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Abstract

Our motivation is the question how similar the f -colouring problem is to the
classic edge-colouring problem, particularly with regard to graph parameters. In
2010, Zhang, Yu, and Liu [9] gave a new description of the f -matching polytope
and derived a formula for the fractional f -chromatic index, stating that the
fractional f -chromatic index equals the maximum of the fractional maximum
f -degree and the fractional f -density. Unfortunately, this formula is incorrect.
We present counterexamples for both the description of the f -matching polytope
and the formula for the fractional f -chromatic index. Finally, we prove a short
lemma concerning the generalization of Goldberg's Conjecture.

1 Introduction

Throughout this paper, the term graph refers to a �nite and undirected graph, which
may have multiple edges but no loops. The vertex set and the edge set of a graph
G are denoted by V (G) and E(G), respectively. If X and Y are subsets of V (G),
then EG(X,Y ) contains all edges that connect X and Y . Let EG[X] denote the set
of all edges with both ends in X and ∂GX the set of all edges with exactly one end
in X. Thus, the degree of a vertex v in G is dG(v) = |∂G{v}|. If the meaning is clear
from the context, we will frequently omit super�uous subscripts and brackets for the
sake of readability. For example, henceforth, we will write ∂v instead of ∂G{v}. The
expression H ⊆ G means H is a subgraph of G, and for U ⊆ V (G), the induced
subgraph is denoted by G[U ].

A weighted graph is a pair (G, f) consisting of a graph G and a vertex function f
of G, which assigns a positive integer to every vertex of G. For U ⊆ V (G), set f(U) =∑

v∈U f(v), and f(G) should stand for f(V (G)). An f -matching of the weighted graph
(G, f) is an edge setM ⊆ E(G) so that each vertex v ∈ V (G) satis�es |M∩ ∂v| ≤ f(v).
The set of all f -matchings of G is denoted byMf (G).

An f -colouring, introduced by Hakimi and Kariv [2], assigns to every edge of G a
colour, satisfying that at each vertex v each colour occurs at most f(v) times. More
formal, ϕ : E(G)→ C is an f -colouring of G i� ϕ−1(α) ∈Mf (G) for all α ∈ C, where
C is an arbitrary set. The f -chromatic index, denoted by χ′f (G), is the least possible
cardinality of such a colour set. As the computation of χ′f is NP-complete, one is
interested in good bounds. The mere fact that every f -colouring induces a partition
of E(G) into f -matchings gives rise to two easy lower bounds, the maximum f -degree
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and the f -density. Let us �rst de�ne

∆∗f (G) = max
v∈V (G)

dG(v)

f(v)

as the fractional maximum f -degree and

W∗f (G) = max
H⊆G, |V (H)|≥2

|E(H)|⌊
1
2f(H)

⌋
as the fractional f -density, where we set W∗f (G) = 0 if G has less than two vertices.
Then, the maximum f -degree of G is ∆f (G) = d∆∗f (G)e and the f -density of G is
de�ned by Wf (G) = dW∗f (G)e. Easy observation yields

χ′f (G) ≥ max{∆f (G),Wf (G)} . (1)

It is much more complicated to �nd good upper bounds. In 1988, Nakano, Nishizeki,
and Saito [3] proved that any weighted graph satis�es

χ′f (G) ≤ max

{
9

8
∆f (G) +

6

8
,Wf (G)

}
,

which encouraged them to transfer Goldberg's conjecture to the f -colouring problem.

Conjecture 1. Any weighted graph satis�es

χ′f (G) ≤ max{∆f (G) + 1,Wf (G)} .

If this proves to be true the f -chromatic index would be restricted to the values
∆f (G),∆f (G) + 1 and Wf (G). Of course, the computation of Wf (G) seems to be
NP-hard as well, however, the value of max{∆f (G) + 1,Wf (G)} can be computed
e�ciently. This observation is closely linked to the fractional f -chromatic index, which
can be de�ned in several ways. We want to do it by means of fractional f -colourings.

