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PARAMETER FREE INDUCTION IN ARITHMETIC

Richard Kaye¥*,
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We present a sﬁrvey of results on fragments of first order
Peano arithmetic axiomatized by schemes of parameter free
induction and collection. Our two main themes are,

(a) conservation results relating these theories to the
'classical' fragments axiomatized with parameters, and
(b) that parameter.free fragments are not finitely axiomatizable.

It turns but that there are many settings in which some sort
of parameter-free or reduced-parameter scheme can be formulated
with properties (a) and (b). Our examples are all taken from
arithmetic, but I see no real reason why the “ideas could not
be applied to axiomatizations of set theory. We close by
indicating how results and techniques developed here may turn
out to be useful in connection with some open probléms in

arithmetic.

Attribution: Most of the work referred to here is presented

in [3] or [2] and (except where stated otherwise) should be

attributed to Kaye, Paris and Dimitracopoulos.

¥ Address from 15Y October 1987: Jesus College, Oxford, 0X1 3DW,
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1. Preliminaries and basic results

We work in the usual language & = {0,1,+,-,<} and define

the formula classes 8gs Zps My 3.+ V., E

n n n

and U as usual. (Here
n n

En and Un are the subclasses of 3n and b; respectively in which
every quantifier is bounded.) PA~ denotes a set of axioms whose
models are exactly the class of nonnegative parts of discretely
ordered rings. For a class I' of formulae, IT  denotes PA~
together with,

(8(0) A ¥x(B(x)+8(x+1))) + W¥=x8(x)
for all 0el' with only the free variable shown. LI~ is PA~
together with,

Jx6(x) » Fx(B(x)A ¥y<x16(y))
for all 6el' with only one free variable, and B[l is 166
together with,

Vx3y0(x,y) » YVt IzVxstI ysz0(x,y)
for all 6el'. The parameter versions of these xkheories (denoted
IT, LT and Bl') have been studied by many people, in particular
by Paris and Kirby [6] who showed:

Iz o4

|

E"zn+1%, Bnn

1

T €14 LI LT

with the converses to the two vertical arrows being false. The
main relationships between the various parameter free theories

and their parameter analogues- defined here are described in the

following theorem:
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also Lﬂ[_)@ T'L\[_){::} TL\O@ Lﬂo and the absence of a directed
path from one theory T to another, S, in the above diagram indi-
éates TES.

'3

In theorem 1, Iﬂ”- BL‘I and IL__ +IH;I— B}:; are due to Kaye [2].

1
All other parts are due to Kaye, Paris and Dimitracopoulos [3].
Theorem | indicates the study of parameter free induction
should supply us with worthwhile imformation on the structure
of the IZn/IHn hierarchy. That the parameter free schemes are
strictly weaker than their parameter counterparts comes as no
surprise since their axiomatizétions. in terms of quantifier

complexity, are less complex. The next result shows that their

natural axiomatizations are 'best possible’.
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EHEOREM:2: (31502 ]): - For zall-n2ily

i) IE; is zn+1V Hn+l axiomatizable, but not z nor ﬂn

+1 +1°
i) IH; is I axiomatizable, but not “n

n+1 $1C

14 BZn is Zn+lV “n+l axiomatizable, but not £n+l nor H"+l.

That BZ1 is not H2 is taken from [2] where I was also able

to improve on (i) showing IEn is not Zn+lu Hrl The rest of

+1°
theorem 2 is from [3].

2. Conservation results.

Our first conservation result is,
THEOREM 3: ([3]) For all n IEn is aIZn+2 conservative extension

of IZ° . (We write this as If_ = 12 _.)
n n I n
n+2

- h . I S - - h - .

Notice that since Zn is Zn+lv Hn+1 this has the surprising
consequence that the consequences of IEn that are boolean combin-
ations of I sentences form an axiomatization of the I

n+1 n+2
consequences of IZn. For nzl theorem 3 is best possible, that is
IEn isn't a Hn+2 conservative extension of IE; (for example, since
I itself is I axiomatized.)
n n+2

We now have several proofs of theorem 3 availible. Jeff Paris

and Costas Dimitracopoulos first noticed that L, = IZI (since
2

they both El-define exactly the primitive recursive functions)

1 and 131 was

exactly what I needed to show that I?l proves the Matijasevic-

and T realized that an analogous result for I3

Robinson-Davis-Putnam (MRDP) theorem. I was then able to show

that for ' = En, Bn or Zn, IT" proves the 'reduced-parameter'

scheme,



¥ a,x(8(x,a)+8(x+1,8)) » ¥ 3,x(8(0,3)+8(x,a)) (*)
for all 6el' with only the free variables shown. A simple Henkin-
type argument then gives the result,
THEOREM 4: ([2]) For all n2l, if T is En' 3n' or Zn then

ir ir

=3vr

Jeff Paris then noticed that for I = En the equivalence
IZ;% LII; gives a considerably shorter proof of theorem 3, by-
passing (*). (This is the proof appearing in [3]). Finally

n+l

we then realized that if HF=IE; then K (M) (= the L definable

n+1l

elements of M) satisfies M . K™ I(M)FII_. (For details
n+l

see [2]).
I used theorem 4 to derive the following result:
THEOREM 5: ([2])
i) IBI}— MRDP and hence IB;(=) IE; for all nzl, and
Iv & Il for all n22.
n n
ii) If IE |-MRDP then IE] & IE & I4,.

