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This course in on algebraic number theory. This means studying problems
from number theory with methods from abstract algebra. For a long time
the main motivation behind the development of algebraic number theory was
the Fermat Last Theorem. Proven in 1995 by Wiles with the help of Taylor,
this theorem states that there are no positive integers x, y and z satisfying
the equation

xn + yn = zn,

where n ≥ 3 is an integer. The proof of this statement for the particular case
n = 4 goes back to Fibonacci, who lived four hundred years before Fermat.
Modulo Fibonacci’s result, Fermat Last Theorem needs to be proven only
for the cases where n = p is an odd prime. By the end of the course we
will hopefully see, as an application of our theory, how to prove the Fermat
Last Theorem for the so-called regular primes. The idea of this belongs
to Kummer, although we will, of course, use more modern notation and
methods.

Another accepted definition of algebraic number theory is that it studies
the so-called number fields, which are the finite extensions of the field of ra-
tional numbers Q. We mention right away, however, that most of this theory
applies also in the second important case, known as the case of function fields.
For example, finite extensions of the field of complex rational functions C(x)
are function fields. We will stress the similarities and differences between the
two types of fields, as appropriate.

Finite extensions of Q are algebraic, and this ties algebraic number the-
ory with Galois theory, which is an important prerequisite for us. Other
prerequisites include basic ring theory (homomorphisms, ideals, factor rings;
also domains and field of fractions) and elementary number theory (primes
and prime factorization). We will very briefly review those topics, as they
become necessary.

In our exposition of algebraic number theory we follow the book “A Brief
Guide to Algebraic Number Theory” by Swinnerton-Dyer. We will cover
Chapters 1 and 2, as well as as large part of Chapter 3 as we can manage.
We will also need the first half of the Appendix.
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Chapter 1

Algebraic integers

We first cover the necessary topics from the Appendix of the book. This
includes finitely generated abelian groups, the language of modules for rings,
and norms and traces on finite field extensions. These topics are not usually
covered in our courses. We will however skip some of the proofs to save time,
or leave them as exercises.

After that we introduce the algebraic integers and develop the funda-
mental theory of the ring of integers. We note that below the word “integer”
is often used to mean “algebraic integer”, rather than to refer to just the
elements of Z, which we will often call rational integers.

1.1 Finitely generated abelian groups

In this section all groups are abelian. Accordingly, we will use additive
notation for groups.

A setX of elements in a groupG is said to generate G ifX is not contained
in any proper subgroup of G. We will refer to the individual elements of X
as to generators; note, however, that this property makes no sense without
the entire set X. We say that G is finitely generated if it admits a finite set of
generators. It is clear that every factor group of a finitely generated group is
finitely generated. Indeed, take a finite set of generators X in G and consider
its image X̄ in the factor group Ḡ. Then X̄ is a finite set of generators for
Ḡ.

We will see that a similar statement is true for subgroups, that is, ev-
ery subgroup of a finitely generated (abelian!) group is finitely generated,
although the proof of that is not as easy.

An element g ∈ G is called a torsion element if it has a finite order. (The
zero element has order one and so it’s a torsion element according to this
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definition.) We say that G is torsion-free if zero is the only torsion element
in G.

Proposition 1.1.1 All torsion elements of an abelian group G form a sub-
group GT . Furthermore, G/GT is torsion-free.

Proof: Both statements are left as exercises.

The subgroup GT is called the torsion subgroup of G. If G is finitely
generated then G/GT is finitely generated and torsion-free, so let us take a
look at such groups.

Proposition 1.1.2 Suppose G is a finitely generated torsion-free abelian
group. Let {g1, g2, . . . , gn} be a set of generators that is minimal with re-
spect to inclusion. Then these generators satisfy no non-trivial relation

a1g1 + a2g2 + . . .+ angn = 0,

with a1, a2, . . . , an ∈ Z.

Proof: By contradiction, suppose non-trivial relations exist for some minimal
generating sets. Select a minimal generating set {g1, g2, . . . , gn} and a non-
trivial relation a1g1 + a2g2 + . . . + angn = 0, so that |a1| + |a2| + . . . + |an|
is minimal possible. Substituting −gi for gi, as needed, we may assume that
all ai are nonnegative.

We note that at least two of the ai must be non-zero. Indeed, if exactly one
ai is non-zero then the corresponding gi is a torsion element; a contradiction,
since gi 6= 0 and G is torsion-free.

Without loss of generality assume that a1 and a2 are nonzero and, fur-
thermore, that a1 ≤ a2. The above relation can be rewritten as a1(g1 +
g2) + (a2 − a1)g2 + a3g3 . . . + angn = 0, which is a nontrivial (as a1 6= 0)
relation for the minimal generating set g1 + g2, g2, g3, . . . , gn. This relation
has a smaller sum of coefficients, which contradicts our choice. This is the
final contradiction, proving the claim.

Note the absence of non-trivial relations for the generators {g1, g2, . . . , gn}
means that G ∼= Zn, namely, G = 〈g1〉 × 〈g2〉 × . . . × 〈gn〉. Indeed, the
isomorphism from Zn onto G can be defined simply as (a1, a2, . . . , an) 7→
a1g1 +a2g2 + . . .+angn. The group Zn (and hence also our group G) is called
the free abelian group of rank n.

Any minimal set of generators for G as above will be called a base of G.
All bases of G have the same size n, the rank of G. This can be seen as
follows: n is an invariant of G because for any prime number p we have that
G/pG ∼= Zn/pZn ∼= Zn

p is a group of order pn. Here for an abelian group G,
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we denote by pG the subgroup {pg | g ∈ G}. Thus we see that Zn ∼= Zm if
and only if n = m.

Proposition 1.1.3 Suppose G is an abelian group and H ≤ G such that
G/H is a free abelian group of some rank n. Then G = H × K for some
K ≤ G with K ∼= Zn.

Proof: Choose a base {k1 + H, k2 + H, . . . , kn + H} in G/H and define
K = 〈k1, k2, . . . , kn〉. Then, as no integral linear combination of k1, k2, . . . , kn
is contained in H, this set is a base for K and, furthermore, K ∩ H = 0.
Since also G = H +K, we get that G = H ×K.

As a consequence of this we determine the structure of an arbitrary finitely
generated abelian group.

Corollary 1.1.4 If G is a finitely generated abelian group then G = GT ×F
for a subgroup F ≤ G that is free abelian of some rank n.

Proof: By Proposition 1.1.1, G/GT is torsion-free. Hence by Proposition
1.1.2, G/GT is free abelian of some rank n. Now an application of Proposition
1.1.3 completes the proof.

Corollary 1.1.5 If G is a finitely generated abelian group then GT is a finite
group.

Proof: Indeed, by Corollary 1.1.4, GT
∼= G/F for some subgroup F ≤ G.

Hence GT is finitely generated. Now an abelian group generated by finitely
many elements of finite order is finite. The details of this last step are left
as an exercise.

These two corollaries mean in short that every finitely generated abelian
group is a direct product of cyclic groups (finite or infinite). Indeed, GT ,
being a finite group, is the direct product of finite cyclic groups, while the
complementary factor F is isomorphic to Zn. We note that this n (the rank
of G/GT ) is an invariant of G and will be called the free rank of G.

Lastly, we will show that the subgroups of finitely generated groups are
finitely generated and also relate the free rank of the subgroup with the free
rank of the group.

We first deal with the torsion-free case. We will need the following lemma.

Lemma 1.1.6 Suppose G is free abelian of rank n. Suppose further that
H ≤ G and it is known that H is also free abelian of some rank m. Then
m ≤ n.
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Proof: We note that G/H is a finitely generated group. Hence its torsion
subgroup (G/H)T is finite. Let p be a prime that does not divide the order
of (G/H)T . We claim that pG∩H = pH. Indeed, clearly, pH ⊆ pG. Let x ∈
pG∩H. Then x = pg for some g ∈ G. Furthermore, p(g+H) = pg+H = H.
Hence the coset g + H is a torsion element in G/H and its order divides p.
Since p was chosen to be coprime to (G/H)T , we conclude that g +H is the
zero element of G/H, that is, g + H = H and g ∈ H. Hence x = pg ∈ pH.
We have shown that pG ∩H = pH.

Now by the Second Isomorphism Theorem,

H/pH = H/(pG ∩H) ∼= (H + pG)/pG ≤ G/pG.

Since |H/pH| = pm and |G/pG| = pn, we conclude that m ≤ n.

Proposition 1.1.7 If G is free abelian of rank n and H ≤ G then H is also
free abelian of some rank r ≤ n.

Proof: We just need to show that H is finitely generated. Indeed, H is
torsion-free, since so is G, which means that H is free abelian, and the above
lemma completes the proof.

To show that H is finitely generated, consider a subgroup K ≤ H, that
is free abelian of the largest possible rank. (This is well-defined, since the
lemma above limits the possible rank of free abelian subgroups by n.) We
claim that H/K is entirely torsion, that is, H/K = (H/K)T . Indeed, if not,
H̄ = H/K contains a subgroup F̄ ∼= Z. Let F be the full preimage of F̄ in H
(that is, F = {x ∈ H | x̄ = x + H ∈ F̄}). Then K ≤ F and F/K = F̄ ∼= Z.
By Proposition 1.1.3, F is free abelian of the rank one higher than the rank
of K; a contradiction with the choice of K. Hence indeed, H/K is entirely
torsion.

Since H/K ≤ G/K, which is finitely generated and hence its torsion
subgroup is finite by Corollary 1.1.5, we conclude that H/K is a finite group.
Pick a base k1, k2, . . . , ks inK and a set of generators h1+K,h2+K, . . . , hr+K
in H/K. Clearly, k1, . . . , ks, h1, . . . , hr generate H.

We also note the following fact. Its proof is a modification of the proof
of the lemma above. It is left as an exercise.

Proposition 1.1.8 If G is free abelian and H ≤ G then G and H have the
same rank if and only if G/H is finite.

Finally, the statement about the general finitely generated abelian groups.
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Corollary 1.1.9 If G is a finitely generated abelian group and H ≤ G then
H is also finitely generated. Furthermore, the free rank of H is at most the
free rank of G.

Proof: We observe that HT ≤ GT . Hence, HT is a finite group, since GT is
so. Moreover, HT = H ∩ GT , which means that H/HT = H/(H ∩ GT ) ∼=
(H +GT )/GT . The latter is a subgroup of the free abelian group G/GT . By
Proposition 1.1.7, H/HT is free abelian and its rank is bounded by the rank
of G/GT . This yields all statements.

1.2 Modules

In this course we will be using the language of modules. A module over a
ring R (or an R-module) is an abelian group M together with a product
operation R×M →M that satisfy the following properties:

(M1) (Associativity) r(sm) = (rs)m for all r, s ∈ R and m ∈M ;

(M2) (Distributivity I) (r + s)m = rm+ sm for all r, s ∈ R and m ∈M ;

(M3) (Distributivity II) r(m+ n) = rm+ rn for all r ∈ R and m,n ∈M .