A fractional f -colouring of G is a map w : Mf (G)→ [0, 1] satisfying the following
condition: ∑

M∈Mf (G) : e∈M

w(M) = 1 ∀ e ∈ E(G) (2)

For a fractional f -colouring w of G, we call∑
M∈Mf (G)

w(M)

the value of w. The fractional f -chromatic index χ′ ∗f (G) is then the minimum value
over all fractional f -matchings of G, which exists, since this is an LP-problem bounded
from below. Note that if one replaced the closed interval [0, 1] by the set {0, 1}, the
obtained minimum value would be nothing else than the f -chromatic index χ′f (G),
where the function w indicates whether a certain f -matching is a colour class or not.
Thus, the fractional f -chromatic index is a lower bound for the f -chromatic index.

Remark 1. One could replace [0, 1] by the nonnegative real numbers and '=' by '≥'
in (2) in order to de�ne fractional f -colourings, as Zhang et al. [9] did. That does not
change the obtained minimum value (see [8], Theorem B.1).

Remark 2. While the computation of the f -chromatic index is NP-complete, the
fractional f -chromatic index can be determined e�ciently. We refer the reader to
[4] and [5] for more profound information on algorithmic details and computational
complexity.
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2 The f-matching polytope

Let (G, f) be an arbitrary weighted graph with at least one edge. Let V(G) then
denote the real vector space of all functions x : E(G)→ R, which is isomorphic to the
standard vector space R|E(G)|. The characteristic function of an edge set F ⊆ E(G)
is denoted by iF , where

iF (e) =

{
1 if e ∈ F,
0 if e 6∈ F.

The f -matching polytope Pf (G) of G is then de�ned as the convex hull of the
characteristic functions of all f -matchings, i.e.,

Pf (G) = conv ({iM |M ∈Mf (G)}).

If f(v) = 1 for all vertices of G, we write P(G) instead of Pf (G), which stands for
the ordinary matching polytope.

The f -matching polytope is de�ned over its extreme points which is admittedly
impractical. We are now interested in a description by a system of linear inequalities,
which exists in any case. Edmonds [1] was the �rst who accomplished that. For a
vector x ∈ V(G) and an edge set F ⊆ E(G), de�ne x(F ) =

∑
e∈F x(e).

Theorem 1. For any graph G with at least one edge, a vector x ∈ V(G) belongs to

the matching polytope i� x satis�es the following system of linear inequalities:

(1) ∀ e ∈ E(G) : x(e) ≥ 0

(2) ∀ v ∈ V (G) : x(∂v) ≤ 1

(3) ∀U ⊆ V (G) : x(E[U ]) ≤
⌊
1
2 |U |

⌋
Remark 3. One can easily �nd that the characteristic function of any matching satis-
�es (1) � (3), and therefore every convex combination of these functions satis�es the
system. The crucial statement is that the given inequalities su�ce to determine the
matching polytope. However, not all of them are really necessary, for instance, in (3)
it would be enough to include subsets U with odd cardinality.

Edmonds [1] also gave a description of the f -matching polytope. Note that this
statement does not immediately imply Theorem 1 for f ≡ 1.

Theorem 2. Let G be an arbitrary graph with at least one edge and f a vertex

function of G. A vector x ∈ V(G) belongs to the f -matching polytope i� x satis�es

the following system of linear inequalities:

(a) ∀ e ∈ E(G) : 0 ≤ x(e) ≤ 1

(b) ∀ v ∈ V (G) : x(∂v) ≤ f(v)

(c) ∀U ⊆ V (G)∀F ⊆ ∂U : x(E[U ] ∪ F ) ≤
⌊
1
2 (f(U) + |F |)

⌋
In order to proof their description of the f -matching polytope, Zhang et al. [9]

embraced the strategy of a proof for Theorem 1 given by Scheinerman and Ullman
[4]. For a weighted graph (G, f), let Qf (G) denote the polyhedron in V(G) described
by the following inequalities:
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(i) ∀ e ∈ E(G) : x(e) ≥ 0

(ii) ∀ v ∈ V (G) : x(∂v) ≤ f(v)

(iii) ∀U ⊆ V (G) : x(E[U ]) ≤
⌊
1
2f(U)

⌋
For f ≡ 1, this is exactly the system given by Theorem 1. The assertion of Zhang,

Yu, and Liu [9] reads: For any weighted graph (G, f), the f -matching polytope Pf (G)
is equal toQf (G). One may mention that they consider only bounded vertex functions,
i.e., f(v) ≤ d(v) for all v ∈ V (G). Although this actually does not make any di�erence,
we will construct a counterexample with bounded vertex function.

