PREHOMOGENEOUS SPACES FOR THE COADJOINT ACTION OF A PARABOLIC GROUP

SIMON GOODWIN

Abstract. Let k be an algebraically closed field and let G be a reductive linear algebraic group over k. Let P be a parabolic subgroup of G, P_u its unipotent radical and $p_u = \text{Lie}(P_u)$ the Lie algebra of P_u. A fundamental result of R. Richardson says that P acts on p_u with a dense orbit (see [9]). The analogous result for the coadjoint action of P on p_u^* is already known for char $k = 0$ (see [5]). In this note we prove this result for arbitrary characteristic. Our principal result is that b_u^* is a prehomogeneous space for a Borel subgroup B of G. From this we deduce that a parabolic subgroup P of G acts on n^* with a dense orbit for any P-submodule n of P. Further, we determine when the orbit map for such an orbit is separable.

1. Introduction

Let G be a reductive linear algebraic group defined over the algebraically closed field k. Let P be a parabolic subgroup of G, P_u its unipotent radical and $p_u = \text{Lie}(P_u)$ the Lie algebra of P_u. We consider the coadjoint action of P on p_u^*. Our principal result is

Theorem 1.1. Let G be a reductive group and let B be a Borel subgroup of G. Then b_u^* is a prehomogeneous space for B.

From which we deduce

Corollary 1.2. Let G be a reductive group, let P be a parabolic subgroup of G and n a P-submodule of p_u. Then n^* is a prehomogeneous space for P.

In [9], Richardson proved that P always acts on p_u with a dense orbit. Corollary 1.2 implies the analogous result for the coadjoint action of P on p_u^*.

Theorem 1.1 is already known for char $k = 0$ (see [5, 2.4]). The proof in loc. cit. deals primarily with Lie algebras. The set $M = \{(f, x) \in b_u^* \times b_u : f([b, x]) = 0\}$ is considered and it is shown that there exists $f \in b_u^*$ such that $\{x \in b_u : (f, x) \in M\} = \emptyset$. For such f, $B \cdot f$ is shown to be dense in b_u^*.

If char $k \neq 0$, then for $f \in b_u^*$ the orbit map $B \to B \cdot f$ need not be separable. This implies that the proof in [5] is not valid for positive characteristic. Our proof uses a similar inductive method for constructing representatives of a dense B-orbit on b_u^* and in fact we get the same representatives. However, our proof is group theoretic so is valid in any characteristic.

In [1], the coadjoint action of B on b^* is considered for $k = \mathbb{C}$. It is shown that B acts on b^* with a dense orbit if G is not of type A_r, D_r (r odd) or E_6. Also in loc. cit. the maximal dimension of a B-orbit on b^* is calculated, in the case B does not act on b^* with a dense

\[Date: \text{November 11, 2004.} \]
\[2000 \text{ Mathematics Subject Classification. Primary 14L30, 17B45, Secondary 14M17, 20G15.} \]
Cor. 2]) says that if \(R \) acts finitely many orbits and there is a natural bijection between the set of \(R \)-orbits on \(V \) and the set of \(R \)-orbits on \(V^* \). This was generalised by G. R"ohrle in [11, Thm. 1.4] which says that the modality of the action of \(R \) on \(V \) is equal to the modality of the action of \(R \) on \(V^* \). These results suggest that there may be a natural bijection between the sets of \(R \)-orbits on \(V \) and \(V^* \) in general. From considering the map in [8] one suspects that such a bijection would reverse the closure order. However, there are many instances when a parabolic group \(P \) does not act on a \(P \)-submodule \(n \) with a dense orbit, for example see [10]. Therefore, a bijection between the sets of \(R \)-orbits on \(V \) and \(V^* \) cannot reverse the closure order in general.

In Section 2 we give the notation that we require. Then in Section 3 we prove some lemmas we need for the proof of Theorem 1.1. The proofs of our main results are contained in Section 4, a lemma is required to prove Theorem 1.1 from which Corollary 1.2 is deduced. Table 1 in Section 4 gives a representative of the dense \(B \)-orbit on \(b_r^\ast \) for each simple \(G \).