The situation for IH; is rather different, however with a
little more work we can describe the relationship . between IH;
and IHn ( = IZn ) quite precisely. The scheme Iﬂg(k) is

k!l

"parameter free ﬂn induction up to the ordinal w and is

axiomatized by PA™ together with,

8(0,0,...,00a A Yxpreonx, ( Yy, veeny,83.7) »
i=1

O(xyy.vyX; 14x;+1,0,..0) ) = Y x6(x)

(=) -(k)
for all Gcﬂn. IHn is L}kngIn . There are correspond-
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ing least number principles LZ—(k){&} IH_(k) Notice that
B P p ’ a = .

-(=) : =
II[n is Z£+1 axiomatized, just as IHn was.

THEOREM 6: ( [3] ) For all n21,
I]‘[_(m)
n

IIL. .
Zn+1 1

To explain in more detail the role of Iﬂ;(k) for each k,
we shall restrict ourselves here to the case n=1. (A general-
ization of theorem 7 below to nzl appears in [2].) It is
easy to define the following functions in IEI (or IZI):

Fo(x) = x2

Fio (x) = FL9 ()

These functions have 21 graph and Iﬁo + { Vx3y Fk(x)=y | keN }
is an axiomatization of the H2 consequences of IXI (because
this theory defines exactly the primitive recursive functions).
Fl(x) is essentially the exponential function, ie. I&O+"VxF1(x)
exists" is equivalent to Iﬂo + exp, the theory considered in [1].
THEOREM 7: ( [3] ) For all kz1,

i) IHI(k) proves all 22 consequences of IAO + Vx} yFk(x)=y

ii) IAO + \&jByFk(x)=y proves all ﬂ2 consequences of IHI(k)

COROLLARY 8: The Iﬂi(k) hierarchy is proper.

PROOF: 1A, + F, = con(IAy + F,) but IA, + F ¥ con(IAL+F, )
where con(T) denotes some natural H] sentence expressing "T is
consistent" - see [8].

COROLLARY 9:

i) IHI F-AO—PHP, the A, pigeonhole principle,

ii) IH; F v x>l 3y£x2 ( prime(y)A y>x ).

Corollary 9 holds since both the statements on the RHS are

Hl and true in 160 + exp. This corollary is suprising because
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one feels that, since IHI can not define functions of greater
than polynomial growth, IAO and IHI should be "very close",
whereaé it has proved notoriously difficult to settle whether

or not the two statements in corollary 9 are provable in Iﬂo.

It is also pbssible to derive a conservation result for
BZ;. By considering a suitable pairing function it is easy

to see that BZ; proves the scheme,

V;,xaye(;,x,}') - Vg.tanx‘StgyizB(;,x,y)
for BEZn with only the free vgriables shown. A straightforward
Henkin type argument then gives,
THEOREM 10: ( [3] ) For all nzl,

BL~ Ez BE
" n+2 -

Once again this is best possible (since BE; }4 BZn and BZn

is Il axiomatizable) and since BEn is Xn+1v Hn we deduce

n+2 +1

) consequences of BEn are £n+1v nn+l axiomatized.

that the £n+

The an induction and least number principles have occasion-
ally been studied. I&n is PA” together with,

V3 ((¥x(8(x,3) «¥(x,3))A08(0,3) A ¥x(8(x,a)>6(x+1,3)) )

> ¥ x6(x,a) )
for all 8eZ and well . LA , IA_, and LA  are defined in the
n n n n n

obvious way also. It is known that Lﬁg%# BZn (an unpublished
result due to Gandy, see [2]) but it is still open whether
I&né? Lﬂn.

Combining theorem 3 with the Paris-Friedman conservation

result, IZn En an+1 (see [5]) we have,
n+2



T -

1A~
n

IAn and Lﬂ; Eﬁ LA _,
n+1 n+1 n

A
but although we know LAn isn't a Zn+2 conservative extension of

Lﬁ; (because IH;F— LA; and IH; F—BZ; = En+2(L6n) ) the situation

is still rather unsatisfactory as we don't know if these results
are best possible.

Instead, define UI&n (for "uniform IAn" ) to be PA™ with,

¥a,x(8(x,3)+ v(x,3)) »
VZ—S[(s(o.%’nVx(e(x.§)+e(x+1,‘é))] + ¥ x6(x,3))

for all Bazn and weﬂn, and define UI..An similarly. Thena,

THEOREM 11: ( [2] )

i) UIA = IA , and
n n

zn+2

ii) ULA = LA
n 2:l'1+2 n

It follows from theorem 11 (ii) that ULﬂnéé'BE; . A direct

proof of this appears in [2].