We will be exclusively dealing with the case where R is a domain (also
called an integral domain), that is, a commutative ring with one and with
no zero divisors. Whenever the ring has one, we will additionally require

(M4) (Identity) 1m = m for all m ∈M .

There are at least two (and possibly three) kinds of modules that you have
already met. If R = F is a field then an F -module is simply a vector space
with coefficients from F . Secondly, in the Representation Theory course you
may have met the group modules. Note that a module for a group G over
a field F is nothing but an FG-module where FG is the group algebra of G
over F .

The last example is more closely related to the present course. A Z-
module is nothing but an abelian group. First of all, every Z-module M
is an abelian group by definition. Furthermore, the product operation is
uniquely defined. Indeed, as follows from (M1)-(M4), we have, for n ∈ Z and
m ∈M :

nm =


0, if n = 0;

m+m+ . . .+m (n times), if n > 0;
−m−m− . . .−m (|n| times), if n < 0.

(1.1)
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This means that the structure of the Z-module M is entirely specified by
its group structure. Furthermore, the formulas in 1.1 produce a Z-module
structure on an arbitrary abelian group M . Hence Z-modules and abelian
groups are one and the same.

This last example can also be used to illustrate the big difference between
the vector spaces (i.e., modules over fields) and the general modules. For
example, a Q-vector space, as an additive group, is infinite and has no torsion.
In fact, it is always a direct product of several copies of Q (viewed as an
additive group). At the same time, a Z-module can have torsion and can be
finite, even though Z is infinite.

For a set X ⊆ M , where M is an R-module, we will denote by 〈X〉
the submodule of M generated by X, that is, the smallest submodule of M
containing X. We say that M is finitely generated if M = 〈X〉 for a finite
set X. If R = Z then 〈X〉 is the same as the subgroup of M generated by X.
(This is not true for general modules over rings.) Furthermore, M is finitely
generated as a Z-module if and only if it is finitely generated as a group.

Therefore, the following is directly implied by Corollary 1.1.9.

Proposition 1.2.1 If V is a finitely generated Z-module and U is a sub-
module of V then U is also finitely generated.

Lastly, in the book and in our notes we will use the tensor product nota-
tion, such as, say, M ⊗Z Q. We won’t go into what this really means. For
our purposes, it will suffice to know that M ⊗Z Q is a vector space over Q,
which contains M and which is spanned (over Q) by any generating set of
M .

1.3 Algebraic integers

Here we start Algebraic Number Theory proper!

Recall from the Galois Theory course that a field element α ∈ C is al-
gebraic (over Q) if it is a root of a polynomial from Q[x]. All algebraic
elements form a subfield Q̄ of C known as the algebraic closure of Q. This
field Q̄ will be our universe because every number field, i.e., a finite extension
of Q, embeds into Q̄. So we will just think of number fields as subfields of
Q̄.

The main difference between Galois Theory and Algebraic Number The-
ory is that Galois Theory deals exclusively with fields. Algebraic Number
Theory deals, on the other hand, with rings. To define these rings we need
now to introduce special algebraic elements. An element α ∈ Q̄ is an alge-
braic integer if it is a root of a monic polynomial from Z[x]. Recall that a
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monic polynomial is a nonzero polynomial with the leading coefficient equal
to one.

We will first prove two different ways to check that α is an algebraic
integer. For a set of elements A ⊆ Q̄, let Z[A] be the smallest subring of
Q̄ containing A (and Z, of course). When A = {α1, . . . , αn} is finite, we
write Z[α1, . . . , αn] instead of Z[{α1, . . . , αn}]. We will need the following
description of Z[α1, . . . , αn].

Proposition 1.3.1 The subring Z[α1, . . . , αn] consists of all β ∈ Q̄, which
can be expressed as β = f(α1, . . . , αn) for some f ∈ Z[x1, . . . , xn]. In
other words, Z[α1, . . . , αn] is the image of the evaluation homomorphism
Z[x1, . . . , xn]→ Q̄ sending f ∈ Z[x1, . . . , xn] to f(α1, . . . , αn).

In particular, Z[α] consists of all β = f(α), where f ∈ Z[x]. We can now
state and prove the following result.

Proposition 1.3.2 The following conditions are equivalent:

(1) α is a root of a monic polynomial from Z[x];

(2) the minimal polynomial of α over Q is in Z[x]; and

(3) Z[α] is a finitely generated Z-module.

Proof: We will first show that (1) and (2) are equivalent. Clearly, (2) implies
(1), since the minimal polynomial is monic by definition. Suppose α is a root
of a monic polynomial f ∈ Z[x]. Then f = mg, where m ∈ Q[x] is the
minimal polynomial of α and g ∈ Q[x] is just some polynomial. If m ∈ Z[x]
then there is nothing to prove. Otherwise, at least one of the coefficients in
m is not integer and so we can take a prime p that divides the denominator
of that coefficient. Let pa be the highest power of p that divides any of the
denominators in m and, similarly, let pb be the highest power of p that divides
any of the denominators in g. We note that b can be zero, but a ≥ 1 by our
choice of p.

We now reduce the equation pa+bf = (pam)(pbg) modulo p. Namely, we
notice that all coefficients of m′ = pam and g′ = pbg are contained in the
subring R = {a

b
∈ Q | hcf(b, p) = 1} of Q. Furthermore, the mapping φ :

R→ Zp defined by a
b
7→ āb̄−1 (where the bar means taking the integer modulo

p) is a surjective homomorphism of rings. We leave this last statement as
an exercise, but just note that since hcf(b, p) = 1, the congruence class b̂ is
nonzero, and so b̂−1 is defined.

The homomorphism φ also leads to a homomorphism φ̂ : R[x] → Zp[x].

By the choice of pa and pb, both φ̂(pam) and φ̂(pbg) are nonzero, while

8



φ̂(pa+bf) is zero, since all coefficients are integer multiples of p. This is a
contradiction, proving that m has integral coefficients.

Now we prove the equivalence of (1) and (3). First suppose that (1) holds.
Then f(α) = 0 for some monic polynomial f ∈ Z[x]. Let f = xn + g, where
g ∈ Z[x] is, clearly, a polynomial of degree less or equal n − 1. Consider
the Z-submodule V generated by 1, α, α2, . . . , αn−1. Since f(α) = 0, we have
that αn = −g(α) ∈ V . By induction, using αn+m = αmg(α), we have that
all powers of α are in V , which means that Z[α] is a submodule of V . By
Proposition 1.2.1, Z[α] is finitely generated as a Z-module. Hence (3) holds.

Now assume that (3) holds. Pick a finite generating set β1, β2, . . . , βm
for the module Z[α]. By Proposition 1.3.1, every βi is equal to fi(α) for
some fi ∈ Z[x]. Let n be greater than the maximal degree of the fi’s. Since
β1, . . . , βm generate Z[α], we have αn = a1β1 + a2β2 + . . . + amβm for some
a1, . . . , am ∈ Z. Set f = xn − a1f1 − . . . − amfm ∈ Z[x]. Clearly, xn is
the highest term of f , and so f is a monic polynomial. Finally, f(α) =
αn − a1f1(α)− . . .− amfm(α) = αn − a1β1 − . . .− amβm = 0. So (1) holds.

This proposition shows that (2) and (3) are also necessary and sufficient
conditions for α to be an algebraic integer. It follows from (3) and Proposition
1.2.1 that if a subring in Q̄ is finitely generated as a Z module then it consists
entirely of algebraic integers. Clearly, this subring is also finitely generated
as a subring. We will now prove the converse of this statement.

Proposition 1.3.3 Suppose a subring R ⊆ Q̄ is generated by a finite number
of algebraic integer elements. Then R is also finitely generated as a Z-module.

Proof: Suppose the algebraic integers α1, . . . , αm are the generators of R. Let
ni be the order of the minimal polynomial of αi. As above, this means that
every power of αi is an integral linear combination of 1, αi, . . . , α

ni−1
i . Com-

bining this with Proposition 1.3.1, we see that the products αj11 α
j2
2 · · ·αjmm ,

where for each i we have 0 ≤ ji ≤ ni − 1, generate R as a Z-module.

One of the consequences of this proposition is that all algebraic integers
form a subring O of Q̄.

Proposition 1.3.4 The set O of consisting of all algebraic integers is a
subring of Q̄.

Proof: Let α, β ∈ O. We need to show that O also contains αβ and α − β.
By Proposition 1.3.3, Z[α, β] is finitely generated as a Z-module. Since it
contains both Z[αβ] and Z[α−β] as subrings, these subrings are also finitely
generated as Z-modules. Therefore αβ and α− β are algebraic integers.
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For a subfield k of Q̄ (in particular, for a number field k), we let ok = O∩k
be the set of all algebraic integers contained in k. It follows from Proposition
1.3.4 that ok is a subring in k. We will call ok the ring of integers of k. The
ring of integers is in the focus of this course. Let us establish some basic
properties of ok.

Proposition 1.3.5 We have oQ = Z.

Proof: If α ∈ Q then the minimal polynomial of α is simply the degree one
polynomial f = x − α ∈ Q[x]. Thus, by Proposition 1.3.2, part (2), α is an
algebraic integer if and only if f has integral coefficients, that is, if α ∈ Z.

Since ok is a subring in a field and since 1 ∈ ok, the ring ok is a domain.
We next show that k can be recovered from its ring of integers ok just like Q
can be recovered from Z.

Proposition 1.3.6 Every algebraic number β ∈ Q̄ can be written as α
a

,
where α ∈ O is an algebraic integer and a ∈ Z. In particular, every subfield
k of Q̄ is the field of fractions of ok.

Proof: Suppose f = xn + an−1x
n−1 + . . . + a1x + a0 ∈ Q[x] is the minimal

polynomial of β. Then for α = aβ, where a ∈ Z, the minimal polynomial is
anf(x

a
) = xn + aan−1x

n−1 + . . .+ an−1a1x+ ana0. In particular, if we choose
a to be a common multiple of all denominators of all coefficients in f then
the resulting minimal polynomial has integral coefficients, and hence this α
is an algebraic integer.

The last claim is now clear.

Note that the last claim is rather weak compared to the first statement of
the proposition. We can express it more adequately by writing k = ok ⊗Z Q.

Before we switch to a new topic, we prove a further property of ok. For
commutative rings R1 ⊆ R2, we say that R1 is integrally closed in R2 is every
r ∈ R2 that is a root of a monic polynomial from R1[x] is, in fact, contained
in R1.

Proposition 1.3.7 The ring O is integrally closed in Q̄. In particular, for
every subfield k of Q̄, we have that ok is integrally closed in k.