2. Notation

Let \(k \) be an algebraically closed field, \(R \) a linear algebraic group over \(k \) and \(V \) a rational \(R \)-module. The dual space \(V^\ast \) of \(V \) has the structure of an \(R \)-module via the contragredient action. For an \(R \)-submodule \(U \) of \(V \), we write \(\text{Ann}_{V^\ast}(U) = \{ \phi \in V^\ast : \phi(u) = 0 \ \forall u \in U \} \). For \(r \in R \) and \(x \in V \), we write \(r \cdot x \) for the image of \(x \) under \(r \), \(R \cdot x \) for the \(R \)-orbit of \(x \) and \(R_x \) for the stabiliser of \(x \) in \(R \). We note that \(V \) is also a module for the Lie algebra \(r = \text{Lie}(R) \) of \(R \). For \(s \in r \) and \(x \in V \) we write \(s \cdot x \) for the image of \(x \) under \(s \) and \(r_x \) for the stabiliser of \(x \) in \(r \).

We recall that \(V \) is called a prehomogeneous space for \(R \) provided \(R \) acts on \(V \) with a dense orbit.

Let \(G \) be a reductive linear algebraic group over \(k \). The rank of \(G \) is denoted by \(\text{rank} G \). We write \(g \) or \(\text{Lie}(G) \) for the Lie algebra of \(G \); likewise for closed subgroups of \(G \). Fix a maximal torus \(T \) of \(G \) and let \(\Psi \) be the root system of \(G \) with respect to \(T \). When \(G \) is simple we write \(\rho \) for the highest root of \(\Psi \) and when considering the (extended) Dynkin diagram of \(\Psi \) we identify the vertices with the roots to which they correspond. For each \(\alpha \in \Psi \) we pick a generator \(e_\alpha \) for the corresponding root subspace \(g_\alpha \) and an isomorphism \(u_\alpha : k \to U_\alpha \) to the corresponding root subgroup. For a \(T \)-regular closed subgroup \(H \) of \(G \) we write \(\Psi(H) \subseteq \Psi \) for the roots of \(H \) relative to \(T \).

Fix a Borel subgroup \(B \) of \(G \) containing \(T \). Then \(\Psi(B) \) is a system of positive roots in \(\Psi \). Let \(\Sigma = \{ \alpha_1, \ldots, \alpha_r \} \) be the set of simple roots defined by \(\Psi(B) \).
Let P be a parabolic subgroup of G. We write P_u for the unipotent radical of P and $\mathfrak{p}_u = \text{Lie}(P_u)$ for the Lie algebra of P_u. Let \mathfrak{n} be a P-submodule of \mathfrak{p}_u. Then P acts on \mathfrak{n} via the adjoint action and on the dual space \mathfrak{n}^* of \mathfrak{n} via the coadjoint action.

As a general reference for the theory of algebraic groups we cite Borel’s book [2]. Throughout we use the labelling of the simple roots for simple G from [3, Planches I–IX].

3. Preliminaries

We discuss the coadjoint action of B on \mathfrak{b}_u^*. We only consider the case when G is simple, the reductive case is similar. There is an isomorphism of G-modules $\phi: \mathfrak{g} \cong \mathfrak{g}^*$ (as \mathfrak{g} and \mathfrak{g}^* have the same highest weight, namely the highest root of Ψ). We fix such an isomorphism ϕ. Restriction from G to B gives \mathfrak{g} and \mathfrak{g}^* the structure of B-modules. We have $\mathfrak{b}_u^* \cong \mathfrak{g}^*/\text{Ann}_{\mathfrak{g}^*}(\mathfrak{b}_u)$ as B-modules, this gives an isomorphism of B-modules $\mathfrak{b}_u^* \cong \mathfrak{g}/\mathfrak{b}$ via ϕ. In the sequel we identify \mathfrak{b}_u^* with $\mathfrak{g}/\mathfrak{b}$ via the above isomorphism.

Next we prove a lemma which we require in Section 4. First we recall the following equation which is a consequence of [2, Thm. AG.10.1]:

$$\dim R = \dim R_x + \dim R \cdot x,$$

where R is an algebraic group acting on an algebraic variety X and $x \in X$.

Lemma 3.1. Suppose the algebraic group $R = HN$ is the semi-direct product of the closed subgroup H and the closed normal subgroup N. Let V be an R-module and let $x \in V$. Then

$$\dim R \cdot x = \dim H \cdot x + \dim N \cdot x - \dim (H \cdot x \cap N \cdot x).$$

In particular, $H \cdot x \cap N \cdot x$ is finite if and only if $\dim R \cdot x = \dim H \cdot x + \dim N \cdot x$.

