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Abstract

In an earlier paper (MLQ 54, 128–144) the first author initiated the study of generic
cuts of a model of Peano Arithmetic relative to a notion of an indicator in the model.
This paper extends that work. We generalise the idea of indicator to a related
neighbourhood system; this allows the theory to be extended to one that includes
the case of elementary cuts. Most results transfer to this more general context, and
in particular we obtain the idea of a generic cut relative to a neighbourhood system,
which is studied in more detail. The main new result on generic cuts presented here
is a description of truth in the structure (M, I), where I is a generic cut of a model
M of Peano Arithmetic. The special case of elementary generic cuts provides a
partial answer to a question of Kossak (Notre Dame J. Formal Logic 36, 519–530).
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1 Introduction

The first author has introduced the idea of a generic cut of a model M of
Peano Arithmetic [2]. His paper, which we refer to as GCMA for convenience,
considers the set of cuts or initial segments of a model of arithmetic as a
topological space. An indicator serves to select a subspace of this space and
give an idea of distance. A generic cut (relative to the indicator chosen) is
an element of this subspace which is a member of each comeagre subset that
is invariant under automorphisms of the original model M . It was shown in
GCMA that generic cuts exist in all countable arithmetically saturated models
of PA, and some of their properties were studied.
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The first aim of this paper is to generalise this to a setting that admits the case
of elementary cuts as a special case. In Section 2, we give the basic definitions,
namely that of a neighbourhood system, and that of a species. A neighbour-
hood system is an abstraction of the topological information obtained from
an indicator, together with some conditions on definability in the model. A
species is essentially the set of cuts that can be captured by a neighbourhood
system. The main relaxation in the definitions here is in using classes or class
functions in the usual sense of these words in models of arithmetic, instead of
sets and functions which are definable outright.

In Section 3 we set up the topology in which we will work in. The major
step there is proving any closed species in a countable model is (essentially)
homeomorphic to the Cantor set. This enables us to apply the Baire Category
Theorem to and play Banach–Mazur games on our space to obtain information
about enforceable subsets. We go on to define the central notion of this paper,
that of a generic cut. Although we are not in a position to prove existence
theorems at this stage, we do prove a theorem showing the existence of generic
cuts under rather general hypotheses (Theorem 3.8) that will be particularly
useful in motivating later work.

Section 4 gives examples of enforceable properties and serves to provide a list
of properties enjoyed by generic cuts when they do exist. Most of this section
is rather similar to results in GCMA and serve to illustrate that this work lifts
easily to the more general situation we are now in.

Section 5 gives the existence theorems for generic cuts in countable arith-
metically saturated models of arithmetic. Once again, the proof models that
in GCMA, but a more elegant approach turns out to be possible by looking
at multi-variable versions of homogeneity notions in GCMA. Also, we have
taken the time to extend this argument to showing the necessity of arithmetic
saturation, and to analyse the proof into its finitistic core, with a view to ex-
tracting information about the true statements in the structure (M, I) where
I is generic.

Section 6 studies how generic cuts behave under the action of the automor-
phism group of the model. The back-and-forth system that we took from
GCMA is what most our results there are based on. A few new conjugacy and
non-conjugacy properties are proved, including a characterisation of when two
generic cuts are conjugate. We also give here a weak quantifier elimination re-
sult, the main theorem in this paper. It says that if I is a generic cut of a
model M of PA, then the orbit of an element a of (M, I) under the action of
Aut(M, I) is completely determined by classes that are relatively low in the
formula hierarchy.

We conclude the paper and gather together various facts about elementary
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generic cuts in Section 7, and survey the relationships of them to the el-
ementary cuts that appeared in the literature. In particular, we show that
elementary generic cuts give new examples of free cuts, a notion introduced
by Roman Kossak. This partially answers a question raised by him on the
cardinality of orbits of free cuts, and possibly gives new ways to tackle his
other problems too.

The notation used in this paper is standard, and follows that in GCMA,
Kaye [1] and Kossak–Schmerl [9]. It is sometimes helpful to consider models
of Peano Arithmetic as models of finite set theory via the usual Ackermann
interpretation [3]. We assume some knowledge of semiregular, regular and
strong cuts, the basic properties of which can be found in Kirby–Paris [5] and
the book by Kossak and Schmerl already mentioned. Oxtoby [12] contains
some useful background on Baire category.

Most of the results in this paper first appeared in the second author’s quali-
fying MPhil dissertation at Birmingham University.

2 Neighbourhood systems and species of cuts

Throughout this paper, M is a nonstandard model of PA. We write LA for
the usual first order language {+,×, <, 0, 1} for arithmetic, and 〈·, ·〉 for the
usual pairing function in LA. Let cl(c̄) denote the definable closure of the
tuple c̄ ∈ M , and cl(c̄) the least initial segment of M containing cl(c̄).

We will sometimes consider adjoining to M a point at infinity,∞. By definition
we have x < ∞ and ∞+ x = ∞ = ∞− x for every x ∈ M . If B ∈ M ∪ {∞},
then M<B and M6B denote respectively the coded sets

{x ∈ M : x < B} and {x ∈ M : x 6 B}.

A cut of M is a nonempty initial segment closed under successors. We write
I ⊆e M to mean ‘I is a cut of M ’. In distinction to GCMA, we do not require
cuts to be LA structures here. For a, b ∈ M ∪ {∞} we denote the set

{x ∈ M : a 6 x 6 b}

by [a, b]. Define

C = {I : I ⊆e M}
and

S = {[a, b] : a, b ∈ M ∪ {∞} with a 6 b}.
For I ∈ C and [a, b] ∈ S, we write I ∈ [a, b] to mean a ∈ I < b.

3



The automorphism group of M is denoted by Aut(M) and each automorphism
extends in the obvious way to M ∪ {∞}. All actions by automorphisms are
written as superscripts on the right. If c̄ ∈ M , then Aut(M, c̄) denotes the
pointwise stabiliser of c̄ in Aut(M). Similarly, if I ∈ C, then Aut(M, I) denotes
the setwise stabiliser of I in Aut(M).

Definition 2.1. Two cuts I, J are said to be conjugate over c ∈ M if Ig = J
for some g ∈ Aut(M, c). They are conjugate if they are conjugate over 0. The
conjugacy class of a cut I is the orbit of I under the action of Aut(M).

