On the f-matching polytope and the
fractional f-chromatic index

Stefan Glock

Abstract

Our motivation is the question how similar the f-colouring problem is to the
classic edge-colouring problem, particularly with regard to graph parameters. In
2010, Zhang, Yu, and Liu [9] gave a new description of the f-matching polytope
and derived a formula for the fractional f-chromatic index, stating that the
fractional f-chromatic index equals the maximum of the fractional maximum
f-degree and the fractional f-density. Unfortunately, this formula is incorrect.
We present counterexamples for both the description of the f-matching polytope
and the formula for the fractional f-chromatic index. Finally, we prove a short
lemma concerning the generalization of Goldberg’s Conjecture.

1 Introduction

Throughout this paper, the term graph refers to a finite and undirected graph, which
may have multiple edges but no loops. The vertex set and the edge set of a graph
G are denoted by V(G) and E(G), respectively. If X and Y are subsets of V(G),
then Eq(X,Y) contains all edges that connect X and Y. Let Eg[X] denote the set
of all edges with both ends in X and 0gX the set of all edges with exactly one end
in X. Thus, the degree of a vertex v in G is dg(v) = |0g{v}|. If the meaning is clear
from the context, we will frequently omit superfluous subscripts and brackets for the
sake of readability. For example, henceforth, we will write dv instead of dg{v}. The
expression H C G means H is a subgraph of G, and for U C V(G), the induced
subgraph is denoted by G[U].

A weighted graph is a pair (G, f) consisting of a graph G and a vertex function f
of G, which assigns a positive integer to every vertex of G. For U C V(G), set f(U) =
Y vev f(v), and f(G) should stand for f(V(G)). An f-matching of the weighted graph
(G, f)is an edge set M C E(G) so that each vertex v € V(G) satisfies |[M N dv| < f(v).
The set of all f-matchings of G is denoted by M /(G).

An f-colouring, introduced by Hakimi and Kariv [2], assigns to every edge of G a
colour, satisfying that at each vertex v each colour occurs at most f(v) times. More
formal, ¢: E(G) — C'is an f-colouring of G iff ¢! (a) € M(G) for all a € C, where
C'is an arbitrary set. The f-chromatic index, denoted by X}(G), is the least possible
cardinality of such a colour set. As the computation of x} is NP-complete, one is
interested in good bounds. The mere fact that every f-colouring induces a partition
of E(G) into f-matchings gives rise to two easy lower bounds, the maximum f-degree



and the f-density. Let us first define
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as the fractional maximum f-degree and

* = max M
wi(G) = HCG, V()22 | f(H)|

as the fractional f-density, where we set W% (G) = 0 if G has less than two vertices.
Then, the maximum f-degree of G is Af(G) = [A%(G)] and the f-density of G is
defined by wy(G) = [W}(G)]. Easy observation yields

X7 (G) z max{A(G), wy(G)} - (1)

It is much more complicated to find good upper bounds. In 1988, Nakano, Nishizeki,
and Saito [3] proved that any weighted graph satisfies

8

which encouraged them to transfer Goldberg’s conjecture to the f-colouring problem.

(6 < max { §A5(6) + §wr(€)

Conjecture 1. Any weighted graph satisfies
X7(G) < max{Af(G) + 1w (G)} .

If this proves to be true the f-chromatic index would be restricted to the values
A¢(G),Af(G) + 1 and wy(G). Of course, the computation of ws(G) seems to be
NP-hard as well, however, the value of max{A¢(G) + 1,w¢(G)} can be computed
efficiently. This observation is closely linked to the fractional f-chromatic index, which
can be defined in several ways. We want to do it by means of fractional f-colourings.

A fractional f-colouring of G is a map w: M(G) — [0, 1] satisfying the following
condition:

> wM)=1 Vee E(G) (2)
MeM;(G): eeM
For a fractional f-colouring w of G, we call

Y wM)

MEM(G)

the value of w. The fractional f-chromatic index x’*(G) is then the minimum value
over all fractional f-matchings of G, which exists, since this is an LP-problem bounded
from below. Note that if one replaced the closed interval [0, 1] by the set {0,1}, the
obtained minimum value would be nothing else than the f-chromatic index X’ (G),
where the function w indicates whether a certain f-matching is a colour class or not.
Thus, the fractional f-chromatic index is a lower bound for the f-chromatic index.