Proof: Suppose β ∈ Q̄ is a root of a polynomial f = xn + αn−1x
n−1 + . . . +

α1x + α0, where the coefficients αi are all in O. By Proposition 1.3.3, R =
Z[αn−1, . . . , α0] is finitely generated as a Z-module. Let S = {σ1, . . . , σm}
be a finite set of generators for it. Using essentially the same idea as in
Proposition 1.3.3, we note that the products σiβ

j, where 0 ≤ j ≤ n − 1,
generate R[β] = Z[αn−1, . . . , α0, β] as a Z-module. Again, this implies that
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the subring Z[β] is finitely generated as a Z-module, and hence β is an
algebraic integer.

1.4 Norms and traces

We will need the concepts of the norm and trace of an element in a finite
field extension. This topic really belongs in a Galois Theory course, but we
usually don’t cover this, so here we will have to provide some details.

Suppose K is a finite extension of a field k, say, of degree n. Consider K
as a vector space over k. For α ∈ K, the mapping adα : K → K defined by
adα : β 7→ αβ is called the adjoint action of α. This is a k-linear mapping and
it is invertible whenever α 6= 0. The norm of α with respect to this extension
is defined by normK/k(α) := det adα. Similarly, the trace of α with respect
to the extension K/k is TrK/k(α) = Tr adα, the trace of the adjoint action.
Note that the determinant and trace of a linear mapping are independent of
the choice of the basis, so any basis can be used for the computation.

We first record some immediate properties of the norm and trace.

Proposition 1.4.1 Let α, β ∈ K and a ∈ k. As above, n = [K : k]. Then
the following hold:

(1) normK/k(αβ) = normK/k(α)normK/k(β), that is, norm is multiplica-
tive; also, normK/k(aα) = annormK/k(α);

(2) TrK/k(α+ β) = TrK/k(α) + TrK/k(β) and TrK/k(aα) = aTrK/k(α), that
is, trace is a k-linear mapping from K to k.

Proof: This follows from the properties of the determinant and trace of an
n× n matrix.

Our next goal is to find a practical way to compute the norm and the
trace. We first reduce the computation to the case where K = k(α).

Proposition 1.4.2 Let L = k(α) and m = [K : L]. Then normK/k(α) =
normL/k(α)m and TrK/k(α) = mTrL/k(α).

Proof: Note that L is a subspace of the k-vector space K and that L is
invariant under adα, since α ∈ L. Pick a basis B in L and let the matrix A
represents the action of adα on L with respect to the basis B.

If 0 6= β ∈ K then the action of β on K commutes with the action of α,
since K is commutative. This means that L′ = βL is also an adα-invariant
subspace of the same dimension as L and, furthermore, if we take B′ = βB
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as basis in L′ then the action of adα on L′ is represented with respect to B′
by the same matrix A.

Let β1 = 1, β2, . . . , βm be a basis for K as a vector space over L. Then
L1 = L,L2 = β2L, . . . , Lm = βmL decompose K as a k-vector space, that is,
K = L1⊕L2⊕ . . .⊕Lm. Moreover, if we take as our basis in K the union of
Bi = βiB then the action of adα is represented by the block-diagonal matrix
with m identical blocks equal to A. This immediately yields the claim.

Because of this proposition, to calculate the norm and trace we can first
consider the case whereK = L = k(α). Let f = xs+as−1x

s−1+. . .+a1x+a0 ∈
k[x] be the minimal polynomial of α. We know from Galois Theory that
s = [K : k] and, moreover, B = {1, α, α2, . . . , αs−1} is a basis in K. When we
write the action of adα with respect to this action, we will get the following
matrix M : 

0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2
...

...
...

. . .
...

...
0 0 0 · · · 0 −as−2

0 0 0 · · · 1 −as−1


.

Manifestly, TrK/k(α) = TrM = −as−1 and normK,k(α) = detM = (−1)sa0.
Next, recall that these same numbers, −as−1 and (−1)sa0, coincide with the
sum and product of all roots of f , as a found in a suitable (splitting for f)
extension of K. (Say, in Q̄!)

We could arrive at the same conclusion from a different angle. Namely,
f coincides with the characteristic polynomial of adα, the roots of the char-
acteristic polynomial are the eigenvalues of adα on K and the trace and de-
terminant are equal to the sum and product of the eigenvalues, respectively.
Anyway, if α1 = α, α2, . . . , αs are the roots of f then TrK/k(α) =

∑s
i=1 αi

and normK/k(α) =
∏s

i=1 αi.
In this course we are dealing exclusively with number fields, which have

characteristic zero. In characteristic zero all polynomials are separable, which
means that the roots αi of f are pairwise distinct.

We will now transform the above formulas into statements that can be
generalized to the arbitrary case (where K 6= L = k(α)). We will need the
following fact, which is a particular case (for number fields only) of a more
general result from Galois Theory.

Proposition 1.4.3 Let K/k be an extension of number fields. Every in-
jective homomorphism of k into Q̄ extends to exactly n = [K : k] different
(injective) homomorphisms of K into Q̄.
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Now continuing the discussion of the case K = L = k(α), let Σ = {σ1 =
idK , σ2, . . . , σs} be the full set of homomorphisms σ : K → Q̄ such that σ|k =
idk. Every such σ is uniquely identified by ασ (we will use the exponential
notation for σ’s), which must coincide with one of the roots αi, because α
and ασ have the same minimal polynomial. Without loss of generality we
can assume that the order of σi’s and αi’s match, that is, ασi = αi. (This
agrees with our choice above that α1 = α and σ1 = idK .) Now we can rewrite
our formulas for trace and norm as follows:

TrK/k(α) =
∑
σ∈Σ

ασ

and
normK/k(α) =

∏
σ∈Σ

αsg.

So far we only have this in the case where K = L = k(α). However, the
same statements remain true for arbitrary extensions K/k, as the following
theorem shows.

Theorem 1.4.4 Let K/k be an extension of number fields and let Σ be the
full set of homomorphisms σ : K → Q̄ such that σ|k = idk. Then, for every
α ∈ K, we have TrK/k(α) =

∑
σ∈Σ α

σ and normK/k(α) =
∏

σ∈Σ α
σ.

Proof: The set Σ consists of n = [K : k] homomorphisms. Let L = k(α),
s = [K : k] and m = [K : L] (so that n = sm). By Proposition 1.4.3 there
exists exactly s homomorphsims τi : L → Q̄ with τi|k = idk. Each τi sends
α to a different root αi of f , the minimal polynomial of α. By the same
Proposition 1.4.3, each τi has exactly m elements of Σ, and so this accounts
for all σ ∈ Σ. Each extension of τi sends α to the same αi, hence each root
αi appears as summand in T =

∑
σ∈Σ α

σ exactly m times. This means that
T = m

∑s
i=1 αi = mTrL/k(α). In view of Proposition 1.4.2, the latter equals

TrK/k(α), as claimed. Similarly,
∏

σ∈Σ α
σ = (

∏s
i=1 αi)

m = normL/k(α)m =
normK/k(α).

The last result in this section is useful whenK is constructed as a sequence
of (simple) extensions.

Proposition 1.4.5 Suppose k ⊆ L ⊆ K is a tower of extensions. Then, for
each α ∈ K we have

TrK/k(α) = TrL/k(TrK/L(α))

and, similarly,
normK/k(α) = normL/k(normK/L(α)).

13



Proof: Let s = [L : k], m = [K : L], and n = sm = [K : k]. Let T =
{τ1 = idL, τ2, . . . , τs} be the complete set of all homomorphisms of τ : L→ Q̄
such that τ |k = idk. Similarly, let Σ be the set of all σ : K → Q̄ such that
σ|k = idk. Also, for each i, let Σi be the set of all homomorphisms σ : K → Q̄
such that σ|L = τi. Then by Proposition 1.4.3, each Σi consists of exactly
m elements and the sets Σi partition Σ. For notational convenience let us
extend each τi to the entire Q̄ (in any possible way). We will use the same
notation τi for the resulting automorphism of Q̄.

Now notice that Σi = Σ1τi. Therefore, we have

TrK/k(α) =
∑
σ∈Σ

ασ =
s∑
i=1

(
∑
σ∈Σi

ασ) =
s∑
i=1

(
∑
σ∈Σ1

αστi) =

=
s∑
i=1

(
∑
σ∈Σ1

ασ)τi =
s∑
i=1

(TrK/L(α))τi = TrL/k(TrK/L(α)).

The argument for the norm is quite similar.

1.5 Lattices

A lattice in a finite-dimensional vector space V over Q (or R, or C) is a
subgroup Λ ≤ V that is generated by a basis in V . In this section we establish
that the ring ok (and all its nonzero ideals) are lattices in the number field
k, which we view as a vector space over Q.

We first need a criterion for a subgroup of V to be a lattice.

Proposition 1.5.1 Suppose V is an n-dimensional vector space over Q and
suppose Λ is a subgroup of V . Then Λ is a lattice if and only if the following
three conditions are satisfied:

(1) Λ spans V ;

(2) Λ ∼= Zn; and

(3) Λ is discrete in V .

Furthermore, any two of these conditions imply the third.

Proof: If Λ is a lattice then it is generated by a basis B of V . In particular, Λ
spans V , and so (1) holds. Also, the vectors from B are linearly independent,
hence they form a base in Λ, yielding (2). Conversely, suppose (1) and (2)
are satisfied. Take a base in Λ. The base generates Λ and by (1) it also
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spans V . Since by (2) the number of vectors in the base coincides with the
dimension of V , they must be linearly independent in V and so they form a
basis in V , that is, Λ is generated by a basis, hence it is a lattice.

We next show that (1) and (2) together imply (3). It suffices to see that
the zero has an open neighbourhood U such that Λ ∩ U = {0}. Indeed, if
such a neighbourhood U exists then, for every v ∈ Λ, Uv = v + U is an
open neighbourhood of v, such that Uv ∩ Λ = {v}, and so Λ is discrete.
Consider again a base B = {v1, . . . , vn} in Λ. By (1), B spans V , since it
generates Λ. Also, by (2), B consists of exactly n = dimV vectors, and so
it is a basis in V . Hence every vector v ∈ V can be uniquely written as
v = a1v1 + . . .+ anvn for some coordinates a1, . . . , an ∈ Q (or R). Note that
the elements of Λ have integral coordinates. This means that the open cube
U = {v = a1v1 + . . .+anvn | −1 < ai < 1 for all i} contains only one element
of Λ, the zero. So (3) holds.

Assume now that (1) and (3) hold. Since Λ spans V , it contains a basis
B = {v1, . . . , vn} of V . Let Λ0 be the subgroup of Λ generated by B. Then
clearly Λ0 is a lattice in V and, in particular, Λ0

∼= Zn. We claim that Λ0 has
finite index in Λ, that is, Λ/Λ0 is finite. Using coordinates with respect to B,
introduce a distance function on V via the usual formula. Since Λ is discrete,
d0 = inf{d(u, v) | u, v ∈ Λ, u 6= v} > 0. Pick r = d0

2
. Then for any u, v ∈ Λ,

u 6= v, we have that the open balls Br(u) and Br(v) are disjoint. Now notice
that in every coset of Λ0 in Λ we can pick a representative v = a1v1+. . .+anvn,
where 0 ≤ ai < 1. Thus the number of cosets of Λ0 in Λ does not exceed the
number of elements of Λ in the above unit n-dimensional cube. Clearly, this
number can be estimated from above by the volume of the cube divided by
the volume of the ball Br(v). Hence the number of cosets is finite, say m.