Extending ideas of Paris and Kirby, indicators were defined in GCMA. We first
set the scene by abstracting the topological information given by an indicator.

Definition 2.2. A set B ⊆ S is a neighbourhood system if and only if

(0) B is nonempty;
(1) B is invariant under the action of Aut(M);
(2) ∀[a, b] ∈ B (b > a + 1)
(3) ∀[a, b] ∈ B ∀c ∈ M ([a, c] ∈ B or [c, b] ∈ B)
(4) ∀[a, b] ∈ B ∀[u, v] ∈ S ([a, b] ⊆ [u, v] ⇒ [u, v] ∈ B); and
(5) for every B ∈ M , there exists a recursive Σ1 type p(x, y) over M , possibly

with finitely many parameters from M , such that

∀a, b < B
(
[a, b] ∈ B ⇔ M �

∧∧
p(a, b)

)
.

An arbitrary element [a, b] of S is called a semi-interval. If B is a neighbour-
hood system and [a, b] ∈ B, then we say that [a, b] is a B-interval, or interval
if B is clear from the context. We write a � b or a �B b to mean [a, b] is a
B-interval. It is also helpful to have a notation for semi-intervals that identifies
them as intervals: [[a, b]], or [[a, b]]B if B needs to be specified, will always denote
a B-interval whereas [a, b] might or might not be an interval.

Proposition 2.3. Let B be a neighbourhood system. Then for all intervals
[[a, b]] with b 6= ∞ there is c ∈ M such that

a < c < b and [a, c], [c, b] ∈ B.

Proof. Let [a, b] ∈ B, b 6= ∞, and B ∈ M be greater than a, b. Suppose the
formulas in the type p(x, y) in clause (5) of the definition of a neighbourhood
system be ϕn(x, y), in increasing strength, so ϕn+1(x, y) implies ϕn(x, y) for
all n and all x, y < B. By the Σ1 recursive saturation of M it suffices to show
that for each n there is c ∈ [a, b] such that ϕn(a, c) and ϕn(c, b). Since [a, b] ∈ B
let c be the least element of [a, b] such that ϕn(a, c). Then c > a provided n
is sufficiently large and ¬ϕn(a, c− 1) hence [a, c− 1] 6∈ B. It follows from (2)
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and (3) that [a, c] 6∈ B, so from (3) again that [c, b] ∈ B and hence ϕn(c, b), as
required.

Neighbourhood systems generalise the idea of an indicator in the sense that
we may say that a neighbourhood system B indicates the property Z of cuts
if and only if for each a, b there is a cut I with a property Z between a and b
just in case that [a, b] ∈ B.

Given a neighbourhood system B and [a, b] ∈ B there is always some I ∈ C
with a ∈ I < b. In particular the next definition provides suitable I. For this
definition, recall that, for a nonempty set A ⊆ M , inf A is the greatest initial
part of M that is disjoint with A and sup A is the least initial part of M
containing A.

Definition 2.4. Given a neighbourhood system B and a, b ∈ M , let

• MB(a) = inf{c ∈ M : [a, c] ∈ B}, and
• MB[b] = sup{d ∈ M : [d, b] ∈ B}.

The notation MB(a) and MB[b] hides the fact that these may not be defined
for all a, b. We say that MB(a) exists if

∃y ∈ M [a, y] ∈ B.

Similarly, MB[b] exists if

∃x ∈ M [x, b] ∈ B.

In both cases, it is simple to check from the axioms that these are in C when-
ever they exist, and moreover, given [[a, b]], both MB(a) and MB[b] exist and
are between a and b. MB(a) and MB[b] are respectively the smallest I ∈ C
containing a and largest I ∈ C not containing b that are ‘indicated’ by B.
That MB(a) and MB[b] are distinct follows from Proposition 2.3 which says
there is some c ∈ M with MB(a) < c < MB[b].

Definition 2.5. A class Z ⊆ C is a species of cuts (species for short) if and
only if

(0) Z is nonempty;
(1) Z is invariant under the action of Aut(M); and
(2) for every B ∈ M , there exists a recursive Σ1 type p(x, y) over M , possibly

with finitely many parameters from M , such that

∀a, b < B
(
∃I ∈ Z (a ∈ I < b) ⇔ M �

∧∧
p(a, b)

)
.

If I is an element of Z ⊆ C, then we say that I is a Z-cut.
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Each species of cuts Z comes equipped with a natural linear order, namely
the subset relation, ⊆.

Neighbourhood systems and species of cuts naturally arise from indicators
Y : M ×M → M in the sense of GCMA. More generally, this Y might be a
class in the sense of M , i.e. segments of Y are parameter-definable in M . Still
more generally, our notion of indicator may not in fact be a function at all
but is formed from a family of M -finite functions YB : M<B ×M<B → M for
various B ∈ M such that for B1 < B2 the functions YB1 and YB2 agree for all
x, y < B1 in the sense that YB1(x, y) > N if and only if YB2(x, y) > N.

Definition 2.6. Let B ∈ M and Y : M<B ×M<B → M be definable.

• If B is a neighbourhood system, then Y indicates B below B if and only if

∀a, b < B ([a, b] ∈ B ⇔ Y (a, b) > N).

• If Z is a species of cuts, then Y indicates Z below B if and only if

∀a, b < B (∃I ∈ Z a ∈ I < b ⇔ Y (a, b) > N).

Definition 2.7. Let B ∈ M . A function Y : M<B ×M<B → M is monotone
if and only if

∀a, b, u, v 6 B
(
a 6 u ∧ v 6 b ⇒ Y (a, b) > Y (u, v)

)
.

Proposition 2.8. (a) Relative to the other axioms for a neighbourhood sys-
tem, axiom (5) is equivalent to any of the statements that for all B ∈ M
the neighbourhood system below B is indicated by: a definable function; a
monotone definable function; or a recursive type of bounded complexity.

(b) Relative to the other axioms for a species of cuts, axiom (2) is equivalent
to any of the statements that for all B ∈ M the species is indicated below
B by: a definable function; a monotone definable function; or a recursive
type of bounded complexity.

Proof. (Sketch.)

Fix B ⊆ S. Let p(x, y) be a recursive Σm type over M such that

∀a, b < B
(
[a, b] ∈ B ⇔ M �

∧∧
p(a, b)

)
.