Remark 1. One could replace [0, 1] by the nonnegative real numbers and =’ by >’
in (2) in order to define fractional f-colourings, as Zhang et al. [9] did. That does not
change the obtained minimum value (see [8], Theorem B.1).

Remark 2. While the computation of the f-chromatic index is NP-complete, the
fractional f-chromatic index can be determined efficiently. We refer the reader to
[4] and [5] for more profound information on algorithmic details and computational
complexity.



2 The f-matching polytope

Let (G, f) be an arbitrary weighted graph with at least one edge. Let V(G) then
denote the real vector space of all functions x: E(G) — R, which is isomorphic to the
standard vector space RIF(@)| The characteristic function of an edge set F C E(G)

is denoted by iy, where
. 1 ifeeF,
ir(e) = .
0 ifeégkF.

The f-matching polytope P;(G) of G is then defined as the convex hull of the
characteristic functions of all f-matchings, i.e.,

P(G) = conv ({in | M € My(G)}).

If f(v) =1 for all vertices of G, we write P(G) instead of P;(G), which stands for
the ordinary matching polytope.

The f-matching polytope is defined over its extreme points which is admittedly
impractical. We are now interested in a description by a system of linear inequalities,
which exists in any case. Edmonds [1] was the first who accomplished that. For a
vector x € V(G) and an edge set ' C F(G), define x(F) = . x(e).

Theorem 1. For any graph G with at least one edge, a vector x € V(G) belongs to
the matching polytope iff x satisfies the following system of linear inequalities:

(1) Vee E(G): z(e) >0
(2) Voe V(@): z(dv) <1
(3) YU C V(G): z(E[U]) < [5|U]]

Remark 3. One can easily find that the characteristic function of any matching satis-
fies (1) — (3), and therefore every convex combination of these functions satisfies the
system. The crucial statement is that the given inequalities suffice to determine the
matching polytope. However, not all of them are really necessary, for instance, in (3)
it would be enough to include subsets U with odd cardinality.

Edmonds [1] also gave a description of the f-matching polytope. Note that this
statement does not immediately imply Theorem 1 for f = 1.

Theorem 2. Let G be an arbitrary graph with at least one edge and f a vertex
function of G. A vector x € V(G) belongs to the f-matching polytope iff x satisfies
the following system of linear inequalities:

(a) Vee E(G): 0<z(e) <1

(b) Yv e V(G): z(0v) < f(v)

(c) YU CV(G)VF CoU: z(EUJUF) < |5(f(U) + | F])]

In order to proof their description of the f-matching polytope, Zhang et al. [9]

embraced the strategy of a proof for Theorem 1 given by Scheinerman and Ullman

[4]. For a weighted graph (G, f), let Q¢(G) denote the polyhedron in V(G) described
by the following inequalities:



(i) Vee E(G): z(e) >0
(ii) Vv € V(GQ): z(9v) < f(v)
(ili) YU C V(G): =(E[U)) < [5£(U)]

For f =1, this is exactly the system given by Theorem 1. The assertion of Zhang,
Yu, and Liu [9] reads: For any weighted graph (G, f), the f-matching polytope P;(G)
is equal to Q s (G). One may mention that they consider only bounded vertex functions,
ie., f(v) <d(v)for all v € V(G). Although this actually does not make any difference,
we will construct a counterexample with bounded vertex function.

Example 1. There is a very simple counterexample showing that Py(G) # Q7(G) in
general. Consider the graph G consisting of two vertices that are connected by two
edges and a vertex function f that assigns the value 2 to both vertices. The function
x € V(G) may map one edge on 2 and the other edge on 0. Then z satisfies (i) — (iii),
but does obviously not belong to the f-matching polytope.

The problem we encountered here is apparently that there is no constraint z(e) < 1
in the definition of Q(G). In Theorem 1 this constraint can be omitted, for it follows
directly from (2). However, we need it for weighted graphs. Moreover, Zhang et al.
actually need it in their proof of CLAIM B to have reasonable evidence that they
‘always can find a IT-extremal i such that e ¢ F”.! Since we are anyhow mainly
interested in the inequalities (c) and (iii), respectively, we just add the constraint
Ve € E(G): z(e) <1 and call the obtained polyhedron once again Q¢(G). Yet the
following counterexample will show that neither this can save the statement.