3. Finite axiomatizability

It is well known that Izn (for nzl) and an (for nz2) are
finitely axiomatizable.- In contrast to this it appears to be
the case that none of the parameter free fragments we have
considered is finitely axiomatizable. For example in [3] we
show that,

THEOREM 12: For all nzl, if T is a theory with I, (IN) T
BE; then T is not finitely axiomatizable.
The proof goes by taking 08Hn+l(m) such that OF—T and

MF=PA+0 with nonstandard Zn definables. Then Kn(M)‘fz_M as
n

in [6], but one can show that K"(M)lFo +4BZ_ so we have T} BI_
n n

a contradiction.

; R i (=) -(k) - -
To see that this means none of Iﬂn+1 5 Iﬂn+l ’ IZn, BZn
is finitely axiomatizable, notice that
. = () -(k) = =
”n+](h'}}_[”n+l - Mo - iz, F-an
(It will follow from a later result that neither In;(m) nor

lH;tk) is finitely afiomaLizable.)

In [2] I investigated the proof theoretic strength of a
general finite fragment IZn_l+Id>1+I¢2+...1¢:k of IE;. each ¢i
having only one free variable. Using the notion of a set being
a-large for ordinals a<e taken from Ketonen and Solovay's
paper [4] we have,

THEOREM 13: ( [2] ) For all n,ksl, if oell, is provable from

2
some finite fragment IZn_l+I¢nl+...+I¢k of IZn , then,

. :
. w -
M‘U % VXBY{X-).'] 1s wn_lm-—large | meN } lbd

and moreover this is best possible, ie. there are instances



P

6,5 05,..,0, of IE; such that

k
e U o
I.".n__1 + Id:l +..4 I¢k]— Vx'jy[x.y] isw -large
for each me NN.
(Zofia Adamowicz has informed me that Zygmunt Ratajczyk has
obtained similar results independently.)
We thus have an intriguing situation which one feels ought
to be useful - in some different setting perhaps. For nzl,
IZn and IZ; have the same consistency strength (by theorem 3)
yet IEn is finitely axiomatizable, whereas each finite fragment
of IZ; is strictly "easier" to prove consistent than the full
IZ  itself.
n
There are also interesting connections between the finite
- _(k) | )
fragments IEn_1+I¢1+...+I¢k of IEn and the Iﬂn s:
THEOREM 14: (121 ) For all n2l and kz1,
i) if oell and IZ +IH'(k)Fﬂ then there are ¢,,¢
n+l n-1 n , 122" 2
¢k in Zn with one free variable each such that,
I +16,+...+I0 }o
ii) if GEEn+1. ¢1....¢kEZn with one free variable each and
IZn_1+I¢1+...+I¢k}—0 then, |
=2 rp=tk)
BZ +IN_ o
and IH;(k+l)F-O
if 0 is A
n

then II +IH_(k)F-0
n- n A

+1 1

I don't know whether, in the conclusion to part (ii), the
BZ; can be dropped. Notice that theorem 14 (ii) together with

theorem 3 provide a refinement on theorem 6.
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For Iﬂ; we have the following strong way of saying "IH;
isn't finitely axiomatizable":
THEOREM 15: ( [3] ) For all nz2l, nn(m) is the only consistent

“n theory (up to deductive equivalence) to imply IH;.

Combining this with the results that Vn(]N)OIIn(]N) and
IH;é?]ZV; for n22, (by theorem 5 and the fact that Iao + exp
is Y3 and proves the MRDP theorem) we deduce a positive answer
to problem 5.4 in [7]:
THEOREM 16: For all nzl \‘n(m) is the only consistent Y; theory

(up to deductive equivalence) to imply IV;

(This result was proved by Wilkie in [7] for the case n=1)
We are also able to prove results analogous to theorem 15
for a (proper?)-hierarchy of theories within IHI
Let YE_ = { YX¢(X,¥) | ¢eE } . Then,
THEOREM 17: ( [2] ) For all n and all oe 3VE_,
i) if 18, + exp }-o then IVE |o
ii) VEnUN)is the only consistent VEn theory (up to ded-

uctive equivalence) to imply IVE;

Thus if I\'E‘.rl |—IYE‘.n+l then VEn(]N)@ YEn+l(IN)' It
would be nice to be able to relate this to the possible collapse
of the E']TI hierarchy of relations on IN, but I see no way at

present of doing this.

A

A possibly more fruitful application of ideas here is the
following: By a result of George Wilmers [9], if M}==I.E1 is
nonstandard then its reduct to addition, MP+ is recursively

saturated. Now although IEl may turn out to be finitely axiom-
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atizable, we suspect (by analogy with theorem 12) that IE1 is

not. Suppose we could construct for each finite fragment

T = I6;+...+I6, of IE] a nonstandard model M; of T with M_f+

not recursively saturated, then T} IEl for each such T. Now
if IE1F~ MRDP then it is \‘El axiomatized ( [2] ) and also
finitely axiomatized (a result due to Paris and Dimitracopoulos,

proved using truth definitions for En formulas). Thus there

is a sentence O¢ VEl with Gé}IEl. By the conservation result

IE1:=3VE1 IE1 there is a finite fragment T of IE1 that proves
0. But then TF—IEI, a contradiction. Hence we could conclude

that IEI}»‘ MRDP,
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