Let d̄ ∈ M be the parameters that appear in p(x, y), and write p(x, y) as
p(x, y, d̄). Then p(x, y, d̄) is coded in M by c, say, so that

{(c)n : n ∈ N} = {pφ(x, y, z̄)q : φ(x, y, d̄) ∈ p(x, y, d̄)}.

6



Define a function Y : M<B ×M<B → M by

Y (x, y) = (µn)
(
¬ SatΣm((c)n, [x, y, d̄])

)
for all x, y < B. This is a definable function that indicates B below B. To
obtain a monotone indicator function replace Y with

Y ′(x, y) = max{Y (a, b) : a, b ∈ [x, y]}.

Since Y and Y ′ are definable and defined on M<B × M<B they are M -finite
so can be coded as a sequence of values, by some y ∈ M say. Then the type

p(u, v) = {Y (u, v) > n : n ∈ N},

is a recursive Σ1 type indicating B using the parameter y.

The argument for species is similar.

Every neighbourhood system B gives rise to a ‘largest’ species of cuts that
it indicates. Similarly, every species of cuts Z has a natural neighbourhood
system that describes it. How to go from a neighbourhood system to a species
of cuts and back again is defined next.

Definition 2.9. Given a neighbourhood system B, define Z(B), the species
of cuts associated with B, by

Z(B) = {I ∈ C : ∀[a, b] ∈ S (I ∈ [a, b] ⇒ [a, b] ∈ B)}.

Definition 2.10. Given a species of cuts Z, define B(Z), the neighbourhood
system associated with Z, by

B(Z) = {[a, b] ∈ S : ∃I ∈ Z I ∈ [a, b]}.

Proposition 2.11. (a) If B is a neighbourhood system then Z(B) is a species
of cuts, and if Z is a species of cuts then B(Z) is a neighbourhood system.

(b) For any neighbourhood system B, B(Z(B)) = B.
(c) For any species of cuts Z, Z(B(Z)) ⊇ Z.

Proof. Straightforward applications of the axioms.

It is time to give some examples.

Example 2.12. The set BC = {[a, b] ∈ S : ∀n ∈ N a + n < b} is easily seen
to be a neighbourhood system. The corresponding species of cuts is C, the set
of all cuts of M .

Example 2.13. Let Y be an indicator in the sense of GCMA such that

M � ∃x∃y Y (x, y) > n
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for every n ∈ N to avoid triviality. We call indicators in this old sense
GCMA indicators in this paper. Set

BY = {[a, b] ∈ S : Y (a, b) > N} ∪ {[a,∞] ∈ S : ∃b ∈ M Y (a, b) > N}.

Then BY is a neighbourhood system. The corresponding species of cuts is
ZY = Z(BY ) which is the largest set of cuts indicated by Y . For example, if
Y is the Paris–Harrington indicator for I ∈ C satisfying PA, then ZY is the
set of cuts satisfying the Π2 consequences of PA, and is the topological closure
of the set of I ∈ C satisfying PA.

Example 2.14. Let M be a short recursively saturated model of PA, i.e. such
that each recursive type p(x) with finitely many parameters from M and
containing a formula of the form x < a is realised in M . Fix a recursive
sequence (tn(x))n∈N of LA Skolem functions with the following properties:

• ∀n ∈ N ∀x ∈ M (tn(x) < tn+1(x));
• ∀n ∈ N ∀x ∈ M (x < tn(x) 6 tn(x + 1)); and
• for each LA Skolem function s(x) there is an n ∈ N such that for all x ∈ M ,

we have s(x) < tn(x).

Then the set
Belem = {[a, b] ∈ S : ∀n ∈ N (tn(a) < b)}

is a neighbourhood system. (This requires short recursive saturation to encode
the values of all the function tn(x) for all n ∈ N and all x < B, in order to
encode the set of intervals below each B ∈ M .) Intervals in Belem will some-
times be called elementary intervals and the corresponding species of cuts,
Zelem = Z(Belem) is the species of all elementary cuts of M . By a diagonali-
sation argument, it can be seen there is no definable function Y : M2 → M
such that

Y (a, b) > N iff [a, b] ∈ Belem

for all a, b ∈ M . Therefore, our definition of a neighbourhood system is strictly
more general than its counterpart in GCMA.

For B = Belem the cuts MB(a) and MB[b] are familiar cuts, usually denoted
M(a) and M [b]. These are the smallest elementary cut containing a and the
largest elementary cut not containing b, respectively.

In certain circumstances, this neighbourhood system can be regarded as the
‘finest’ such system, as the following proposition shows.

Proposition 2.15. Suppose M is a recursively saturated model of PA and B
is a neighbourhood system of M such that for each a ∈ M there is b ∈ M with
[a, b] ∈ B. Then B ⊇ Belem.

Proof. Each [a,∞] is in B since there is some c ∈ M with [a,∞] ⊇ [a, b] ∈ B.
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Now let a, b ∈ M with [a, b] ∈ Belem and c ∈ M with [a, c] ∈ B. Then b > M(a)
and by saturation there is an automorphism g of M fixing a such that cg < b.
It follows from the axioms that [a, b] ∈ B.

It can easily be checked that some facts about indicators transfer to this more
general setting. The following lemma is formulated in terms of the standard
cut because the region around N is the place where we are mostly interested
in. It is also true of other cuts, as we leave the reader to verify.

Lemma 2.16. Let B be a neighbourhood system, B ∈ M and Y ∈ M be an
indicator for B below B. If [[a, b]] ⊆ M<B is a B-interval, then

{n > N : M � ∃[u, v] ⊆ [[a, b]] (Y (u, v) = n)} ⊆dcf M \ N.

Proof. Let B be a neighbourhood system, B ∈ M and Y ∈ M be an indicator
for B below B. Take a B-interval [[a, b]] ⊆ M<B and define X to be the set

{n ∈ N : ∃[u, v] ⊆ [[a, b]] (Y (u, v) = n)}.

Note that X is nonempty.

Suppose that X 6⊆cf N. Then X has an upper bound in N, say D. Now for
every x ∈ [[a, b]],

[x, b] ∈ B iff Y (x, b) > N since Y is an indicator for B below B,

iff Y (x, b) > D by our choice of D and axiom (4) for intervals.