Example 1. There is a very simple counterexample showing that Pf (G) 6= Qf (G) in
general. Consider the graph G consisting of two vertices that are connected by two
edges and a vertex function f that assigns the value 2 to both vertices. The function
x ∈ V(G) may map one edge on 2 and the other edge on 0. Then x satis�es (i) � (iii),
but does obviously not belong to the f -matching polytope.

The problem we encountered here is apparently that there is no constraint x(e) ≤ 1
in the de�nition of Qf (G). In Theorem 1 this constraint can be omitted, for it follows
directly from (2). However, we need it for weighted graphs. Moreover, Zhang et al.
actually need it in their proof of Claim B to have reasonable evidence that they
`always can �nd a Π-extremal iF ′ such that e 6∈ F ′'.1 Since we are anyhow mainly
interested in the inequalities (c) and (iii), respectively, we just add the constraint
∀ e ∈ E(G) : x(e) ≤ 1 and call the obtained polyhedron once again Qf (G). Yet the
following counterexample will show that neither this can save the statement.

Example 2. Let k ≥ 3 be an odd integer. Consider the graph G comprising a cycle of
length k and an extra vertex u′ that is connected with the vertex u on the cycle by
two edges e1, e2. The vertex function f may assign the value 2 to u and u′, and 1 to
the other vertices. Note that f(v) ≤ d(v) for all v ∈ V (G). Let us de�ne the vector
x ∈ V(G) by

x(e) =


1 if e = e1,

0 if e = e2,
1
2 otherwise.

We now have to verify that x satis�es (i) � (iii), but is not contained in Pf (G).

Proof. That x satis�es (i) results directly from its de�nition. With x(∂u) = 1 + 0 +
1
2 + 1

2 ≤ 2, x(∂u′) = 1 + 0 ≤ 2, and x(∂v) = 1
2 + 1

2 ≤ 1 for all other vertices v ∈ V (G),
we also have veri�ed (ii). In order to check (iii), we distinguish some cases. Let U be
an arbitrary subset of V (G). If both u and u′ are contained in U , then both e1 and
e2 belong to E[U ] and we therefore have x(E[U ]) = 1 + 0 + 1

2 (|E[U ]| − 2) = 1
2 |E[U ]|.

Otherwise, neither e1 nor e2 belongs to E[U ] and this also yields x(E[U ]) = 1
2 |E[U ]|.

We show now that |E[U ]| ≤ f(U)− 1 holds.

Case 1. u 6∈ U

• G[U ] does not contain a cycle ⇒ |E[U ]| ≤ |U | − 1

• f(U) ≥ |U |
1Zhang et al.[9], p. 3364
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Case 2. u ∈ U, u′ 6∈ U

• 2|E[U ]| =
∑

v∈U dG[U ](v) ≤ |U | · 2 ⇒ |E[U ]| ≤ |U |

• f(U) = 1 · 2 + (|U | − 1) · 1 = |U |+ 1

Case 3. u, u′ ∈ U

• 2|E[U ]| =
∑

v∈U dG[U ](v) ≤ 1 · 4 + 1 · 2 + (|U | − 2) · 2 ⇒ |E[U ]| ≤ |U |+ 1

• f(U) = 2 · 2 + (|U | − 2) · 1 = |U |+ 2

In each case, the mentioned inequality holds, and we can deduce

x(E[U ]) =
1

2
|E[U ]| ≤ 1

2
(f(U)− 1) ≤

⌊
1

2
f(U)

⌋
.

Thus, x satis�es (iii).
Now, assume that x belongs to the f -matching polytope of G. Consequently, we

have

x =
∑

M∈Mf (G)

λM iM for suitable λM ∈ R≥0 with
∑

M∈Mf (G)

λM = 1 .