Proof. Consider the morphism of algebraic varieties $\psi : H \times (N \cdot x) \to R \cdot x$, given by $(h, n \cdot x) \mapsto hn \cdot x$. By [2, Thm. AG.10.1] we have $\dim R \cdot x = \dim (H \times (N \cdot x)) - \dim \psi^{-1}(x)$. Elements of $\psi^{-1}(x)$ are of the form $(hk^{-1}, k \cdot x)$ where $h \in H_x$ and $k \in H$ is such that $k \cdot x \in N \cdot x$. Consider the projection of $H \times (N \cdot x)$ onto $N \cdot x$. The image of its restriction to $\psi^{-1}(x)$ is $H \cdot x \cap N \cdot x$. Therefore, $\dim \psi^{-1}(x) = \dim H_x + \dim (H \cdot x \cap N \cdot x)$ (using [2, Thm. AG.10.1]). Then equation (3.1) implies that $\dim R \cdot x = \dim H \cdot x + \dim N \cdot x - \dim (H \cdot x \cap N \cdot x)$.

Since $\dim (H \cdot x \cap N \cdot x) = 0$ if and only if $H \cdot x \cap N \cdot x$ is finite, the last part of the lemma follows. \hfill \square

We also require the following easy lemma.

Lemma 3.2. Let R be an algebraic group and let S be a maximal torus of R. Let V be an R-module and let $\lambda_1, \ldots, \lambda_j$ be linearly independent weights of V with respect to S. Let v_1, \ldots, v_j be eigenvectors of S with weights $\lambda_1, \ldots, \lambda_j$ respectively and let $x = v_1 + \cdots + v_j$. Then $S \cdot x = \{ t_1v_1 + \cdots + t_jv_j : t_1, \ldots, t_j \in k^\times \}$. In particular, $\dim S \cdot x = j$.

Proof. Since $\lambda_1, \ldots, \lambda_j$ are linearly independent, we can find a cocharacter $s_i : k^\times \to S$ for each i such that

$$s_i(t) \cdot v_i' = \begin{cases} t v_i & \text{if } i' = i, \\
 v_i' & \text{otherwise.} \end{cases}$$

The result follows from considering $s_1(t_1) \cdots s_j(t_j) \cdot x$. \hfill \square

The next result is about irreducible root systems and is a consequence of the fact that, for N as in the statement, $\Psi(N)$ consists of the positive roots which are not orthogonal to ρ.

3
Lemma 3.3. Assume G is a simple algebraic group and let N be the normal subgroup of B generated by the root subgroups of G corresponding to the simple roots which are connected to $-\rho$ in the extended Dynkin diagram of G. Then the map $\alpha \mapsto \rho - \alpha$ is a bijection of $\Psi(N) - \{\rho\}$.

Proof. Let β_1, \ldots, β_r be the simple roots of G, ordered so that β_1, \ldots, β_l are connected to $-\rho$ in the extended Dynkin diagram of G (so l is 1 or 2). Let $\alpha = b_1\beta_1 + \cdots + b_l\beta_l \in \Psi(B)$. Now $\langle \beta_i, \rho \rangle$ is nonzero if and only if $1 \leq i \leq l$. Therefore, $\langle \alpha, \rho \rangle \neq 0$ if and only if $b_1 + \cdots + b_l \neq 0$, i.e. $\alpha \in \Psi(N)$. Therefore, if $\alpha \in \Psi(N) - \{\rho\}$ then $\langle \alpha, \rho \rangle \neq 0$, which in turn implies that $\rho - \alpha \in \Psi(N)$. Also $\rho - \alpha \in \Psi(N)$ means that $\langle \alpha, \rho \rangle \neq 0$ and so $\rho - \alpha \in \Psi(N) - \{\rho\}$. The lemma follows.

4. PROOFS OF THEOREM 1.1 AND COROLLARY 1.2

We are now ready to prove Theorem 1.1, the majority of work is done in the following lemma which we prove by induction. In the statement and proof of Lemma 4.1 we abuse notation by identifying root vectors e_α with their image $e_\alpha + b$ in b_u^* and similarly for linear combinations of root vectors.

Lemma 4.1. There exists $j \in \mathbb{N}$ and $x \in b_u^*$ which satisfy the following conditions.