Therefore, since the set {x ∈ [[a, b]] : [x, b] ∈ B} contains a and is bounded
above by b, it has a maximum element, say x∗ ∈ M . So [x∗, b] ∈ B but
[x∗+1, b] 6∈ B. This contradicts (2) and (3) in the definition of a neighbourhood
system.

Question 2.17. Let Z be a species. Does there always exist a function
Y : M2 → M such that

• ∀x, y ∈ M (∃I ∈ Z (x ∈ I < y) ⇔ Y (x, y) > N), and
• for every B ∈ M , the set {〈x, y, Y (x, y)〉 : x, y 6 B} is coded in M?

3 The topology on Z and enforceable properties

The set C of all cuts of M has a natural topology, given by taking as basic
open sets all intervals

U[a,b] = int{I ∈ C : I ∈ [a, b]}
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for [a, b] ∈ B(C), where int I is the ‘interior’ of I ⊆ Z, I \{⋂ I,
⋃ I}, i.e. with

end points removed if either of these exist in I.

Each species of cuts Z can therefore be considered as a topological space,
where the topology on Z is the subspace topology inherited from C. Kotlarski
seems to be the first person who explicitly studied a family of cuts with its
topology obtained from the order relation. (See for example the appendix in
Smoryński [14].)

Proposition 3.1. Given a species of cuts Z, the closure of Z in C is Z =
Z(B(Z)).

Proof. If I 6∈ Z then there is [a, b] ∈ B(C) with I ∈ [a, b] and no J ∈ Z ∩U[a,b].
But this means [a, b] 6∈ B(Z) and hence I 6∈ Z(B(Z)). Conversely if I ∈ Z
then every [a, b] ∈ B(C) with I ∈ [a, b] contains some J ∈ Z. Therefore
I ∈ Z(B(Z)).

Paris and Kirby call two families of cuts symbiotic if they have the same
indicators. This generalises immediately to our context, explaining perhaps
our use of the word ‘species’.

Definition 3.2. Two species of cuts Z1 and Z2 are symbiotic if every open
set U containing a cut from one species contains a cut from the other, i.e. if
their closures are equal: Z1 = Z2.

Proposition 3.3. Let M be countable and Z a closed species of cuts. Then
Z is either order-isomorphic (and hence homeomorphic) to the Cantor set 2ω

with its usual ordering and topology or else is order-isomorphic to 2ω + 1, the
Cantor set with an additional isolated point greater than all the others.

Proof. Let B = B(Z) be the corresponding neighbourhood system, so Z =
Z(B) as Z is closed.

Fix an enumeration (xn)n∈N of M .

Define the sequence ([[aσ, bσ]])σ∈2<ω of B-intervals recursively as follows.

(a) By axioms (0) and (4) for a neighbourhood system, 0 �∞. Let a∅ = 0
and if possible choose b∅ ∈ M such that [b∅,∞] 6∈ B. If there is no such
b∅ ∈ M define b∅ = ∞. Either way, [a∅, b∅] ∈ B by axiom (3).

(b) Let n ∈ N and σ ∈ 2n such that [[aσ, bσ]] is defined. If possible choose
cσ ∈ M such that aσ � cσ � bσ. Note that by Proposition 2.3 there is
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always such a cσ except possibly in the case bσ = ∞. Define

[[aσ0, bσ0]] =


[[aσ, xn]], if aσ � xn � bσ;

[[xn, cσ]], if aσ 6 xn and [aσ, xn] 6∈ B;

[[aσ, cσ]], otherwise;

and

[[aσ1, bσ1]] =


[[xn, bσ]], if aσ � xn � bσ;

[[cσ, xn]], if xn 6 bσ and [xn, bσ] 6∈ B;

[[cσ, bσ]], otherwise.

(c) Let n ∈ N and σ ∈ 2n be such that [[aσ, bσ]] is defined where bσ = ∞ and
there is no such cσ as in the last part. We define [[aσ0, bσ0]] = [[aσ1, bσ1]] =
[[aσ,∞]]. Note that in this case [aσ, c] 6∈ B for all c with ∞ > c > aσ since
if [aσ, c] is an interval, either [c,∞] is also an interval, contradicting the
fact that no such cσ as in the last part could be found, or else [c,∞] is
not an interval, contradicting the fact that there was no b∅ ∈ M such
that [b∅,∞] is not an interval.

The case when Z turns out to be is order-isomorphic to 2ω +1 is when b∅ = ∞
and for some σ, part (b) of the construction cannot be carried out because
there is no suitable cσ to take. If this happens we call such aσ ∈ M such that
aσ � ∞ but [aσ, c] 6∈ B for all ∞ > c > aσ exceptional. If there is some such
exceptional aσ then M ∈ Z because it is the only cut in all [[c,∞]] for c > aσ

and it is obviously an isolated greatest element in Z.

The remainder of the proof is a straightforward application of the axioms
and the enumeration of M to show that every cut I ∈ Z (except possibly
M if there is an exceptional aσ) is the limit of a sequence (aε�n)n∈ω for some
ε : ω → 2, and conversely any such limit is a cut in Z. We omit the details.

Example 3.4. The various cases implicit in the proof just given do all occur.

(a) Let M � PA and let Y be the Paris–Harrington indicator for initial seg-
ments satisfying PA. The corresponding neighbourhood system is B =
BY , and Z = Z(B) is the set of initial segments satisfying the Π2 conse-
quences of PA. Then Z ∼= 2ω and there are proper cuts in Z arbitrarily
high in M and also proper nonstandard cuts in Z arbitrarily low in M ,
as well as both end points, M and N in Z.

(b) Let M � PA + ¬Con(PA) and let Y be an indicator for initial segments
satisfying PA + Con(PA), and B = BY . Then once again Z = Z(B) ∼= 2ω

but this time there is some B ∈ M above all I ∈ Z.
(c) Let M � PA be short, that is M = M(a) for some a ∈ M or, in other

words, M has no proper elementary initial segments containing a, and
suppose M is short recursively saturated. Then there is a neighbourhood
system B for the (closed) species Z = {I ∈ C : I ≺e M} by Example 2.14.
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The full model M itself is clearly in Z, but Z does not have arbitrarily
large proper cuts of M since if a ∈ I ≺e M then I = M . So in this case
Z = Z(B) ∼= 2ω + 1.