For an edge e ∈ E(G), we obtain

x(e) =
∑

M∈Mf (G)

λM iM (e) =
∑

M∈Mf (G) : e∈M

λM .

Now, we add up both sides of this equation over the edges of the cycle of G. On the
left side, we easily obtain k

2 . Since x(e1) = 1, all λM with e1 6∈ M need to vanish.
And since every f -matching that contains e1 can contain at most bk2 c edges from the
cycle, we infer that each λM 6= 0 appears at most bk2 c-times on the right side. As
the sum of all λM equals 1, the value of the right side is at most bk2 c. Thus, we have
shown k

2 ≤ b
k
2 c, a contradiction to our premise that k is odd. Ergo, x can not belong

to the f -matching polytope of G.

Remark 4. One may ask, at which point the proof of Zhang et al. is �awed. Without
introducing all needed terminology, we just want to mention that the problem appears
in Subcase 3.2 , when they consider an FF ′-alternating walk Q in G − e starting
from u. This walk could be extended with the edge e in G. Then, if Q is closed and
dF(u) = f(u)−1, F2 need not necessarily be an f -matching. Although F2 is ostensibly
not used afterwards, the condition that F2 is indeed an f -matching is important in
order to have that iF1 is Π-extremal.

Remark 5. In our counterexample appears a multiple edge. Note that there are also
simple graphs with Pf (G) 6= Qf (G). For instance, consider the graph C4 with a chord,
where two consecutive vertices on the 4-cycle receive the value 2 and the others 1.
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3 The fractional f-chromatic index

Once one has Edmonds' matching polytope theorem 1, it is straightforward calculating
to prove the following result, which was observed by Seymour [6] and Stahl [7] �rst.

Corollary 1. Any graph satis�es

χ′∗(G) = max{∆∗(G),W∗(G)} .

The question is whether one can add the subscript f to the three fractional graph
parameters and the statement remains true. According to Zhang, Yu, and Liu [9],
the answer is yes. But we have already seen that their description of the f -matching
polytope is incorrect, and we will also present a counterexample demonstrating that
generally χ′ ∗f (G) 6= max{∆∗f (G),W∗f (G)}. Foremost, we de�ne the fractional graph
parameter

Γ∗f (G) = max
U⊆V (G), F⊆∂U, f(U)+|F |≥2

|E[U ]|+ |F |⌊
1
2 (f(U) + |F |)

⌋
(with Γ∗f (G) = 0 if G has no edge), and set Γf (G) = dΓ∗f (G)e. This de�nition is mo-
tivated by the inequalities (c). Analogous to the derivation of Corollary 1, Theorem 2
induces the following combinatorial characterization of the fractional f -chromatic in-
dex (see [8], Theorem B.11).

Corollary 2. Let (G, f) be an arbitrary weighted graph with ∆∗f (G) ≥ 1. Then,

χ′ ∗f (G) = max{∆∗f (G),Γ∗f (G)} .

In order to present the counterexample, and also after that, we will use the fact
that for positive reals a1, . . . , an, b1, . . . , bn, the estimate

a1 + · · ·+ an
b1 + · · ·+ bn

≤ max
1≤i≤n

ai
bi

(3)

holds.

Example 3. Consider the graph G with six vertices v1, · · · , v6. The vertices v1 and
v4 may be connected by one edge. For a k ∈ N, let |E(v1, v2)| = |E(v1, v3)| =
|E(v4, v5)| = |E(v4, v6)| = k and |E(v2, v3)| = |E(v5, v6)| = k + 1. We therefore
have d(v) = 2k+ 1 for all v ∈ V (G). The vertex function f may assign the value 2 to
all vertices. Thus, ∆∗f (G) = 2k+1

2 = k + 1
2 . For every subgraph H ⊆ G, f(H) is even.