(i) x is of the form $e_{-\beta_1} + \cdots + e_{-\beta_j}$ where $\beta_1, \ldots, \beta_j \in \Psi(B)$ are linearly independent.

(ii) $\dim B_u \cdot x \geq \dim b_u^* - j$.

(iii) $B_u \cdot x \cap T \cdot x$ is finite.

Proof. We prove the result by induction on rank G, the base case where G is of type A_1 is trivial. We proceed by induction first noting that we may assume that G is simple.

We consider the extended Dynkin diagram of G. Let $I \subseteq \Sigma$ be the set of the simple roots not connected to $-\rho$ in the extended Dynkin diagram. Let H be the closed subgroup of B generated by the maximal torus T and the root subgroups corresponding to the simple roots in I. We note that $H = TC_u$ is a semi-direct product where C is a Borel subgroup of the derived subgroup of a Levi subgroup of the standard parabolic subgroup of G corresponding to I. Inductively we may find $j' \in \mathbb{N}$ and $x' \in c_u^*$ of the form $e_{-\beta_1} + \cdots + e_{-\beta_{j'}}$ where the β_i are linearly independent,

$$\dim C_u \cdot x' \geq \dim c_u - j'$$

and $C_u \cdot x' \cap S \cdot x'$ is finite, where S is a maximal torus of C. We define $x = x' + e_{-\rho} \in b_u^*$.

Let N be the normal subgroup of B generated by the root subgroups of G corresponding to the simple roots which are connected to $-\rho$ in the extended Dynkin diagram of G (as in Lemma 3.3). We note that $\Psi(B)$ is the disjoint union of $\Psi(N)$ and $\Psi(C)$ and $B_u = C_u N$ is a direct product. Therefore, if $h \in H$, then $h \cdot x$ is of the form

$$h \cdot x = a_{-\rho}e_{-\rho} + \sum_{\alpha \in \Psi(B) \setminus \Psi(N)} a_\alpha e_{-\alpha}.$$

We can write $N = \prod_{\alpha \in \Psi(N)} U_\alpha$ and an arbitrary element of N in the form $n = \prod_{\alpha \in \Psi(N)} u_\alpha(s_\alpha)$ where we order the α in a way so that the height of α is non-decreasing from right to left. Suppose $n \cdot x \in H \cdot x$ and write $n \cdot x = \sum_{\alpha \in \Psi(B)} b_\alpha e_{-\alpha}$. Then we note that $b_{\rho - \beta} = s_\beta$ if β is
one of the simple roots connected to \(-\rho\) in the extended Dynkin diagram of \(G\). Lemma 3.3 implies that \(\rho - \beta \in \Psi(N)\) and therefore \(s_\beta = 0\) since \(n \cdot x \in H \cdot x\), i.e. \(n \cdot x\) is of the form (4.2). Now consider \(\gamma \in \Psi(N)\) of height 2, since \(s_\beta = 0\) for the simple roots \(\beta \in \Psi(N)\), we see that \(b_{\rho - \gamma} = s_\gamma\) and so \(s_\gamma = 0\) (again using Lemma 3.3 and the fact that \(n \cdot x \in H \cdot x\) so is of the form 4.2). Continuing this way we can show that \(s_\beta = 0\) for all \(\beta \in \Psi(N) \setminus \{\rho\}\). Therefore, \(n \cdot x = x\) and \(N \cdot x \cap H \cdot x = \{x\}\). Hence, by Lemma 3.1, we have

\[
(4.3) \quad \dim B \cdot x = \dim H \cdot x + \dim N \cdot x
\]

and

\[
(4.4) \quad \dim B_u \cdot x = \dim C_u \cdot x + \dim N \cdot x
\]

since \(B_u = C_u N\). An argument similar to that above gives

\[
(4.5) \quad \dim N \cdot x \geq |\Psi(N)| - 1.
\]

We see that \(C_u \cdot x = \{e_{-\rho} + z : z \in C_u \cdot x'\}\) since \(C_u\) centralises \(e_{-\rho}\). Also \(T \cdot x \subseteq \{ae_{-\rho} + z : a \in k^\times, z \in S \cdot x'\}\) using Lemma 3.2. Therefore, since \(C_u \cdot x' \cap S \cdot x'\) is finite, we get that \(C_u \cdot x \cap T \cdot x\) is finite. Thus, Lemma 3.1 gives

\[
(4.6) \quad \dim H \cdot x = \dim C_u \cdot x + \dim T \cdot x.
\]