Proposition 3.3 makes a whole range of topological tools available to us. For
example, we now know that Z, as a topological space, is perfect, compact, to-
tally disconnected, of cardinality 2ℵ0 , and homeomorphic to a complete metric
space. In addition, the Baire Category Theorem applies. Recall a set is comea-
gre if it contains a countable intersection of open dense sets.

Baire Category Theorem. A comeagre subset in a complete metric space
is dense in this space.

In particular, comeagre sets in a complete metric space X are nonempty. In
fact, by extending the proof of Baire’s theorem using a tree argument one can
show that if the complete metric space X is separable and has no isolated
points then every comeagre set has size the continuum. The intersection of
countably many comeagre sets is comeagre, and in a space X, the set X \ {x}
is comeagre for any non-isolated point x ∈ X. Hence the complement of any
countable set of non-isolated points is comeagre.

Dense subsets of a complete species are exactly those that are indicated in the
sense of Kirby–Paris [5]. This is one point of interest in comeagre sets of cuts.
Comeagre sets have many nice properties, including a useful game-theoretic
characterisation.

Definition 3.5. Let B be a neighbourhood system and Z = Z(B) the corre-
sponding closed species. The Banach–Mazur game on B is the following game.

• There are two players, called ∀ and ∃.
• Starting with ∀, the two players alternatingly choose a B-interval that is a

subinterval of the previously chosen one.
• The game terminates in ω many steps.

A play of this game gives rise to a sequence ([[an, bn]])n∈N. The initial segment
of M , sup{an : n ∈ N}, is called the outcome of the play. The player ∃ can
always play in such a way to ensure that this is a cut lying in Z.

A property P of cuts is enforceable if and only if ∃ has a way to ensure the
outcome of a play has property P . Similarly, a subset P of Z is enforceable if
and only if the property of being an element of P is enforceable.

By ‘dovetailing’ several strategies together, it is easy to see that ∃ can play
to enforce countably many properties Pi simultaneously, provided she can
enforce each one individually. This observation is part of the proof of Banach’s
characterisation of comeagre sets.
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Theorem 3.6 (Banach). A subset P ⊆ Z is enforceable if and only if it is
comeagre in Z.

From the point of view of Baire category, an enforceable property P of cuts
in Z is satisfied by a large set of cuts I ∈ Z. So a ‘general’ (i.e. not carefully
chosen or exceptional) example of a cut I in Z would be expected to have
many such enforceable properties. It cannot satisfy all of them (unless I is
actually isolated in Z) as Z \ {I} is comeagre. A generic cut I of Z is one
that satisfies as many enforceable properties as is reasonably possible. Say
that P ⊆ Z is invariant under automorphisms of M if {Ig : I ∈ P} = P for
each g ∈ Aut(M).

Definition 3.7. Let Z be a closed species of cuts of M and J ∈ Z. We say
that J is generic in Z or Z-generic if J is an element of each comeagre P ⊆ Z
invariant under automorphisms of M .

For a simple example when generic cuts might exist, suppose M � PA is
countable and Z is a closed species of cuts of M . Suppose there is some cut
J ∈ Z such that the set

{I ∈ Z : I is conjugate to J}

is comeagre. Then the cut J is generic. To see this, let P be an invariant
enforceable property and play the Banach–Mazur game to enforce P and the
property of being conjugate to J simultaneously. The resulting cut has both
these properties hence J has P . The next result gives a more useful generali-
sation of this observation.

Theorem 3.8. Let M be countable and Z a closed species of cuts which does
not contain M as an isolated point. Suppose further that there is a set of cuts
G ⊆ Z such that

(i) G is a dense subset of Z that is invariant under automorphisms of M ;
and

(ii) for all I ∈ G and all c ∈ M , there is an interval [[a, b]] ∈ B(Z) containing
I in which all cuts in G are conjugate over c.

Then G is a comeagre set of cuts in Z and the cuts in G are precisely the
Z-generic cuts.

Proof. We start by showing that the property of being a cut in G is enforce-
able. This will show that G contains all generic cuts. We play the Banach–
Mazur game. At stage n in the game we will have chosen c0, c1, . . . , cn−1 ∈ M ,
a descending sequence of intervals [[a0, b0]], [[a1, b1]], . . . , [[an−1, bn−1]] in B(Z),
I0, I1, . . . , In−1 ∈ G so that Ii ∈ [[ai, bi]] and all G-cuts in [[ai, bi]] are conju-
gate over c0, c1, . . . , ci for each i, and also g1, g2, . . . , gn−1 ∈ Aut(M) so that
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Igi
i−1 = Ii and gi ∈ Aut(M, c0, . . . , ci−1) for each i. The intervals [[an, bn]] will

be our plays in the game.

Given our opponent’s move [[u, v]] in the game, we first choose In ∈ G with
In ∈ [[u, v]] using the density of G. If n > 0 we will also need to choose an
automorphism gn ∈ Aut(M, c0, . . . , cn) such that Ign

n−1 = In. This can be done
using In−1 ∈ [[an−1, bn−1]] ⊇ [[u, v]] and the previous choice of [[an−1, bn−1]].

We next select some cn ∈ M . If n is even, n = 2k say, we select cn to be the
kth element xk in some fixed enumeration M = {xk : k ∈ N}, to ensure that
at the end of the construction M = {cn : n ∈ N}. If n is odd, n = 2k +1 say,
we choose cn = c2k+1 = xg0g1···gn

k instead.

We now choose [[an, bn]] ⊆ [[u, v]] containing In such that all G-cuts [[an, bn]] are
conjugate over c0, c1, . . . , cn. We play the interval [[an, bn]] in the game.

The play continues in this fashion and constructs a cut J ∈ Z which is the
limit of the intervals [[an, bn]]. We must show that J ∈ G and it suffices to show
that I0 and J are conjugate.