Using (3), we obtain

|E(H)|
b 12f(H)c

=
2|E(H)|
f(H)

=

∑
v∈V (H) dH(v)∑
v∈V (H) f(v)

≤ max
v∈V (H)

dH(v)

f(v)
≤ ∆∗f (G)

and therefore W∗f (G) ≤ ∆∗f (G). Now choose U = {v1, v2, v3} and F = E(v1, v4) ⊆ ∂U .
Then we have f(U) + |F | = 3 · 2 + 1 = 7 and |E[U ]| + |F | = (3k + 1) + 1 = 3k + 2.
Thus,

Γ∗f (G) ≥ |E[U ]|+ |F |⌊
1
2 (f(U) + |F |)

⌋ =
3k + 2

3
= k +

2

3
> k +

1

2
= ∆∗f (G) .

Corollary 2 and Γ∗f (G) > ∆∗f (G) ≥ W∗f (G) yield

χ′ ∗f (G) = max{∆∗f (G),Γ∗f (G)} > max{∆∗f (G),W∗f (G)} .
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So the fractional graph parameter Γ∗f seems to be more suitable for the consi-
deration of weighted graphs than the fractional f -density W∗f . We therefore tried to
extend the presented counterexample to a counterexample for Conjecture 1, yet with
no success. Instead, we observed that it makes no di�erence if one formulates this
conjecture with Wf (G) or Γf (G).

Lemma 1. Any weighted graph satis�es

max{∆f (G) + 1,Γf (G)} = max{∆f (G) + 1,Wf (G)} .

Proof. Since W∗f (G) ≤ Γ∗f (G), we have to verify Γf (G) ≤ max{∆f (G) + 1,Wf (G)}
only. If G has no edge, this inequality is satis�ed. So assume that E(G) 6= ∅. The
maximum in the de�nition of Γ∗f (G) may be attained by U ⊆ V (G) and F ⊆ ∂U .
With 2|E[U ]|+ |F | ≤ 2|E[U ]|+ |∂GU | =

∑
u∈U dG(u) follows

Γ∗f (G) =
|E[U ]|+ |F |⌊
1
2 (f(U) + |F |)

⌋ ≤ 2(|E[U ]|+ |F |)
f(U) + |F | − 1

≤
∑

u∈U dG(u) + |F |
f(U) + |F | − 1

.

Moreover, applying (3), we �nd∑
u∈U dG(u)

f(U)
=

∑
u∈U dG(u)∑
u∈U f(u)

≤ max
u∈U

dG(u)

f(u)
≤ ∆∗f (G) ≤ ∆f (G) .

Case 1. |F | ≥ 2
Then, |F | − 1 is positive, and with (3) and ∆f (G) ≥ 1 follows

Γ∗f (G) ≤ max

{∑
u∈U dG(u)

f(U)
,
|F |
|F | − 1

}
≤ max{∆f (G), 2} ≤ ∆f (G) + 1 .

Case 2. |F | = 1

⇒ Γ∗f (G) ≤
∑

u∈U dG(u) + 1

f(U)
≤ ∆f (G) +

1

f(U)
≤ ∆f (G) + 1

Case 3. |F | = 0
Then set H = G[U ] and deduce

Γ∗f (G) =
|E[U ]|⌊
1
2f(U)

⌋ =
|E(H)|⌊
1
2f(H)

⌋ ≤ W∗f (G) ≤ Wf (G) .

Consequently, Γ∗f (G) ≤ max{∆f (G) + 1,Wf (G)}, and since the maximum is an inte-
ger, we have proved Γf (G) = dΓ∗f (G)e ≤ max{∆f (G) + 1,Wf (G)}.

We can infer from Corollary 2 that dχ′ ∗f (G)e = max{∆f (G),Γf (G)}, where the
case ∆∗f (G) < 1 needs a little extra consideration. We therefore have

max{∆f (G) + 1,Γf (G)} = max{∆f (G) + 1, dχ′ ∗f (G)e} ,

since dχ′ ∗f (G)e 6= Γf (G) implies dχ′ ∗f (G)e = ∆f (G) ≥ Γf (G). Thus, the upper bound
in Conjecture 1 can be computed e�cently. Should Conjecture 1 additionally emerge
as true, we would have

dχ′ ∗f (G)e ≤ χ′f (G) ≤ dχ′ ∗f (G)e+ 1 .
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