Example 2. Let k > 3 be an odd integer. Consider the graph G comprising a cycle of
length k and an extra vertex v’ that is connected with the vertex u on the cycle by
two edges e1, es. The vertex function f may assign the value 2 to v and v/, and 1 to
the other vertices. Note that f(v) < d(v) for all v € V(G). Let us define the vector
x € V(G) by

1 ife=ey,
z(e) =40 ife=ey,
3 otherwise.

We now have to verify that x satisfies (i) — (iii), but is not contained in Py (G).
Proof. That x satisfies (i) results directly from its definition. With z(0u) = 1+ 0+
14+1<2,2(0w)=1+0<2,and 2(dv) = 1 +1 <1 for all other vertices v € V(G),
we also have verified (ii). In order to check (iii), we distinguish some cases. Let U be
an arbitrary subset of V(G). If both v and u' are contained in U, then both e; and
e2 belong to E[U] and we therefore have z(E[U]) =1+ 0+ 3(|E[U]| — 2) = 1| E[U]].
Otherwise, neither e; nor ey belongs to E[U] and this also yields z(E[U]) = 5|E[U]|.
We show now that |E[U]| < f(U) — 1 holds.

Case 1. u¢gU
e G[U] does not contain a cycle = |E[U]| < |U|-1
e f(U) = U]

1Zhang et al.[9], p. 3364




Case 2. uelU v ¢U
e B[] = Syep o) < U2 = |EW] < U]
o f(U)=1-2+(U|—-1)-1=|U|+1
Case 3. u,u’' €U
* 2E[U]| =X ey dy(v) <1-4+1-2+ (U] -2)-2 = [E[U)|<[U[+1
o fU)=2-2+(U|-2)-1=|U|+2

In each case, the mentioned inequality holds, and we can deduce
1 1 1
2(BU) = 5IEW]| < 5(F@) - 1) < | 5/0) .

Thus, = satisfies (iii).
Now, assume that x belongs to the f-matching polytope of G. Consequently, we
have

x= > Auiy forsuitable Ay €Rso with Y Ay=1.
MeM;(G) MeM¢(G)

For an edge e € E(G), we obtain

zle)= Y Auim(e) = > Aut -

MeMs(G) MeMs(G): eeM

Now, we add up both sides of this equation over the edges of the cycle of G. On the

left side, we easily obtain g Since z(e1) = 1, all Ay with e; ¢ M need to vanish.

And since every f-matching that contains e; can contain at most LgJ edges from the

cycle, we infer that each Aj; # 0 appears at most LgJ—times on the right side. As

the sum of all Aj; equals 1, the value of the right side is at most LgJ Thus, we have
k

shown g < | 3], a contradiction to our premise that k is odd. Ergo, = can not belong

to the f-matching polytope of G. [ ]

Remark 4. One may ask, at which point the proof of Zhang et al. is flawed. Without
introducing all needed terminology, we just want to mention that the problem appears
in Subcase 3.2 , when they consider an FF’-alternating walk Q in G — e starting
from u. This walk could be extended with the edge e in GG. Then, if @ is closed and
dp(u) = f(u)—1, F» need not necessarily be an f-matching. Although F5 is ostensibly
not used afterwards, the condition that F5 is indeed an f-matching is important in
order to have that if, is II-extremal.

Remark 5. In our counterexample appears a multiple edge. Note that there are also
simple graphs with P;(G) # Q;(G). For instance, consider the graph Cy with a chord,
where two consecutive vertices on the 4-cycle receive the value 2 and the others 1.



3 The fractional f-chromatic index

Once one has Edmonds’ matching polytope theorem 1, it is straightforward calculating
to prove the following result, which was observed by Seymour [6] and Stahl [7] first.

Corollary 1. Any graph satisfies
X" (G) = max{A*(G), w*(G)} .

The question is whether one can add the subscript f to the three fractional graph
parameters and the statement remains true. According to Zhang, Yu, and Liu [9],
the answer is yes. But we have already seen that their description of the f-matching
polytope is incorrect, and we will also present a counterexample demonstrating that
generally x;*(G) # max{A%}(G),w}(G)}. Foremost, we define the fractional graph
parameter
|E[U]| + |F|

= max e ——
UCV(G), FCOU, f(U)+|F|>2 | 2(f(U) +|F))]

(with I'}(G) = 0 if G has no edge), and set I'y(G) = [I'}(G)]. This definition is mo-
tivated by the inequalities (c). Analogous to the derivation of Corollary 1, Theorem 2
induces the following combinatorial characterization of the fractional f-chromatic in-
dex (see [8], Theorem B.11).