Observe that, since gk fixes ci for k ≥ i, for each x ∈ M there is some k
such that x = xk and hence c2k+1 = xg0g1···g2kg2k+1 is fixed by g2k+2, g2k+3, etc.
Therefore for each x ∈ M there is k ∈ N such that

xg1g2...gk = xg1g2...gkgk+1 = · · · = xg1g2...gk...gl

for l ≥ k. We define g : x 7→ xg so that xg is the eventual value xg1g2...gl . It
is easy to see that g preserves LA-structure and is injective. It is onto since

each y ∈ M is xk = c2k for some k so g maps c
g−1
2k

...g−1
1 g−1

0
2k onto y. Finally g

maps I0 to J since by construction g0g1 · · · gn maps I0 to some initial segment
in [[an, bn]] and the limit of these intervals is J . This completes the proof that
G is enforceable and every generic cut is in G.

To show that every I ∈ G is generic, let P be an enforceable Aut(M)-invariant
property and [[a, b]] is chosen so that I ∈ [[a, b]] and every J ∈ [[a, b]] in G is
conjugate to I. Then we play the Banach–Mazur game starting with [[a, b]]
enforcing P and G simultaneously to construct some K ∈ G ∩ P with K ∈
[[a, b]]. Then I is conjugate to K and hence has P , as required.

Question 3.9. Suppose M is a countable model of PA, Z is a closed species
of cuts of M , and the set G of Z-generic cuts is comeagre in Z. Does it follow
that conditions (i) and (ii) in the statement of Theorem 3.8 hold?
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4 Examples of enforceable properties of cuts

In this section we make the global assumption that our model M � PA is
countable and nonstandard, and our species of cuts Z is closed in C and order-
isomorphic to 2ω. We let B = B(Z) be the corresponding neighbourhood
system. In other words, we assume that we are not in the exceptional case
when M ∈ Z is isolated. (To apply the results under these assumptions when
Z ∼= 2ω + 1 and M ∈ Z is isolated we can replace Z with Z0 = Z \ {M},
which is also closed.) The object of this section is to extend the results of
enforceability of various properties of cuts in GCMA to the current setting.

Proposition 4.1. It is enforceable that a Z-cut is not an ω-limit.

Proof. By assumption, no I ∈ Z is isolated so Z \ {I} is comeagre. The
proposition follows from the countability of M as there are countably many
cuts which are ω-limits.

Proposition 4.2. It is enforceable that

I 6= MB(a) and I 6= MB[a] whenever a ∈ M

for a Z-cut I.

Proof. There are countably many cuts of the form MB(a) or MB[a].

In a similar way one can see that it is enforceable that a cut is not definable over
finitely many parameters from M in any reasonable logic, such as infinitary
logic or second order logic, since there are only countably many conjugates of
these parameters.

Proposition 4.3. It is enforceable that a Z-cut I has the property that N is Π2

definable with parameters in (M, I) for a Z-cut I. In particular we may force I
so that N is defined by a formula of the form ∀x ∈ I ∃y ∈ I θ(x, y, z, ā) where
θ(x, y, z, ā) is a ∆0 formula of the language LA and ā ∈ M are parameters.

Proof. We play a Banach–Mazur game on B. Suppose ∀ plays [[a, b]] in his first
move, and without loss of generality we may assume b is finite. Let Y ∈ M be
a monotone indicator for B below b+1. We show that ∃ can force the outcome
of the play I to satisfy

{n ∈ M : M � ∀x ∈ I ∃y ∈ I Y (x, y) > n} = N.

Note that since I ∈ Z, it is clear that {n ∈ M : M � ∀x ∈ I ∃y ∈ I Y (x, y) >
n} ⊇ N for each outcome I. Let n ∈ M be nonstandard, and suppose that
∃ is given [[u, v]] ⊆ [[a, b]] to play in. Using Lemma 2.16, let [[xn, yn]] ⊆ [[u, v]]
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such that Y (xn, yn) < n. Using the countability of M , player ∃ can do this for
every nonstandard n ∈ M in any single play. Now, if I is an outcome of this
play and n ∈ M is nonstandard, then we have xn ∈ I < yn such that

Y (xn, y) 6 Y (xn, yn) < n

for each y ∈ I by the monotonicity of Y . This proves the claim.

Remark. In the terminology of Kirby [4, Definition 4.5], the above proof shows
that one can enforce the index of a cut corresponding to an indicator to be N.

Corollary 4.4. It is enforceable that a Z-cut I has the property that (M, I)
is not Π2 recursively saturated.

Proof. If not, apply Π2 recursive saturation to the set of formulas {z > n :
n ∈ N} ∪ {∀x ∈ I ∃y ∈ I θ(x, y, z, ā)} where θ(x, y, z, ā) is from the last
proposition.

Question 4.5. How much saturation can we enforce in the structure (M, I)
for a Z-cut I? In particular, can Σ2 recursive saturation be enforced?

Enforceability results related to the Kirby–Paris notions of semiregularity and
regularity are proved in GCMA. A slight modification of the Grzegorczyk
hierarchy as used there gives us the following.

Definition 4.6. The neighbourhood system B is said to be relatively inde-
structible if and only if for every [[a, b]] ∈ B, there is an element c ∈ M such
that

a = (c)0 � (c)1 � · · · � (c)a+1 = b.

Using the same ideas it is straightforward to modify the combinatorial ar-
guments given as Theorem 4.13 and Theorem 4.15 in GCMA to obtain the
following results showing that semiregularity is the best one can hope for in
the sense of the ‘classical’ Paris–Kirby hierarchy of combinatorial properties.

Proposition 4.7. Semiregularity is enforceable if and only if B is relatively
indestructible.

Proposition 4.8. The property of being not regular is enforceable.

5 Pregenerics and the existence of generic cuts

Throughout this section, we work with a recursive enumeration (θi(x, y, z))i∈N
of LA formulas in the free variables x, y, z. We fix a neighbourhood system
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B, and its corresponding closed species Z = Z(B) and continue the global
assumption of the last section that Z has no isolated point.

Our objective is to prove results showing the existence of generic cuts. Our
motivation is Theorem 3.8 and the problem we address is to identify those
intervals which are sufficiently homogeneous for many cuts in them to be con-
jugate. The existence of generic cuts relative to an indicator Y was shown in
GCMA by a related ‘self-similarity’ property of intervals, that of being ‘con-
stant’, together with a ‘smallness’ notion. We give the first of these definitions
here.

