollary 4.3.3, G acts transitively on R. If v ∈ R then,
by the transitivity, there exists α ∈ G, such that v = α(u). Since u ∈ M
and α(M) = M , we obtain that v ∈ M . Thus, R ⊆ M , which means that g
splits already in M . This verifies Definition 4.3.7. Therefore, the extension
K ⊆M is normal, and hence it is Galois.

Suppose K ⊆ M is Galois for some M ∈ F . Can we determine the
Galois group of this extension? The answer to this is given by part five of
the FTGT.

Theorem 5.3.7 If M ∈ F and the extension K ⊆ M is Galois, then

Gal(M/K) ∼= G/Gal(L/M), where G = Gal(L/K).

Proof: By Theorem 5.3.6, Gal(M/K) E G and so the above factor group
makes sense. By Proposition 5.3.5, we also know that α(M) = M for all α ∈
G. Consider the mapping π : α 7→ α|M . This mapping π is a homomorphism
from G to Gal(M/K), since α|M ∈ Gal(M/K) for all α ∈ G. Observe that
kerπ = {α ∈ G |α|M = id}. Thus, kerπ = Gal(L/M). By Proposition 4.3.2,
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every β ∈ Gal(M/K) extends to some α ∈ G. Hence im π = Gal(M/K).
Now the first isomorphism theorem yields the required isomorphism.

We remark that the equality im π = Gal(M/K) could also be established

by counting. Namely, | im π| = |G|
| ker π| = |Gal(L/K)|

|Gal(L/M)| = [L:K]
[L:M ]

= [M : K] =

|Gal(M/K)|. So we must have im π = Gal(M/K).
Let us see what all these results give us for the two fields from Example

5.3.4.

Example 5.3.8 1. If L = Q(
√

2, i) then the group G = Gal(L/Q) is

abelian, which means that the operation of conjugation (as in Propo-

sition 5.3.5) is trivial. Hence every automorphism of L stabilizes every

subfield of L. In particular, the three intermediate subfields Q(
√

2),

Q(i), and Q(
√

2i) are Galois extensions of Q. Furthermore, in each of

the three cases Gal(M/Q) ∼= G/Φ(M) is of order two.

2. Let now L = Q( 3
√

2, ζ) be the splitting field of x3 − 2. In this case

G = Gal(L/Q) ∼= S3 is nonabelian, hence conjugation is a nontrivial

operation. The subgroup 〈β〉 has index two in G and hence, by a well-

known fact from the group theory, it is normal in G. This means that

the corresponding subfield Q(ζ) is left invariant by all automorphisms of

L, and the extension Q ⊆ Q(ζ) is a Galois extension. We get now that

Gal(Q(ζ)/Q) ∼= G/〈β〉 is of order two. The nontrivial element from

Gal(Q(ζ)/Q) can be obtained by restricting α (complex conjugation!)

to Q(ζ).

We know that β( 3
√

2) = 3
√

2ζ. Hence β(Q( 3
√

2)) = Q( 3
√

2ζ), which

corresponds to the fact that β〈α〉β−1 = 〈αβ〉 (this can be verified

directly in G). Similarly, β(Q( 3
√

2ζ)) = Q( 3
√

2ζ2) and β〈αβ〉β−1 =

〈αβ2〉. Finally, β(Q( 3
√

2ζ2)) = Q( 3
√

2) and β〈αβ2〉β−1 = 〈α〉.

In particular, none of the subfields Q( 3
√

2), Q( 3
√

2ζ), and Q( 3
√

2ζ2) is a

Galois extension of Q.
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We conclude with a summary of the FTGT:

Theorem 5.3.9 (Fundamental Theorem of Galois Theory) Suppose K ⊆
L is a Galois extension and let F , G, Φ, and Ψ be as before.

1. Φ and Ψ are bijective; more precisely, Φ−1 = Ψ.

2. Φ and Ψ are order-reversing.

3. If M ∈ F , then [L : M ] = |Gal(L/M)|.

4. If M ∈ F then K ⊆M is Galois if and only if Gal(L/M)EGal(L/K).

5. If M ∈ F and K ⊆M is Galois, then

Gal(M/K) ∼= Gal(L/K)/Gal(L/M).
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