Consider the homomorphism φ : Λ→ Λ defined via v 7→ mv. Then, as the
ground field has characteristic zero, Λ has no torsion and hence φ is injective.
Also, the image of φ is contained in Λ0. Therefore, Λ is isomorphic to a
subgroup of Λ0. This means that Λ is finitely generated. Now Proposition
1.1.8 gives us that Λ has rank n. Since it has no torsion, we conclude that
Λ ∼= Zn, and so (2) holds.

Finally, suppose (2) and (3) hold. Let V0 be the subspace of V spanned
by Λ. Now, with respect to V0, Λ satisfies (1) and (3) and hence Λ is a lattice
in V0. Since Λ ∼= Zn, we conclude that V0 has dimension n, that is, V0 = V .

We now turn to the case where V = k, a number field, and Λ = ok.

Proposition 1.5.2 Let k be a number field. Then ok is a lattice in k viewed
as a vector space over Q.

Proof: Clearly Λ = ok is a subgroup in V = k. We will apply the criteria from
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Proposition 1.5.1. By Proposition 1.3.6, every element of k can be written as
1
m
α, where α ∈ ok and m ∈ Z, m 6= 0. In particular, ok spans k, that is, (1)

holds. Next, since the norm, normk/Q, is given by a homogeneous polynomial
in terms of the coordinates (for an arbitrary basis of k), it is a continuous
function, and so there exists an open neighbourhood U of zero, such that
for all α ∈ U we have |normk/Q(α)| = |normk/Q(α) − normk/Q(0)| < 1 . If
α ∈ ok then normk/Q(α) ∈ Z. Since 0 is the only element of k with norm zero,
U ∩ok = {0}, which means that ok is discrete, and (3) holds. By Proposition
1.5.1, ok is a lattice.

In fact, more can be said.

Proposition 1.5.3 Let k be a number field. Then every nonzero ideal in ok
is a lattice in k.

Proof: Let a 6= 0 be an ideal in ok. Then a is a subgroup of ok and hence
also a subgroup of k. Pick 0 6= α ∈ a and consider the mapping φ : ok → ok
defined by β 7→ αβ. Then this mapping is ok-linear, in particular, it is a
group homomorphism. Furthermore, since ok is a domain, it has no zero
divisors, which means that kerφ = 0. Also, since a is an ideal and since
α ∈ a, we have that imφ ⊆ a. This means that a contains a subgroup
isomorphic to ok ∼= Zn, where n = [k : Q]. It follows that the rank of a is at
least n, and hence exactly n. Thus, a ∼= Zn. Also, a is discrete in k, since a

is contained in the lattice ok. So (2) and (3) of Proposition 1.5.1 are satisfied
for a, which means that a is a lattice.

We also have the following interesting corollary.

Corollary 1.5.4 Every nonzero ideal a in ok has finite index, that is, ok/a
is a finite ring.

Proof: Indeed, a has the same rank as ok, and so the claim follows from
Proposition 1.1.8.

1.6 Absolute discriminant

The absolute discriminant is a convenient measure of how dense the lattice
ok is within the number field k. To define it, we first need the symmetric
embedding of k into Cn. This is obtained as follows. Let Σ be again (as in the
section about norms and traces) the full set of injective homomorphisms of
k into Q̄ ⊂ C. Then Σ = {σ1, . . . , σn}, where n = [k : Q]. Define τ : k → Cn

as follows:
τ(α) = (ασ1 , ασ2 , . . . , ασn).
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Since every homomorphism σ ∈ Σ acts as identity on Q, it is Q-linear, which
implies that τ is also Q-linear. This mapping is symmetric in the sense that
every automorphism of C (or Q̄) permutes the σi and thus leads to a simple
permutation of coordinates, which does not influence the length function, if
the latter is defined so that the standard basis of Cn is orthonormal.

We also note that the linear mapping τ is, clearly, injective, and this is
why we refer to it as an embedding. Next, we show that τ takes bases to
bases.

Proposition 1.6.1 If B is a basis of k as a Q-vector space then τ(B) is a
basis of Cn.

Proof: We will use the statement from Galois Theory known as the Primitive
Element Theorem. It claims that every finite field extension is simple. In
our case this means that k = Q(α) for some α ∈ k. Recall also that in a
simple extension Q(α) of degree n, one can take as Q-basis the powers of α:
B = {1, α, α2, . . . , αn−1}.

Let αi = ασi for i = 1, 2, . . . , n. Note that if αi = αj then ασi = ασj .
Since k = Q(α), we conclude that σi = σj, that is, i = j. This means that
the αi are pairwise distinct.

We now turn to the main claim of the proposition. It suffices to show
that the image in Cn of one basis of k is linear independent, hence a ba-
sis. Naturally, we will do so for the basis B chosen above. To check the
linear independence, we need to show that the matrix formed by the rows
τ(αj) = ((αj)σ1 , (αj)σ2 , . . . , (αj)σn), where j = 0, 1, . . . , n − 1, has non-zero
determinant. We note that (αj)σi = (ασi)j = αji . Therefore, the resulting
matrix is as follows:

1 1 1 · · · 1
α1 α2 α2 · · · αn
α2

1 α2
2 α2

3 · · · α2
n

...
...

...
. . .

...
αn−1

1 αn−1
2 αn−1

3 · · · αn−1
n


This is a Vandermonde matrix and its determinant, equal to∏

1≤i<j≤n

(αj − αi),

is non-zero, because the αi are pairwise distinct.
We showed that the image of B under τ is linearly independent. Since

both k and Cn have dimension n (over Q and C, respectively) we conclude
that τ(B) is a basis of Cn. Hence the same is also true for any basis of k.
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This proposition means that V = kτ ⊗Q R ⊆ Cn is an n-dimensional
real vector space endowed with a positive definite inner product inherited
from Cn. This inner product allows us to define in V in the usual way
lengths, areas, volumes. Skipping some computations, we will just claim
that the volume of the n-dimensional parallelepiped, having some vectors
α1, α2, . . . , αn as the edges adjacent to the vertex 0, is given by the absolute
value of the determinant of the n× n matrix M formed by these vectors. In
particular, if we take α1, α2, . . . , αn to be a base of ok then it correspond to a
basis τ(α1), τ(α2), . . . , τ(αn) of V and so the corresponding parallelepiped P
is the fundamental domain for the action of τ(ok) on V by shifts, and hence
it is equal to the volume of the quotient V/τ(ok).

We note that detM is in general a complex number. It can be shown
that detM = | detM |ir2 , where r2 is the number of complex conjugate pairs
of non-real embeddings σi. We call (detM)2 the absolute discriminant of the
field k and denote it by dk. From what was said above it follows that dk is a
real number and its sign depends on the parity of r2.

We conclude this section with two results showing that dk is indeed an
invariant of the field k and that dk is integer.

Proposition 1.6.2 The value of dk does not depend on the choice of the
base α1, α2, . . . , αn of ok.

Proof: If α′1, α
′
2, . . . , α

′
m is another base in ok and M ′ is the corresponding

matrix then M ′ = MA where A is the change-of-basis matrix. In particular,
A is an invertible matrix with integral entries. This means that detA = ±1.
Hence detM ′ = ± detM and hence (detM ′)2 = (detM)2.

Proposition 1.6.3 Let, as above, α1, α2, . . . , αn be a base of ok and let M
be the matrix made out of the vectors τ(αi). Then dk = detMM t and MM t

is a symmetric integral matrix with ij-entry equal to Tr(αiαj).

Proof: Clearly, dk = (detM)2 = detM detM t = detMM t. Also, the ij-

entry in MM t is equal to τ(αi)τ(αj)
t = ασ1

i α
(
jσ1) + ασ2

i α
σ2
j + . . .+ ασni α

σn
j =

(αiαj)
σ1 + (αiαj)

σ2 + . . . + (αiαj)
σn = Tr(αiαj), as claimed. Clearly, the

ij-entry and the ji-entry are equal, hence the matrix is symmetric. Since
both αi and αj are algebraic integers, Tr(αiαj) is an integer.

Note that this lemma provides a convenient way of computing dk for
concrete fields k.
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1.7 Noetherian rings and modules

In this short section we provide the necessary information about Noetherian
rings. We will just deal with the commutative case. Suppose R is a commu-
tative ring and M is an R-module. We say that the module M is Noetherian
if it satisfies the ascending chain condition, namely, every chain of submodule
M1 ⊆ M2 ⊆ . . . ⊆ Mi ⊆ . . . stabilizes. That is, there exists n ≥ 1 such that
for every i ≥ n we have Mi = Mn.

The following is immediate from the definitions and is left as an exercise.

Proposition 1.7.1 If M is an R-module and U ⊆ M is a submodule then
M is Noetherian if and only if U and M/U are Noetherian.

In particular, submodules and factor modules of Noetherian modules are
Noetherian. The next result gives two conditions equivalent to M being
Noetherian.

Proposition 1.7.2 Suppose M is an R-module. Then the following are
equivalent:

(1) M is Noetherian;

(2) every submodule in M is finitely generated; and

(3) every nonempty collection of submodules in M has a maximal element.

Proof: We first show that (2) implies (1). Suppose M1 ⊆ M2 ⊆ . . . ⊆ Mi ⊆
. . . is an ascending chain of submodules in M . Let U = ∪∞i=1Mi. Note that
U is a submodule. Indeed, if u, v ∈ U then u ∈ Mi and v ∈ Mj for some i
and j. Hence u, v ∈ Mk, where k = max{i, j}. We know have that u − v ∈
Mk ⊆ U and also au ∈ Mk ⊆ U for all a ∈ R. So indeed U is a submodule.
By (2), U must be finite-dimensional, that is, U = 〈u1, . . . , us〉R for some
u1, . . . , us ∈ U . Let, say, ui ∈Mji for each i. Set n = max{j1, . . . , js}. Since
the chain is ascending, ui ∈Mn for all i. However, this means that Mn = U
and so the chain stabilizes.

Next assume (3). We shall show (2), that is, that every submodule U
of M is finitely generated. Consider the collection of all finitely generated
submodules of U . Clearly, this collection is nonempty. Let W be a maximal
element in this collection. we claim that W = U . Indeed, suppose not. Then
pick u ∈ U \W and set W ′ = 〈W,u〉R. Since W is finitely generated and
W ′ needs just one extra generator, W ′ is also finitely generated. However,
W ′ ⊆ U and also W ′ ⊃ W , which contradicts maximality of W . This shows
that (3) implies (2).
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Finally, we need to show that (1) implies (3). Assume M is Noetherian
and at the same time, by contradiction, M contains a nonempty collection C
of submodules with no maximal element. Let M1 be any submodule from C.
Since C has no maximal elements, there is a submodule M2 ∈ C that properly
contains M1. Similarly, there is M3 ∈ C that properly contains M2, and so
on. This gives us an ascending chain of submodules that never stabilizes; a
contradiction.