Definition 5.1. Let c ∈ M . An interval [[a, b]] ∈ B is constant over c (with
respect to B) if and only if

∀x ∈ [[a, b]] ∀[[u, v]] ⊆ [[a, b]] ∃x′ ∈ [[u, v]] tp(x, c) = tp(x′, c).

We shall present a two-variable version of this self-similarity idea, which seems
to give a more elegant approach. Intervals having this stronger self-similarity
property will be called pregeneric, and it is clear that a pregeneric interval
is constant in the sense of GCMA. (This notion of ‘pregeneric’ also implies
‘smallness’.)

It will turn out that, by an argument similar to one in GCMA, pregeneric
intervals exist in abundance in countable arithmetically saturated models of
PA. We shall study this argument much more closely. This investigation will
reveal that although arithmetic saturation is essential for the full argument,
a large part of the proof goes through without any countability or saturation
assumption. For applications to understanding truth in expanded structures
of the form (M, I) we will be particularly interested in how the arguments can
be adapted to notions of self-similarity with respect to finite sets of formulas.
This increases the number of technical details but in other respects the main
ideas are straightforward and similar to those in the earlier paper.

Definition 5.2. Let x, y, x′, y′, c ∈ M and n ∈ N. We write (x, y, c) ≡n

(x′, y′, c) to mean ∧∧
i6n

(θi(x, y, c) ↔ θi(x
′, y′, c)),

and write (x, y, c) ≡ (x′, y′, c) to mean∧∧
i∈N

(θi(x, y, c) ↔ θi(x
′, y′, c)).

If M is recursively saturated, (x, y, c) ≡ (x′, y′, c) is equivalent to the assertion
that there is g ∈ Aut(M) such that xg = x′, yg = y′ and cg = c.
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Definition 5.3. Let n, k, c ∈ M , [a, b] ∈ S finite, and Y an indicator for
B below b + 1. We say that [a, b] is (n, k)Y -pregeneric over c if and only if
Y (a, b) > k and for all x, y ∈ [a, b]

∀[u, v] ⊆ [a, b]
(
Y (u, v) > k → ∃x′, y′ ∈ [u, v] ((x, y, c) ≡n (x′, y′, c))

)
.

We shall omit the subscript Y if the indicator in consideration is clear from
context.

To prove the existence of (n, k)-pregeneric intervals, we use the tree argument
given in GCMA. The only difference here is that the tree is now finite.

Definition 5.4. Let [a, b] ∈ S be finite and Y be a monotone indicator for
B below b + 1. Fix c ∈ M . For i ∈ N, define ei : M6b ×M6b → M by setting
ei(r, s) to be

max
{
l ∈ M : ∃[r′, s′] ⊆ [r, s]

(
Y (r′, s′) = l ∧ ∀x, y ∈ [r′, s′] ¬θi(x, y, c)

)}
for each r, s 6 b. The tree of possibilities from [a, b] over c with respect to Y is
a sequence ([rσ, sσ])σ∈2<ω of semi-intervals defined recursively as follows.

• Set [r∅, s∅] = [a, b].
• Let m ∈ N and σ ∈ 2m such that [rσ, sσ] is defined. Set [rσ0, sσ0] = [rσ, sσ]

and let [rσ1, sσ1] ⊆ [rσ, sσ] be the unique semi-interval such that rσ1 is the
least r in [rσ, sσ] such that

∃s ∈ [rσ, sσ]
(
Y (r, s) > em(rσ, sσ) ∧ ∀x, y ∈ [r, s] ¬θm(x, y, c)

)
,

and sσ1 is the greatest s in [rσ, sσ] such that

∀x, y ∈ [rσ1, s] ¬θm(x, y, c).

Remark. Note that the function ei defined above is dependent on and uniquely
determined by the choice of c ∈ M and the indicator Y . Note also that both ei

and the tree of possibilities are uniformly definable in (M, Sat) for all partial
inductive satisfaction class Sat for M . This is also true for (n, k)Y -pregenericity
over an element c of M .

The idea is that given a large enough finite semi-interval [a, b] and a formula
θ(x, y), exactly one of two things has to happen: either there is a large subin-
terval of [a, b] in which no pair of elements satisfy θ(x, y), or there is not.
In the first case, the witnessing subinterval is homogeneous for θ(x, y), sim-
ply because no pair of elements in there satisfies this formula. In the second
case, the whole semi-interval is already homogeneous for θ(x, y), because by
assumption, every large enough subinterval contains a pair of elements sat-
isfying θ(x, y). In either case, we get a sufficiently large subinterval that is
homogeneous for θ(x, y).
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We can repeat this argument with all LA formulas. It is sometimes quite hard
to find out which case we are in, but we definitely know what possibilities we
can have. This gives rise to the tree of possibilities defined above. We do not
need to know which way down the tree we have to go. We only need to know
there is a way that works.

Lemma 5.5. Let [a, b] be a finite semi-interval, Y be a monotone indicator
for B below b + 1, and c, k ∈ M such that Y (a, b) > k. If ([rσ, sσ])σ∈2<ω is the
tree of possibilities from [a, b] over c with respect to Y , then

∀m ∈ N ∃!σ ∈ 2m
(
Y (rσ, sσ) > k∧∀i < m (σ(i+1) = 0 ↔ ei(rσ�i

, sσ�i
) < k)

)
.

Proof. This can be proved by an easy induction on m.

It is then down to checking how many formulas we need to guarantee a certain
amount of pregenericity.

Definition 5.6. Let β : N → N be the function defined by: for all n ∈ N, the
number β(n) is the least m ∈ N such that

if φ(x, y, z) is a Boolean combination of formulas in {θi(x, y, z) : i 6 n},
then there is a formula φ′(x, y, z) ∈ {θi(x, y, z) : i 6 m} that is logically
equivalent to φ(x, y, z).

Theorem 5.7. Let n be a natural number, [a, b] be a finite semi-interval,
k, c ∈ M , and Y a monotone indicator for B below b+1 such that Y (a, b) > k.
Then [a, b] contains a semi-interval that is (n, k)Y -pregeneric over c. Moreover,
if Sat is a partial inductive satisfaction class for M , then one such semi-
interval is definable in (M, Sat) uniformly in the parameters a, b, c, Y, n, k.

