Example Set #2

- 1. Use Eisenstein's Criterion to show that $f = x^5 6x^4 15x^3 + 18x^2 + 6x 12 \in \mathbb{Q}[x]$ is irreducible.
- 2. Suppose K is a field and $f \in K[x]$.
 - (a) For $a \in K$, set g = f(x + a). Prove that f is irreducible in K[x] if and only if g is irreducible in K[x].
 - (b) For $a \in K$, $a \neq 0$, set g = f(ax). Prove that f is irreducible in K[x] if and only if g is irreducible in K[x].
- 3. Use Eisenstein's Criterion and Problem 2(a) to show that $f = x^4 4x^3 + 6x^2 7x + 10 \in \mathbb{Q}[x]$ is irreducible.
- 4. Suppose $K \subseteq L$ is a field extension and $u \in L$. Let $p = \min_{u,K} \in K[x]$.
 - (a) For $a \in K$, set v = u + a and q = p(x a). Prove that q is the minimal polynomial of v over K, that is, $q = \min_{v,K}$.
 - (b) For $a \in K$, $a \neq 0$, set v = au and $q = a^n p(\frac{x}{a})$, where $n = \deg(p)$. Prove that q is the minimal polynomial of v over K.
- 5. Suppose that $u \in \mathbb{C}$ is a root of the polynomial $f = x^2 x + 2$.
 - (a) Prove that f is the minimal polynomial of u over \mathbb{Q} .
 - (b) Compute the minimal polynomials of the numbers v = u 1 and $w = \frac{u}{2}$.
 - (c) Compute the minimal polynomial of z = 2u + 1.
- 6. Suppose u is a root of $2x^3 x^2 + 3x + 1$. Determine the minimal polynomial of u over \mathbb{Q} .
- 7. Suppose again $u \in \mathbb{C}$ is a root of the polynomial $f = x^2 x + 2$.
 - (a) Use f to express u^2 as a linear combination of 1 and u.
 - (b) Using (a), express u^3 and u^4 as linear combinations of 1 and u.
- 8. For w = 2u + 1, using the expression for u^2 from Problem 7(a), write w^2 as a linear combination of 1 and u. Then express w^2 as a linear combination of 1 and w. Does your result agree with Problem 5(c)?
- 9. Try a slightly different approach:

- (a) Using the expression for w^2 and w in terms of 1 and u from Problem 8, express f(w), where $f = a_2x^2 + a_1x + a_0 \in \mathbb{Q}[x]$, in terms of 1 and u.
- (b) Determine all triples $a_0, a_1, a_2 \in \mathbb{Q}$, such that f(w) = 0. (This should lead to a system of two linear equations with a_0, a_1 , and a_2 as the unknowns—solve this system!).
- (c) Is there such a triple with $a_2 = 1$ (monic polynomial f)?
- 10. Suppose u is a root of $2x^3 x^2 + 3x + 1$. Determine the minimal polynomial of $u^2 + 1$ over \mathbb{Q} . (Methods of Problem 9 generalize! The coefficients of the polynomial may not be pretty—sorry!)