A ring R is called Noetherian if it is Noetherian as a module over itself.
Since the submodules for this module are the same as ideals of R, the con-
dition can be restated as follows: every ascending chain of ideals in R must
stabilize. The following is an immediate consequence of Proposition 1.7.1.

Proposition 1.7.3 Suppose R is a (commutative) ring and I is an ideal of
R. Then R is Noetherian if and only if I is Noetherian as an R-module and
R/I is a Noetherian ring.

Similarly, as a consequence of Proposition 1.7.2, we get the following.

Proposition 1.7.4 Suppose R is a (commutative) ring. Then the following
are equivalent:

(1) R is Noetherian;

(2) every ideal in R is finitely generated; and

(3) every nonempty collection of ideals in R has a maximal element.

1.8 Dedekind rings

Recall that an ideal I in a commutative ring R is called prime if and only
for all a, b ∈ R if ab ∈ I then either a ∈ I or b ∈ I. Equivalently, I is prime
if and only if R/I has no zero divisors. Every maximal ideal is prime, but in
general there may be prime ideals that are not maximal.

A domain D (recall that a domain is a commutative ring with identity
and with no zero divisors) with the field of fractions k is called a Dedekind
domain if the following three conditions are satisfied:

(1) D is Noetherian;

(2) D is integrally closed in k; and

(3) every nonzero prime ideal in D is maximal; that is, if I 6= 0 is a prime
ideal in D then D/I is a field.
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The purpose of this short section is to prove the following key result.

Theorem 1.8.1 If k is a number field then ok is Dedekind.

Proof: Note first of all that ok is a domain and k is its field of fractions. We
need to check the conditions (1)–(3). Condition (2) was proved in Proposition
1.3.7. We proved in Proposition 1.5.3 that every nonzero ideal ok is a lattice
in k, in particular, as a group, it is isomorphic to Zn, where n = [k : Q].
In particular, every ideal is finitely generated (even as a group!) this means
that ok is Noetherian, and so (1) holds.

To prove (3), consider a prime ideal p 6= 0 in ok. Clearly, ok/p is a domain.
Furthermore, by Corollary 1.5.4, it is a finite domain. So we just need to see
that every finite domain is a field. Apparently, this was in the ”Rings and
Polynomials” course, we will however provide the details.

Let D be a finite domain. We need to show that if a ∈ D and a 6= 0 then
a has a multiplicative inverse. Consider the mapping φ : D → D given by
d 7→ ad. We claim that φ is injective. Indeed, if ax = ay then a(x− y) = 0
and so x − y = 0, since D has no zero divisors and a 6= 0. Thus, x = y
and so φ is indeed injective. Next, every injective mapping between sets of
equal size must be a bijection. In particular, φ is onto. This means that
1 = φ(b) = ab for some b ∈ D. Clearly, this b is the multiplicative inverse of
a. Thus D is a field.

1.9 Fractional ideals

In this section we define fractional ideals for Dedekind domains and prove
that the nonzero fractional ideals form a group for a suitably defined multi-
plication.

Let D be a Dedekind domain and k be its field of fractions. We can view
k as a D-module. A fractional ideal in k is simply any finitely generated D-
submodule in k. Note that since D is Noetherian, every ideal in D is finitely
generated and so every ideal of D is a fractional ideal. We will also call the
ideal of D the integral ideals. In the particular case, where a fractional ideal
is generated by a single element, we call such a fractional ideal principal.
This fits with the usual definition of the principal ideals of D.

Note that a fractional ideal F is generated by α1, . . . , αs ∈ k if and
only if F = {a1α1 + . . . + asαs | a1, . . . , as ∈ D}. We can also write F =
α1D + . . . + αsD and even F = (α1, . . . , αs), extending the usual notation
for ideals. If F is a principal fractional ideal generated by α ∈ k then
F = {aα | a ∈ D} = αD and we write F = (α).

We first prove the following characterization of fractional ideals.
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Proposition 1.9.1 A subset F ⊆ k is a fractional ideal if and only if F = cI
for some c ∈ k and some ideal I of D.

Proof: It is easy to see that if I is an ideal of D generated by α1, . . . , αs ∈ D
and if c ∈ k then F = cI is a D-submodule in k and F is generated by
cα1, . . . , cαs. So F is a fractional ideal.

Conversely, suppose F is a fractional ideal. Then it must be finitely
generated as a D-module. Say, it is generated by α1, . . . , αs ∈ k. Since k is
the field of fractions of D, we can write each αi as αi = pi

qi
, where pi, qi ∈ D

and qi 6= 0. Set d =
∏s

i=1 qi and I = Fd. Note that dαi = pi
∏

j 6=i qj ∈ D for
all i. Since I is generated by the elements dαi, we have I ⊆ D. Also, I is a
D-submodule, hence an ideal of D. It remains to notice that F = cI, where
c = d−1. Note that d 6= 0, since qi 6= 0 for all i.

We next discuss the multiplication of fractional ideals. It is again the
natural generalization of the operation that is well-known for the usual inte-
gral ideals. Suppose F1 and F2 are fractional ideals. We set F1F2 to be the
set {u1v1 + . . . + umvm | u1, . . . , um ∈ F1, v1, . . . , vm ∈ F2}. This is again a
fractional ideal, as the following result shows. This is left as an exercise.

Proposition 1.9.2 If F = (α1, . . . , αs) and F2 = (β1, . . . , βt) then F1F2 =
(α1β1, α1β2, . . . , αiβj, . . . , αsβt).

In particular, if F1 = (α) and F2 = (β) are both principal fractional ideals
then F1F2 = (αβ) is also principal.

Clearly, the above multiplication is commutative. Proposition 1.9.2 also
yields the following.

Corollary 1.9.3 The multiplication of fractional ideals is associative.

Proof: If F1 = (α1, . . . , αs), F2 = (β1, . . . , βt), and F3 = (γ1, . . . , γm) then
both (F1F2)F3 and F1(F2F3) are generated by all products αiβjγl. So these
products are equal.

If F1 and F2 are both nonzero then, clearly, F1F2 is also nonzero. Thus,
the set of nonzero fractional ideals is closed with respect to the commutative
and associative operation of multiplication. Furthermore, the principal ideal
(1) = D is the identity element, since FD = F for any fractional ideal F .
Indeed, since F is a D-submodule, we have that FD ⊆ F and, since 1 ∈ D,
we also have FD ⊇ F , yielding FD = F .

This means that if we show that every fractional ideal is invertible then
we will have the following.

Theorem 1.9.4 All nonzero fractional ideals form a group.
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We will prove this theorem in a sequence of lemmas. The first result
exploits condition (2) from the definition of Dedekind rings.

Lemma 1.9.5 For every nonzero fractional ideal F we have {α ∈ k | αF ⊆
F} = D.

Proof: Clearly, D ⊆ {α ∈ k | αF ⊆ H}. Suppose α ∈ k and αF ⊆ F . We
need to see that α ∈ D. Suppose F = (β1, . . . , βs). Since αβi ∈ F , we can
write, for each i,

αβi =
s∑
j=1

bijβj

for some bij ∈ D. Consider the s× s matrix B = (bij) and let A = αIs − B
(where Is is the identity matrix of size s × s). The above equalities mean
that the column vector with entries βj is a (nonzero) eigenvector of A with
eigenvalue zero. Hence detA = 0. Hence α is the root of the characteristic
polynomial det(xIs − B) of the matrix D. This is a monic polynomial from
D[x] (since all entries of B are in D). Since D is Dedekind, we have by
condition (2) that D is integrally closed in k, which means that α ∈ D.

The second lemma only relies on the property that D is Noetherian.

Lemma 1.9.6 Every nonzero ideal of D contains a product of nonzero prime
ideals.

Proof: By contradiction, suppose there exist nonzero ideals not containing
products of nonzero prime ideals. Since D is Noetherian, there must exist
a maximal such ideal I. Note that I cannot itself be prime, otherwise it
contains a one-factor product, itself. Hence there exist α1, α2 ∈ D \ I such
that α1α2 ∈ I. Set I1 = (I, α1) and I2 = (I, α2). Clearly, I1 and I2 strictly
larger than I, so each of these ideals contains a product of nonzero prime
ideals, say, p1p2 · · · ps ⊆ I1 and ps+1ps+2 · · · ps+t ⊆ I2. Finally, note that
I1I2 ⊆ I and so p1p2 · ps+t ⊆ I, a contradiction.

For a fractional ideal F 6= 0, we set F− = {α ∈ k | αF ⊆ D}. This F− is
our candidate for the multiplicative inverse of F . First of all, let us see that
F− is a fractional ideal.

Lemma 1.9.7 F− is a fractional ideal.

Proof: By Proposition 1.9.1, F− 6= 0. Indeed, if F = cI for an ideal I of D
and c ∈ k then c−1 ∈ F−. Next, we note that F− is a D-submodule. Indeed,
if α, β ∈ F− then (α−β)F ⊆ αF +βF ⊆ D+D = D. So α−β ∈ F−. Also,
if a ∈ D then aαF ⊆ aD ⊆ D. So indeed F− is a D-submodule. Moreover,
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for every α ∈ F , we have that αF− ⊆ D (and hence αF is an ideal), which
means, according to Proposition 1.9.1, that F− is a fractional ideal.

Note that when F is an integral ideal, F− contains D, since DF = F ⊆ D.
Our next step is to show that at least in the case, where F = p is a prime
ideal of D, F− is strictly larger than D.

Lemma 1.9.8 If p is a nonzero prime ideal of D then p− 6= D. In particular,
p− strictly contains D.

Proof: Select an element β ∈ p, β 6= 0. By Lemma 1.9.6, the ideal I =
(β) contains a product p1 · · · ps of nonzero prime ideals. Without loss of
generality, the number of factors, s, is the smallest possible for this I. Note
that one of the factors of the product must be p. Otherwise, every pi, being
maximal, is not contained in p, and so we can choose αi ∈ pi \ p. This leads
to a contradiction, since α1 · · ·αs ∈ p1 · · · ps ⊆ I ⊆ p. Thus, indeed, one of
the factors pi must be equal to p, say, p1 = p.

Now the product p2 · ps (possibly of length zero, in which case it is equal
D) is shorter and so it is not contained in I. Pick γ ∈ p2 · ps \ I and
set α = γ

β
. Note that since γ 6∈ I = (β) we have that α 6∈ D. Finally,

αp = 1
β
γp ⊆ 1

β
pp2 · · · ps ⊆ 1

β
I = 1

β
(β) = (1) = D. Thus, α ∈ p− and so p− is

strictly larger than D.

