] > Tennenbaum's Theorem

Tennenbaum's Theorem

References

Berarducci, Alessandro and Otero, Margarita, A recursive nonstandard model of normal open induction, The Journal of Symbolic Logic, 61, 1996, 1228-1241.

Cegielski, Patrick, McAloon, Kenneth and Wilmers, George, Modèles recursivement saturés de l'addition et de la multiplication des entiers naturels, Logic Colloquium '80 (Prague, 1980), 57-68, North-Holland, 1982.

Feferman, Solomon, Arithmetization of metamathematics in a general setting, Fundamenta Mathematicae, 49, 1960/1961, 35-92.

Gaifman, Haim and Dimitracopoulos, Constantine, Fragments of Peano's arithmetic and the MRDP theorem, Logic and algorithmic (Zurich, 1980), Monograph. Enseign. Math., 30, 187-206, Univ. Genève, Geneva, 1982.

Gandy, Robin O., Note on a paper of Kemeny's, Mathematische Annalen, 136, 1958, 466.

Kaye, Richard, Diophantine induction, Annals of Pure and Applied Logic, 46, 1990, 1-40.

Kaye, Richard, Models of Peano arithmetic, Oxford University Press, 1991.

Kaye, Richard, Hilbert's tenth problem for weak theories of arithmetic, Provability, Interpretability and Arithmetic Symposium (Utrecht, 1991), Annals of Pure and Applied Logic, 61, 1993, 63-73.

Kaye, Richard, Open induction, Tennenbaum phenomena, and complexity theory, Arithmetic, proof theory, and computational complexity (Prague, 1991), Oxford University Press, 1993, 222-237.

Kemeny, John G., Models of logical systems, The Journal of Symbolic Logic, 13, 1948, 16-30.

Kemeny, John G., A note on pseudomodels, The Journal of Symbolic Logic, 17, 1952, 158-159.

Kemeny, John G., Undecidable problems of elementary number theory, Mathematische Annalen, 135, 1958, 160-169.

Kreisel, Georg, Note on arithmetic models for consistent formulae of the predicate calculus II, Actes du XIème Congrès International de Philosophie, Bruxelles, 20--26 Août 1953, vol. XIV, North-Holland, 1953, 39-49.

Matijasevič, Ju. V., The Diophantineness of enumerable sets, Doklady Akademii Nauk SSSR, 191, 1970, 279-282.

Mostowski, Andrzej, On a system of axioms which has no recursively enumerable arithmetic model, Fundamenta Mathematicae, 40, 1953, 56-61.

Mostowski, Andrzej, A formula with no recursively enumerable model, Fundamenta Mathematicae, 42, 1955, 125-140.

Mostowski, Andrzej, The present state of investigations on the foundations of mathematics (in collaboration with A. Grzegorczyk, S. Jaśkowski, J. Łoś, S. Mazur, H. Rasiowa, and R. Sikorski), Rozprawy Mat., 9, 1955.

Mostowski, Andrzej, On recursive models of formalised arithmetic, Bull. Acad. Polon. Sci. Cl. III, 5, 1957, 705-710.

Parikh, Rohit, Existence and feasibility in arithmetic, The Journal of Symbolic Logic, 36, 1971, 494-508.

Paris, Jeff B., On the structure of models of bounded E1-induction, Československá Akademie Věd. Časopis Pro Pěstování Matematiky, 109, 1984, 372-379.

Putnam, Hilary, Arithmetic models for consistent formulae of quantification theory, The Journal of Symbolic Logic, 22, 1957, 110-111.

Rabin, Michael O., Diophantine equations and non-standard models of arithmetic, Logic, Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), 151-158, Stanford Univ. Press, 1962.

Rosser, J. Barkley and Wang, Hao, Non-standard models for formal logics, The Journal of Symbolic Logic, 15, 1950, 113-129.

Ryll-Nardzewski, C., The role of the axiom of induction in elementary arithmetic, Fundamenta Mathematicae, 39, 1952, 239-263.

Scott, Dana, On constructing models for arithmetic, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), 235-255, Pergamon, 1961.

Scott, Dana, Algebras of sets binumerable in complete extensions of arithmetic, Proc. Sympos. Pure Math., Vol. V, 117--121, American Mathematical Society, 1962.

Shepherdson, John C., A non-standard model for a free variable fragment of number theory, Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques, 12, 1964, 79-86.

Skolem, Thoralf A., Über die Nichtcharakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vielen Aussagen mit ausschliesslich Zahlvariablen, Fundamenta Mathematicae, 1934, 23, 150-161.

Skolem, Thoralf A., Peano's axioms and models of arithmetic, Mathematical interpretation of formal systems, 1-14, North-Holland Publishing Co., 1955.

Tennenbaum, Stanley, Non-archimedian models for arithmetic, Notices of the American Mathematical Society, 6, 1959, 270.

Wilmers, George, Bounded existential induction, The Journal of Symbolic Logic, 50, 1985, 72-90.

Home page: Tennenbaum's theorem

Author: Richard Kaye, School of Mathematics, University of Birmingham