Corollary 2. Let (G, f) be an arbitrary weighted graph with A;(G) > 1. Then,

I} (@)

X7 (G) = max{A}(G),I'}(G)} .

In order to present the counterexample, and also after that, we will use the fact

that for positive reals a1, ..., an,b1,...,b,, the estimate
ap+---+an a;
— < max — 3
b1+"'+bn71§i§ani ()
holds.
Ezxample 3. Consider the graph G with six vertices vy, - ,vg. The vertices v; and
vy may be connected by one edge. For a k € N, let |E(vi,v2)] = |E(v1,v3)| =

|E(vg,v5)| = |E(vg,v6)] = k and |E(va,v3)| = |E(vs,ve)] = k + 1. We therefore
have d(v) = 2k + 1 for all v € V(G). The vertex function f may assign the value 2 to
all vertices. Thus, A?(G) = 2’“2—“ =k+ % For every subgraph H C G, f(H) is even.
Using (3), we obtain

|EH)| _ 21E(H)| _ 2vevan 4 (v) dx (v)

)]~ FH) Sy J0) = o2V )

and therefore w3}(G) < A%(G). Now choose U = {v1,v2,v3} and F = E(v1,v4) C OU.
Then we have f(U) + |[F[=3-2+1=7and |[E[U]| +|F| = 3k + 1) + 1 = 3k + 2.
Thus,

< A3(G)

. |EU]|+|F|  3k+2 2 I
Ff(G)Z[%(f(U)HFDJ_ 3 _k+§>k+§_Af(G).

Corollary 2 and I'}(G) > A} (G) > w}(G) yield

X7 (G) = max{A}(G),T}H(G)} > max{A}(G), W} (G)}.



So the fractional graph parameter F;Z seems to be more suitable for the consi-
deration of weighted graphs than the fractional f-density w}. We therefore tried to
extend the presented counterexample to a counterexample for Conjecture 1, yet with
no success. Instead, we observed that it makes no difference if one formulates this
conjecture with w;(G) or I';(G).

Lemma 1. Any weighted graph satisfies
max{A;(G)+ 1,T¢(G)} = max{A;(G) + 1,w;(G)}.

Proof. Since w}(G) < I'}(G), we have to verify I'f(G) < max{A;(G)
only. If G has no edge, this inequality is satisfied. So assume that E(G)
maximum in the definition of I'}(G) may be attained by U C V(G) and
With 2|E[U]| + |F| < 2|E[U]| + |0cU| = >_,,cpy da(u) follows

2uev do(u) + |F]

[EU][+F]  _ 2(EU] + |F])
fU)+|F[ =1

(W) +IFD] — FO) +IF =1
Moreover, applying (3), we find

2uer d6(W) Y uey da(u) d (u)

< max

fU) Duey flu) T uet f(u)

Casel. |F|>2
Then, |F| — 1 is positive, and with (3) and A;(G) > 1 follows

2ouev da(u) |F|
[y CIFI -1

I3 (G) =

IN

< AFG) < Af(G).-

I (G) <max{ } <max{A;(G),2} < Ay(G)+1.
Case 2. |F|=1
- e <

Case 3. |F|=0
Then set H = G[U] and deduce

|E[U]| |E( < wi(@) < wi(@).

BF@)] ~ Lara] ~

Consequently, I'}(G) < max{Af(G) +1,w¢(G)}, and since the maximum is an inte-
ger, we have proved I'f(G) = [T'}(G)] < max{Af( )+ 1, we(G)}. [ |

(@) =

We can infer from Corollary 2 that [x}"(G)] = max{A(G),I's(G)}, where the
case A%(G) < 1 needs a little extra consideration. We therefore have

max{A(G) + 1,T;(G)} = max{A(G) + 1, [x}" (G},

since [x}*(G)] # I'y(G) implies [x*(G)] = A¢(G) > I't(G). Thus, the upper bound
in Conjecture 1 can be computed efficently. Should Conjecture 1 additionally emerge
as true, we would have

X (@ < x5 (G) < [XF (@) +1.
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