Corollary 1.9.9 Suppose p is a nonzero prime ideal of D and F is a frac-
tional ideal. Then Fp− is strictly larger than F .

Proof: Since p− ⊃ D, we have Fp− ⊇ F . If Fp− = F then Lemma 1.9.5
implies that p− ⊆ D, which contradicts Lemma 1.9.8. Thus Fp− 6= F .

We are finally ready to prove the existence of inverses for all nonzero
fractional ideals, and thus establish Theorem 1.9.4.

Lemma 1.9.10 If F is a nonzero fractional ideal then FF− = D. Hence
F− is the multiplicative inverse of F .

Proof: By definition FF− ⊆ D, that is, I = FF− is an ideal of D. Suppose
by contradiction that I 6= D. Then, since D is Noetherian, I is contained in
a maximal ideal p. (Recall that every maximal ideal is prime.) By Lemma
1.9.9, we have that F−p− is strictly larger than F−. On the other hand,
F (F−p−) = (FF−)p− ⊆ pp− ⊆ D. This means that F−p− ⊆ F−, which is a
contradiction.
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1.10 Unique factorization of ideals

In this section again D is a Dedekind domain with the field of fractions k.
For nonzero fractional ideals F1 and F2 in k, we say that F1 divides F2

(and write F1|F2) if F2F
−1
1 ⊆ D (that is, it is an integral ideal). The following

is left as an exercise.

Proposition 1.10.1 Suppose F1 and F2 are nonzero fractional ideals in k.
The following are equivalent:

(1) F1 divides F2;

(2) F−1
2 divides F−1

1 ;

(3) F1 contains F2;

(4) F−1
1 is contained in F 1−

2 ; and

(5) F1F
−1
2 contains D.

The following is the first main result of the section.

Theorem 1.10.2 Suppose D is a Dedekind domain. Then every nonzero
ideal I in D can be written as a product p1 · · · ps of (nonzero) prime ideals
and this expression is unique up to the order of the factors.

Proof: By contradiction, suppose there exist nonzero ideals that cannot be
written as products of prime ideals. Since D is Noetherian, we can pick I to
be maximal among all such ideals. Clearly, I 6= D. Let p be a prime ideal
that contains I. By Lemma 1.9.9, Ip−1 is strictly greater than I. Also, by
Proposition 1.10.1, since p ⊇ I, we have that Ip−1 ⊆ D, that is, it is an ideal
of D. In particular, in view of maximality of I, Ip−1 = p1 · · · ps for some
prime ideals pi. However, this means that I = p1 · · · psp, a contradiction. So
the first claim is proven.

Suppose p1 · · · ps = q1 · · · qt, where all factors are nonzero prime. If the
product is equal to D then s = t = 0 and there is nothing to prove. Other-
wise, the product ideal lies in some prime ideal p. Since p is prime, one of
the factors pi must be equal to p. Without loss of generality we may assume
that p1 = p. Similarly, p must be equal to one of the qj and so again without
loss of generality we may assume that q1 = p. Cancelling this factor, we get
a similar equality with fewer factors, so the uniqueness follows by induction.

Similarly, our second main result is a unique factorization statement for
fractional ideals.
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Theorem 1.10.3 Suppose D is a Dedekind domain with the field of frac-
tions k. Then every nonzero fractional ideal F can be written as F =
p1 · · · ps/q1 · · · qt (where pi 6= qj for all i and j) and this expression is unique
up to the order of the factors in both the numerator and denominator.

Proof: We leave this as an exercise and just note that p1 · · · ps = F ∩D 6= 0
and q1 · · · qt = (F ∩D)F−1.

1.11 Ideal norm

In this section we return to number fields. Our goal is to introduce a norm
on the ideals (Norm with a capital ‘N’) that generalizes our norm of the
elements. The ideas for this come from the section on absolute discriminant.
In particular, recall that k admits a special embedding τ into V ⊂ Cn,
V ∼= Rn.

We first make the following observation.

Proposition 1.11.1 If F is a nonzero fractional ideal of k then F is a lattice
in k, and hence τ(F ) is a lattice in V .

Proof: By the Proposition 1.9.1, F = cI for an ideal I of ok and c ∈ k. By
Proposition 1.5.3, I is a lattice in k. Now, the mapping I → F defined by
α 7→ cα is an isomorphisms of abelian groups, hence F ∼= I ∼= Zn. Also, I
spans k, and so also F spans k. So F is a lattice in k by Proposition 1.5.1.

Since τ is injective and takes bases of k to bases of V , we see that τ(F )
is generated by a basis of V , hence τ(F ) is a lattice in V .

To define the norm of the fractional ideal we use the volume measure
introduced in the section on absolute discriminant.

We set the ideal norm Normk/Q(F ) to be the ratio of the volume of V/τ(F )
(which is well defined and finite exactly because τ(F ) is a lattice in V ) and
the volume of V/τ(ok). Thus, the ideal norm measures how dense F is in V
compared with ok.

Immediately from this definition we have that Normk/Q(ok) = 1.

Proposition 1.11.2 If for two fractional ideals F and F ′ we have inclusion
F ′ ⊆ F then Normk/Q(F ′) = [F : F ′]Normk/Q(F ).

Proof: (This is merely a sketch.) It suffices to show that the volume of
V/τ(F ′) equals to the volume of V/tau(F ) times the index [F : F ′]. If D
is a fundamental domain for the action of τ(F ) on V , it can be seen that
D′ = ∪si=1(D + βi) is a fundamental domain for the action of τ(F ′) on V ,
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where s = [F : F ′] and β1, β2, . . . , βs is a complete set of representatives of
τ(F ′)-cosets in τ(F ).

Note that the pieces D + βi are pairwise disjoint (with the possible ex-
ception of some boundary points). Hence the volume of D′ equals to s times
the volume of D.

Finally, for a lattice F , the volume of the fundamental domain is equal
to the volume of V/τ(F ).

As a corollary we have the following.

Proposition 1.11.3 Suppose F is a nonzero fractional ideal of k and let
c ∈ Z, c 6= 0, be such that I = cF is an ideal of ok. Then

Normk/Q(F ) =
[ok : I]

[F : I]
.

In particular, if F = I is an (integral) ideal then Normk/Q(F ) = [ok : I].

Proof: This follows from Proposition 1.11.2 once we notice that I ⊆ F .

In particular, this means that the norm of every nonzero ideal is a rational
number and the norm of an integral ideal is an integer!

We will also record (without proofs) the following two important prop-
erties of the ideal norm. The first relates the ideal norm with the norm of
elements.

Proposition 1.11.4 If F = (α) is a principal fractional ideal of k with
α 6= 0 then Normk/Q(F ) = |normk/Q(α)|.

The second property expresses the multiplicativity of the ideal norm.

Proposition 1.11.5 For two nonzero fractional ideals F and F ′ we have
that Normk/Q(FF ′) = Normk/Q(F )Normk/Q(F ′).

This means that the ideal norm is a homomorphism from the group of
nonzero fractional ideals to the multiplicative group of positive rational num-
bers.

1.12 Class group

Let k be the field of fractions of a Dedekind domain D. If α and β are
nonzero elements of k then (α)(β) = (αβ). This means that the nonzero
principal fractional ideals of k form a subgroup P of the group F of all
nonzero fractional ideals. Since F is abelian, every its subgroup is normal
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and so we can consider the factor group F/P . This factor group is known as
the class group of k. It measures how far is D from being a principal ideal
domain (PID).

In general, the class group can be infinite. The goal of the present section
is to show that the class group is always finite when k is a number field and
D = ok. The size of the (finite) class group is known as the class number of
k. It is usually denoted by h = hk.

We will start with an example of a non-principal ideal to stress that h > 1
is possible.

Let k = Q(
√
−5). Then D = ok = Z[

√
−5]. We claim that I = (2, 1 +√

−5) is non-principal. By contradiction suppose that I = (α) for some
α = a + b

√
−5 ∈ D. Then α divides both 2 and 1 +

√
−5 in D. As a

consequence, also the norm of α, equal to a2 + 5b2, divides normk/Q(2) =
4 and normk/Q(1 +

√
−5) = 6. Since a2 + 5b2 is a positive integer, we

conclude that normk/Q(α) = 1 or 2. Furthermore, it is easy to see that the
equation a2 + 5b2 = 2 has no solutions with a, b ∈ Z. Hence normk/Q(α) = 2
is impossible. We conclude that normk/Q(α) = 1, which means (see next
section) that α is a unit. Therefore, I = (α) = (1) = D.

To get the final contradiction, consider 3I = 3(2, 1 +
√
−5) = (6, 3(1 +√

−5). Observe that 1 +
√
−5 divides 6 = (1 +

√
−5)(1−

√
−5) and, clearly,

1 +
√
−5 also divides 3(1 +

√
−5). This means that 1 +

√
−5 divides every

element of 3I. In particular, 1 +
√
−5 must divide 3. However, the norm of

1 +
√
−5, equal to six does not divide the norm of 3, which equal to nine.

This is the final contradiction proving that I = (2, 1+
√
−5) is non-principal.

In particular, non-principal ideals in k = Q(
√
−5) exist, which means

that P 6= F . Hence the class group in this case is non-trivial, that is, h > 1.
If we want to determine the exact structure of the class group then the

following result (which we give without a proof) is very useful. We will refer
to the elements of the class group (cosets of P) as to the ideal classes.

Proposition 1.12.1 Every ideal class contains an integral ideal of norm at
most C

√
|dk|. Here the constant C depends only on n (more precisely, it

depends on r1 and r2).

For practical computations we need a particular value for C. It can be
shown that for all n the value of C = 1 will work. Furthermore, for n = 2
we can take C = 1√

2
.

Clearly, since the norm of of an integral ideal coincides with its index in
ok, there exist only finitely many integral ideals with norm under C

√
|dk|.

Hence the following is true.

Corollary 1.12.2 The class group of every number field k is finite.
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We will conclude this section with two examples of the class group com-
putation. We first finish the example where k = Q(

√
−5). We already know

that h > 1. To apply Proposition 1.12.1, we need to compute dk. Note that 1
and
√
−5 is a base of ok. Since Tr(1 · 1) = 2, Tr(

√
−5 · 1) = Tr(1 ·

√
−5) = 0,

and Tr(
√
−5·
√
−5) = −10, we have by Proposition 1.6.3 that dk = 2(−10) =

−20. Hence by Proposition 1.12.1 with C = 1√
2

we get that every ideal class

contains an integral ideal of norm at most 1√
2

√
20 =

√
10 < 4.

Hence we need to find all ideals of norm 1, 2, and 3. Clearly, there is only
one ideal of norm 1—ok itself. We next observe that due to multiplicativity
of the ideal norm (Proposition 1.11.5) every ideal whose norm is a prime
number is prime. So we are looking at prime ideals only.