From equations (4.1), (4.4) and (4.5) and the fact that \(C_u\) centralises \(e_{-\rho}\) we get

\[
(4.7) \quad \dim B_u \cdot x \geq \dim b_u^* - j,
\]

where \(j = j' + 1\). Equations (4.3), (4.4) and (4.6) give

\[
(4.8) \quad \dim B \cdot x = \dim H \cdot x + \dim N \cdot x = \dim C_u \cdot x + \dim T \cdot x + \dim N \cdot x = \dim B_u \cdot x + \dim T \cdot x.
\]

Then Lemma 3.1 implies that \(B_u \cdot x \cap T \cdot x\) is finite. This completes the induction. \(\square\)

We now easily deduce Theorem 1.1.

Proof of Theorem 1.1. Let \(j\) and \(x\) be as in Lemma 4.1. By Lemma 3.2 we get \(\dim T \cdot x = j\). Then using equations (4.7) and (4.8) we deduce that \(\dim B \cdot x \geq \dim b_u^*\) and therefore \(\dim B \cdot x = \dim b_u^*\). Hence, \(B \cdot x\) is dense in \(b_u^*\). \(\square\)

The proofs of Lemma 4.1 and Theorem 1.1 give a representative of a dense \(B\)-orbit on \(b_u^*\) of the form \(e_{-\beta_1} + \cdots + e_{-\beta_j}\). In Table 1 we describe this representative by listing the roots \(\beta_1, \ldots, \beta_j\).

Remark 4.2. Let \(x \in b_u^*\) be as described in Table 1. We have calculated the dimension of the centraliser \(b_x\) of \(x\) in \(b\). If \(\text{char} \ k \neq 2\) we have \(\dim b_x = \dim b - \dim b_u^*\). It then follows from [2, Prop. 6.7] that the orbit map \(B \to B \cdot x\) is separable. While in the case \(\text{char} \ k = 2\) we have \(\dim b_x > \dim b - \dim b_u^*\) (for all simple \(G\)) which implies that the orbit map is inseparable.

We now deduce Corollary 1.2. This requires the following two easy lemmas.

Lemma 4.3. Let \(P\) be a parabolic subgroup of \(G\) and let \(m \subseteq n\) be \(P\)-submodules of \(p_u\). If \(n^*\) is a prehomogeneous space for \(P\), then so is \(m^*\).
Table 1. Representatives of dense B-orbits on b^*_u.

Proof. We have an isomorphism of P-modules $m^* \cong n^*/\text{Ann}_m(m)$. Therefore, a dense P-orbit in n^* induces a dense P-orbit in m^*. □

Lemma 4.4. Let $P \subseteq Q$ be parabolic subgroups of G and n a Q-submodule of q_u. If n^* is a prehomogeneous space for P, then n^* is a prehomogeneous space for Q.

Proof. If $P \cdot x = n^*$, then $Q \cdot x$ is dense in n^*. □

Proof of Corollary 1.2. By Theorem 1.1 B acts on b^*_u with a dense orbit. Therefore, Lemma 4.3 implies n^* is a prehomogeneous space for B. Then by Lemma 4.4, P acts on n^* with a dense orbit. □

Remark 4.5. Let $x \in b^*_u$ be a representative for a dense B-orbit on b^*_u. The proofs of Lemma 4.3, Lemma 4.4 and Corollary 1.2 show that we may take the image of x in n^* as a representative of a dense P-orbit on n^* and in fact $B \cdot x$ is dense in n^*. Therefore, the information given in Table 1 describes a representative of a dense P-orbit on n^*. Moreover, it follows from Remark 4.2 that the orbit map $P \to P \cdot x$ is separable precisely when $\text{char} k \neq 2$.

Acknowledgments

I would like to thank G. Röhrle for carefully reading through earlier versions of this note and giving many useful suggestions. I am also grateful to D. Panyushev for informing me of the result in [5]. Finally, I would like to thank EPSRC for their financial support.

References

School of Mathematics and Statistics, University of Birmingham, Birmingham, B15 2TT, United Kingdom.

E-mail address: goodwism@for.mat.bham.ac.uk

URL: http://www.mat.bham.ac.uk/S.M.Goodwin