We will need the following fact about prime ideals.

Lemma 1.12.3 If I is a nonzero prime ideal of ok then I ∩ Z is a nonzero
prime ideal of Z.

Proof: Let J = I ∩ Z. If a, b ∈ Z \ J then a, b ∈ ok \ I and hence, since
I is prime, we have that ab 6∈ I. Consequently also ab 6∈ J , proving that
J is a prime ideal of Z. If a ∈ I and a 6= 0 then normk/Q(a) ∈ J and
normk/Q(a) 6= 0.

We now continue with our example k = Q(
√
−5). The above lemma

means that, say, an ideal I of ok of norm 2 would have to contain pZ for a
prime p ∈ Z. Consequently, p ∈ I and so (p) ⊆ I. By Proposition 1.11.4, we
compute Normk/Q((p)) = |normk/Q(p)| = p2. By multiplicativity, we must
have that 2 divides p2. Hence p = 2. So I contains (2). Similarly, if I is an
ideal of I of norm 3 then it contains (3).

Thus we simply need to determine all ideals of ok above (that is, properly
containing) (2) and all ideals above (3).

We start with (2). By the correspondence theorem for rings, we have that
all ideals above (2) bijectively correspond to the nonzero ideals in ok/(2).
We have that ok = Z[

√
−5] ∼= Z[x]/(x2 + 5) and so ok/(2) is isomorphic

to Z2[x]/(x2 + 1). Since Z2[x] is a principal ideal domain, by the same
correspondence theorem we have that the non-zero proper ideals of Z2[x]
bijectively correspond to the irreducible factors of x2 + 1 ∈ Z2[x]. Since
x2+1 = (x+1)2 (remember: we work modulo 2), there is only one irreducible
factor, x + 1, and so there is only one ideal in ok above (2). We have seen
that I = (2, 1 +

√
−5) is non-principal. Since 2 ∈ I, it is above (2). Thus, I

is the only ideal of ok of norm 2.
We remark that I2 = (2). Indeed, I ⊃ (2), which means that I divides

(2). Suppose (2) = IJ for some integral ideal J . Since Normk/Q((2)) = 4

29



and Normk/Q(I) = 2, we compute that Normk/Q(J) = 2, which means that
J = I. Therefore, I2 = (2).

Now we turn to the ideals above (3). Similarly to the above, ok/(3) ∼=
Z3[x]/(x2 − 1). Since x2 − 1 = (x− 1)(x+ 1), there exist exactly two proper
ideals in ok above (3). Since

√
−5 maps to the coset x + (x2

1), we see that
the two ideals above (3) are the ideals J1 = (3, 1 +

√
−5) and J2 = (3, 1 −√

−5). We claim that both these ideals are contained in the same ideal

class as I = (2, 1 +
√
−5). Indeed, if we multiply I with 1−

√
−5

2
then we

get (1 −
√
−5, (1+

√
−5)(1−

√
−5)

2
) = (1 −

√
−5, 6

2
) = J2. Also, noticing that

I = (2, 1 +
√
−5) = (2, 1 −

√
−5), we obtain that I multiplied with 1+

√
−5

2

equals (1 +
√
−5, (1−

√
−5)(1+

√
−5)

2
) = (1 +

√
−5, 6

2
) = J1. So all three ideals, I,

J1, and J2 belong to the same ideal class. This just means that the estimate
C = 1√

2
that we used here is not very precise.

We conclude that k = Q(
√
−5) contains only one non-principal ideal

class, that is, hk = 2.
Our second example will be k = Q(

√
−13). Above we saw two possibili-

ties: we can have one prime ideal above (p) or we can have two prime ideals
above (p). Here we will see a third option: it may happen that (p) is itself
prime in ok, and so there are no prime ideals above it.

If k = Q(
√
−13) then ok = Z[

√
−13] with a base 1 and

√
−13. Since

Trk/Q(1 · 1) = 2, Trk/Q(1 ·
√
−13) = 0 and Trk/Q(

√
−13 ·

√
−13) = −26, we

get that dk = 2(−26) = 52. Hence by using the estimate from Proposition
1.12.1, we get that every ideal class contains an integral ideal of norm at
most 1√

2

√
52 =

√
26 < 6. So we need to look at ideals of norm 2, 3, 4, and 5.

As before, the ideals of norm p = 2, 3, or 5 must be prime and they
must be above the corresponding principal ideals (p). For p = 2, we get
again that ok/(2) ∼= Z2[x]/((x+ 1)2) and so there is exactly one prime ideal
above (2), namely the ideal I = (2, 1 +

√
−13). This ideal in non-principal;

we skip the details as they are quite similar to the case of k = Q(
√
−5).

The situation is quite different for p = 3. Namely, ok/(3) ∼= Z3[x]/(x2 + 1)
(since 13 is the same as 1 modulo 3). Since x2 + 1 is irreducible in Z3[x],
the factor ring Z3[x]/(x2 + 1) is a field (the unique field of size 32 = 9). In
particular, it has no proper nonzero ideals, which means that there no ideals
of norm 3 in ok. Hence (3) is prime. For p = 5 we have a similar situation:
ok/(5) ∼= Z5[x]/(x2 + 3), which is a field. Thus ok contains no ideals of norm
5 and (5) is prime. We now turn to the last possibility: ideals of norm 4. We
claim that there is only one such ideal, namely, (2), and it is clearly principal.
Indeed, suppose J is an ideal of ok of norm 4. If J is prime then J ∩Z = (p)
and, clearly, we must have p = 2. So J contains (2) and then we must have
J = (2), as they both have the same norm 4. However, (2) is not prime, as
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it is properly contained in I = (2, 1 +
√
−13). Thus J cannot be prime. This

means that it must be a product of at least prime ideals. Since the norm of
J is 4 = 22, we conclude that J is a product of two prime ideals, and each
of the factors has norm 2. However, we have already seen that I is the only
ideal of norm 2, so J = I2. Also, (2) has norm 4. Hence we must also have
that (2) = I2 = J .

We conclude that there exists only one non-principal ideal of norm less
than 6, namely, I = (2, 1 +

√
−13) of norm 2. It follows that there exists a

unique non-principal ideal class and so hk = 2.

1.13 Units in ok

In this short section we discuss the group of units of ok. Recall that α ∈ ok
is a unit if and only if normk/Q(α) = ±1.

The main result is as follows.

Theorem 1.13.1 The group G of units of ok is finitely generated. The tor-
sion subgroup GT of this group is cyclic and it consists of all (complex) roots
of unity contained in ok. The free rank of G equals to r1 + r2 − 1.

Proof: We will only prove the claim concerning the torsion. First of all, we
note that every torsion element α is a root of unity since αt = 1, where t
is the order of α. Next, all roots of unity are lying on the unit circle in the
complex plane. The unit circle is compact, hence the torsion group GT is
finite, as ok is discrete, and so it cannot have limit points. Let t be the order
of GT . Then αt = 1 for all α ∈ GT , hence GT consists of all tth roots of
unity from C. The group of all tth roots of unity is cyclic generated by the
primitive tth root of unity. Therefore, GT is cyclic.

As an example, let consider the group of units in ok, where k = Q(
√
m),

where m is a negative square-free integer. if m is nor equal to 1 modulo 4
then ok = Z[

√
m]. Since normk/Q(a + b

√
m) = a2 − mb2, we see that the

norm is nonnegative. Furthermore, unless m = −1, there is only two units,
1 and −1. If m = −1 then there are four units, ±1 and ±i.

Let us now turn to the case where m is congruent to 1 modulo 4. In this
case ok is larger than Z[

√
m], namely, ok consists of all complex numbers

a+b
√
m

2
, where the integers a and b are either both even or both odd. The

norm is now a2−mb2
4

so the units correspond to the solutions of a2−mb2 = 4,
where a and b are as above. If m < −3 then we must have b = 0 and then
a = ±2, giving only the obvious units ±1. If m = −3 then in addition to the
solutions (a, b) = (2, 0) and (−2, 0) we also find the solutions (1, 1), (1,−1),
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(−1, 1), and (−1,−1), giving the units ±1±
√
−3

2
. Thus, the unit group G is of

order 6.
To summarize, the unit group of ok, where k = Q(

√
m) for a square-free

negative integer m, is of order two unless m = −1 or m = −3. In the first
exceptional case the group of units is of order four, and in the second case it
is of order six.

1.14 Valuations

For a field k, a valuation on k is a map k → R, denoted α 7→ ||α||, such that
for all α, β ∈ k we have:

1. ||α|| > 0 if α 6= 0k, and ||0k|| = 0;

2. ||αβ|| = ||α|| · ||β||; and

3. ||α + β|| ≤ ||α + ||β||.

The mapping sending 0k to 0 ∈ R and all other elements of k to 1 ∈ R is a
valuation. It is known as the trivial valuation. We will refer to the property 2
above as to multiplicativity of the valuation. Note that this property means
that the valuation induces a homomorphism from the multiplicative group
k# into R+ = {a ∈ R | r > 0}. In particular, ||1k|| = 1 and if α 6= 0k then
||α−1|| = ||α||−1. In general, ||αn|| = ||α||n for all n ∈ Z.

Each valuation defines a metric on k, via d(α, β) = ||α − β||, and the
metric defines a topology. For example, the trivial valuation defines the
discrete metric: d(α, β) = 1 if and only if α 6= β and the discrete topology
on k, whereby every one-point subset of k is open. (Which means that every
subset is open!)

We say that two valuations, || · ||1 and || · ||2, are equivalent if and only if
||α||2 = ||α||c1 for a fixed c ∈ R+ and all α ∈ K.

Lemma 1.14.1 Suppose || · || is a valuation on k. Then the set {α ∈ k |
||α|| < 1} coincides with the set of all α ∈ k for which the sequence αn

converges (with respect to the topology induced by || · ||) to 0k.

Proof: Note that a sequence αn converges to 0k if and only if d(αn, 0k) =
||αn−0k|| = ||αn|| tends to zero. If αn = αn for some fixed α ∈ k then, using
that the valuation is multiplicative we now get that ||αn|| = ||αn|| = ||α||n,
so it tends to zero if and only if ||α|| < 1.

Proposition 1.14.2 Two valuations are equivalent if and only if they induce
the same topology on k.
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Proof: Suppose the two valuations induce the same topology on k. By
Lemma 1.14.1, ||α||1 < 1 if and only if αn converges to 0k with respect to the
induced topology. By symmetry the same is also true for || · ||2. Since the
two valuations induce the same topology, we conclude that ||α||1 < 1 if and
only if ||α||2 < 1. That is, the set B = {α ∈ k# | ||α||i < 1} is independent
of whether i = 1 or i = 2.

If B = ∅ then also B−1 = {α ∈ k | ||α||i > 1} is empty. This means that
both valuations are trivial (hence equivalent). So we can assume that B 6= ∅.
Select α0 ∈ B and define c ∈ R+ via: ||α0||2 = ||α0|| 1c. Note that c > 0,
since ||α0||2 < 1.

Now consider an arbitrary α ∈ B. Let λi, i = 1, 2, be defined by: ||α||i =
||α0||λii . Clearly, both λ1 and λ2 are positive. Suppose λ1 <

m
n
∈ Q, where

both m and n are positive integers. Then ||α
m
0

αn
||1 =

||α0||m1
||α||n1

=
||α0||m1
||α0||

nλ1
1

=

||α0||m−nλ1
1 . Since λ1 <

m
n

, we have that a = m− nλ1 > 0, and so ||α
m
0

αn
||1 =

||α0| 1a < 1. That is,
αm0
αn
∈ B. By the above, we also must have that

||α
m
0

αn
||2 < 1. Since we again have that ||α

m
0

αn
||2 =

||α0||m2
||α||n2

=
||α0||m2
||α0||

nλ2
2

= ||α0||m−nλ2
1 ,

we conclude that m− nλ2 > 0, which means that λ2 <
m
n

.
Symmetrically, if λ2 <

m
n

then also λ1 <
m
n

. So λ1 <
m
n

if and only if
λ2 <

m
n

. Since this is true for all positive rational numbers m
n

, we conclude
that λ1 = λ2.

Finally, ||α||2 = ||α0||λ2
2 = ||α0||cλ2

1 = ||α0||cλ1
1 = ||α||c1. So we have

||α||2 = ||α||c1 for all α ∈ B. Also, if α ∈ B−1 then α−1 ∈ B and so
||α||2 = ||α−1||−1

2 = (||α−1||c1)−1 = (||α−1||−1
1 )c = ||α||c1. If α 6∈ B ∪ B−1

then either α = 0k, in which case ||α||1 = ||α||2 = 0, or α 6= 0k and then
||α||1 = ||α||2 = 1. In all cases we have ||α||2 = ||α||c1. Thus the two
valuations are equivalent.

Conversely, assuming that || · ||1 and || · ||2 arre equivalent, we have that
||α||2 = ||α||c1 for a fixed positive c ∈ R and all α ∈ R. From this it follows
that the open ball of radius r with center α computed with respect to || · ||1
coincides with the open ball of radius rc and center α computed with respect
to || · ||2. Thus, the two valuations produces exactly the same collection of
open balls in k, hence they define the same topology.

In view of this proposition the different topologies on k induced by valu-
ations are in a bijection with equivalence classes of valuations. These equiv-
alence classes are called places.

A valuation || · || on k is called Archimedean if k has characteristic zero
and ||m|| > 1 for some m ∈ Z.
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Lemma 1.14.3 If || · || is Archimedean then ||m|| > 1 for all m ∈ Z with
|m| > 1.

Proof: Clearly, ||0|| = 0 and || ± 1|| = 1. Take m ∈ Z with |m| > 1. Note
that || −m|| = || − 1|| · ||m|| = ||m||, so it suffices to consider the case where
m > 1. Suppose ||m|| ≤ 1. Let A be the maximum of ||a||, where 0 ≤ a < m.
Take n ∈ Z, n > 0 and for an arbitrary power nt, write it as

nt =
k∑
i=0

aim
i,

where 0 ≤ ai < m for all i. Note that k ≤ t logn
logm

. By the multiplicativity

of the valuation and by the triangle inequality (property 3 in the definition)
we have that ||n||t = ||nt|| ≤

∑k
i=1 ||aimi|| =

∑k
i=1 ||ai|| · ||m||i ≤ (k + 1)A

(since ||m|| ≤ 1). So we get that ||n||t ≤ (1 + t logn
logm

)A. Taking the tth roots

of both sides and letting t→∞, we see that ||n|| ≤ 1. Since this is true for
all positive integers n (and hence also for all integers), we conclude that || · ||
is not Archimedean, a contradiction.

Next we show that the field k = Q has up to equivalence only one
Archimedean valuation.

Proposition 1.14.4 Every Archimedean valuation on k = Q is equivalent
to the absolute value mapping.

Proof: We first show that ||m|| = |m|c for a fixed positive c ∈ R and all
m ∈ Z. The proof uses the same idea as the proof of Lemma 1.14.3.

Clearly, we only need to consider integers m with |m| > 1. Without loss
of generality we can restrict ourselves to just the positive integers, so let us
take m,n ∈ Z with m,m > 1. As in the proof of Lemma 1.14.3, pick a
positive power t and write nt =

∑k
i=0 aim

i, for a suitable ai with 0 ≤ ai < m
and k ≤ t logn

logm
. Using multiplicativity and the triangle inequality we get:

||n||t ≤
k∑
i=0

||ai|| · ||m||i ≤ (1 + t
log n

logm
)A · ||m||k ≤ (1 + t

log n

logm
)A · ||m||t

logn
logm ,

where A is the maximum of ||a|| for 0 ≤ a < m. We also used that ||m|| > 1

and so ||m||i ≤ ||m||k ≤ ||m||t
logn
logm for 0 ≤ i ≤ k.

Thus, ||n||t ≤ (1 + t logn
logm

)A · ||m||t
logn
logm . Taking the tth roots of both sides

and letting t tend to ∞, we obtain that ||n|| ≤ ||m||
logn
logm , or equivalently,

||n||
1

logn ≤ ||m||
1

logm . In view of the symmetry between m and n we must
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also have ||m||
1

logm ≤ ||n||
1

logn , that is, in fact we have the equality ||n||
1

logn =

||m||
1

logm for all m,n > 1. So C = ||n||
1

logn is independent of the value of
n > 1.

Finally, we can set c = logC and note that ||n||
1

logn = ec implies ||n|| =
(ec)logn = (elogn)c = nc for all n > 1. Now for an arbitrary integer n we
clearly have ||n|| = |n|c, as claimed.

If a
b
∈ Q with a, b ∈ Z then ||a

b
|| = ||a||

||b|| = |a|c
|b|c = |a

b
|c. So the claim holds.

The following more general statement (currently without proof) shows
that up to equivalence all Archimedean valuations of a number field k come
from the embeddings of k into C.

Theorem 1.14.5 If k is a number field then every Archimedean valuation
of k is equivalent to ||α|| = |ασ|, where σ is an injective homomorphisms
from k into C and | · | is the usual complex norm.

Clearly, |ασ| = |ασ̄|, which means that conjugate embeddings into C
define equal Archimedean valuations. It can be shown that non-conjugate
embeddings define nonequivalent valuations. This means that the number
of different Archimedean places is equal to r1 + r2. Here, as always, r1 is
the number of real embeddings (i.e. the embeddings into R), while r2 is the
number of conjugate pairs of non-real embeddings.

We now turn to the non-Archimedean valuations. First of all, in the non-
Archimedean case the triangle inequality can be significantly strengthened.

Proposition 1.14.6 For a non-Archimedean valuation || · || on a field k, we
have ||α + β|| ≤ max(||α||, ||β||) for all α, β ∈ k.

Proof: Consider a large integer t and write ||α + β||t = ||(α + β)t|| =
||
∑t

i=0

(
t
i

)
αiβt−i|| ≤

∑t
i=0 ||

(
t
i

)
|| · ||α||i · ||β||t−i. Here we used multiplica-

tivity, then the triangular inequality and then again multiplicativity. Since
the valuation is non-Archimedean, ||

(
t
i

)
|| ≤ 1. Also, clearly, ||α||, ||β|| ≤

max(||α||, ||β||). Hence every summand is at most max(||α||, ||β||)t. We con-
clude that ||α + β||t ≤ (t + 1) max(||α||, ||β||)t. Taking the tth root of both
sides and letting t go to infinity yields the desired inequality.

The non-Archimedean valuations on k can also be completely classified.
However, the classification looks very different from the Archimedean case.

First we note the following property.

Proposition 1.14.7 If || · || is a non-Archimedean valuation on a number
field k then ||α|| ≤ 1 for all α ∈ ok.
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Proof: Since α is an algebraic integer, it is a root of a monic polynomial f =
xm+am−1x

m−1+. . .+a1x+a0 ∈ Z[x]. Hence αm = −am−1x
m−1−. . .−a1x−a0.

If ||α|| were more than one then the valuation of left side of this equality would
have been greater than the valuation of any of the summands on the right.
This contradicts to Proposition 1.14.6.

Next we note that the valuation leads to a prime ideal in ok.

Proposition 1.14.8 Suppose ||·|| is a non-Archimedean valuation on a num-
ber field k. Let p consists of all algebraic integers α ∈ ok such that ||α|| < 1.
Then p is a prime ideal of ok.

Proof: If α, β ∈ p then ||α±β|| ≤ max(||α||, ||β||) < 1. Hence p is an additive
subgroup of ok. Similarly, if α ∈ p and β ∈ ok then ||β|| ≤ 1 by Proposition
1.14.7 and so ||αβ|| = ||α|| · ||β|| ≤ ||α|| < 1, implying that αβ ∈ p. This
means that p is an ideal in ok. Finally, if α, β ∈ ok \ p then ||α|| = 1 = ||β||
and hence ||αβ|| = 1, yielding that αβ 6∈ p. Hence p is prime.

Clearly, the trivial valuation is non-Archimedean and the ideal p in this
case is the zero ideal. More interestingly, we have the following.

Proposition 1.14.9 If || · || is a nontrivial non-Archimedean valuation then
the corresponding prime ideal p is nonzero.

Proof: We need to show that p contains a nonzero element. If ||t|| < 1 for
some nonzero integer t then the claim is clearly true. So suppose that ||t|| = 1
for all nonzero integers t. Since || · || is nontrivial, there exists 0 6= α ∈ k
such that ||α|| 6= 1. Substituting, if necessary, α with α−1, we can assume
that ||α|| < 1. By Proposition 1.3.6 we know that for some nonzero a ∈ Z
we have that β = aα is an algebraic integer, that is, β ∈ ok. Since ||a|| = 1,
we must now have that ||β|| = ||a|| · ||α|| = ||α|| < 1. Thus, β ∈ p, and so p

is nonzero.

We conclude this section with a statement classifying non-Archimedean
valuations, which is given without a proof. We need some notation. For a
nontrivial non-Archimedean valuation || · ||, let p be the corresponding prime
ideal in ok and for a nonzero fractional ideal F let vp(F ) be the exponent of p

in the unique factorization of F . Note that the integer vp(F ) can be positive,
negative, or zero, but it is nonnegative if F is an (integral) ideal.

Theorem 1.14.10 Suppose || · || is a nontrivial non-Archimedean valuation
of a number filed k and let p and vp be as above. Then for some real number
C > 1 and all 0 6= α ∈ k we have ||α|| = C−vp((α)), where, as usual, (α)
denotes the principal fractional ideal generated by α.
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Because the non-Archimedean valuations correspond to the nonzero prime
ideals of ok, the non-Archimedean places are usually called finite places,
whereas the Archimedean places are called infinite places.
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