Proof. Let [a, b] be a finite semi-interval, k, c ∈ M , and Y be a monotone
indicator for B below b + 1 such that Y (a, b) > k. Let ([rσ, sσ])σ∈2<ω be the
tree of possibilities from [a, b] over c with respect to Y . Using Lemma 5.5,
define the function π : N → 2<ω by setting π(m) to be the unique σ ∈ 2m such
that

Y (rσ, sσ) > k ∧ ∀i < m (σ(i + 1) = 0 ↔ ei(rσ�i
, sσ�i

) < k)

for each m ∈ N. It can then be checked that [rπ(β(n)), sπ(β(n))] ⊆ [a, b] is (n, k)Y -
pregeneric over c for every n ∈ N.

The ‘moreover’ part can be proved by a careful check of all the steps, and is
left to the reader.

By noting that almost everything in the above argument is coded in M , one
can prove the same statement with fully pregeneric intervals in a similar way.

Definition 5.8. Let c ∈ M . An interval [[a, b]] ∈ B is pregeneric over c with
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respect to B if and only if

∀x, y ∈ [[a, b]] ∀[[u, v]] ⊆ [[a, b]] ∃x′, y′ ∈ [[u, v]] (x, y, c) ≡ (x′, y′, c).

We say that a B-interval is pregeneric with respect to B if and only if it is
pregeneric over 0.

Theorem 5.9. Suppose M is arithmetically saturated. Let c ∈ M . Then every
B-interval contains a subinterval pregeneric over c.

Proof. Suppose M is arithmetically saturated. Let c ∈ M and [[a, b]] ∈ B.
Without loss of generality, assume b 6= ∞. Fix a monotone indicator Y for B
below b+1, and let ([rσ, sσ])σ∈2<ω be the tree of possibilities from [[a, b]] over c
with respect to Y . By recursive saturation, this tree of possibilities and thus
(Y (rσ, sσ))σ∈2<ω are coded in M . Using the strength of N in M , let d > N such
that

∀σ ∈ 2<ω (Y (rσ, sσ) > d ⇔ Y (rσ, sσ) > N).

In particular, Y (a, b) > d since [[a, b]] ∈ B. By Lemma 5.5, we have

∀m ∈ N ∃!σ ∈ 2m
(
Y (rσ, sσ) > d∧∀i < m (σ(i+1) = 0 ↔ ei(rσ�i

, sσ�i
) 6 d)

)
.

Using recursive saturation of M , let n > N and σ ∈ 2n such that

Y (rσ, sσ) > d ∧ ∀i < n
(
σ(i + 1) = 0 ↔ ei(rσ�i

, sσ�i
) 6 d

)
∧ ∀i < n

(
[rσ�i

, sσ�i
] ⊇ [rσ�i+1

, sσ�i+1
]
)
.

It can then be checked that [[rσ, sσ]] ⊆ [[a, b]] is pregeneric over c.

One can try to strengthen the definition of pregeneric intervals to one involving
tuples of length more than two. However this does not give us anything much
stronger, at least when the model is recursively saturated.

Proposition 5.10. Suppose M is recursively saturated, and let c ∈ M . Then
an interval [[a, b]] ∈ B is pregeneric over c if and only if

∀x̄ ∈ [[a, b]] ∀[[u, v]] ⊆ [[a, b]] ∃x̄′ ∈ [[u, v]] (x̄, c) ≡ (x̄′, c).

Proof. One direction is obvious. For the other, note that if g ∈ Aut(M, c) maps
min{x̄} and max{x̄} into [[u, v]], then it must also map all other elements in x̄
into [[u, v]].

Remark. The above argument also shows that modulo recursive saturation,
pregenericity of a B-interval [[a, b]] over an element c in M is equivalent to

∀[[u, v]] ⊆ [[a, b]] ∃a′, b′ ∈ [[u, v]] (a, b, c) ≡ (a′, b′, c).
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Another way to strengthen the notion of pregenericity is to require an interval
to be pregeneric over all elements in a cut I. In some very particular cases,
this works.

Proposition 5.11. Suppose M is recursively saturated and B = Belem. Let
c, c′ ∈ M and [[a, b]] be an elementary interval such that c, c′ � a and tp(c) =
tp(c′). Then

∀[[u, v]] ⊆ [[a, b]] ∃a′, b′ ∈ [[u, v]] (a, b, c) ≡ (a′, b′, c′).

In particular, if c = c′, then [[a, b]] is pregeneric over c.

Proof. Suppose M is recursively saturated and B = Belem. Let [[a, b]] be a finite
elementary interval, c, c′ � a and [[u, v]] ⊆ [[a, b]].

First, we find a′ > u with (a, c) ≡ (a′, c′) and a′ � v. Consider the recursive
type

p(x) = {φ(x, c′) ↔ φ(a, c) : φ(x, y) ∈ LA}
∪ {tn(x) < v : n ∈ N} ∪ {u < x}.

Take n ∈ N and φ(x, y) ∈ LA such that M � φ(a, c). Pick an elementary cut I
in [[u, v]]. Since c � a, we see that M � Qx φ(x, c) where Q denotes ‘there are
cofinally many’. Our hypothesis on c and c′ then implies that M � Qx φ(x, c′).
By elementarity of I in M , we have M � Qx ∈ I φ(x, c′). In particular,
M � ∃x > u (tn(x) < v ∧ φ(x, c′)). So p(x) is finitely satisfied in M . Using
recursive saturation, let a′ ∈ M realise p(x), so that

(a, c) ≡ (a′, c′) and u < a′ � v. (∗)

Next, consider the recursive type

q(y) = {θ(a, b, c) ↔ θ(a′, y, c′) : θ(x, y, z) ∈ LA} ∪ {y < v}.

Let θ(x, y, z) ∈ LA such that M � θ(a, b, c). We need to show M � ∃y <
v θ(a′, y, c′). Now, we know that M � ∃y θ(a, y, c) and so M � ∃y θ(a′, y, c′)
by (∗). Thus

(µy)(θ(a′, y, c′)) ∈ cl(a′, c′) ⊆ M(〈a′, c′〉) < v,

proving that q(y) is finitely satisfied in M . Using recursive saturation again,
let b′ realise q(y) in M . Then

(a, b, c) ≡ (a′, b′, c′) and u < a′ < b′ < v,

as required.

21



However, in most other cases, this does not work.

Proposition 5.12. For every B > N, there exists cofinally many Y ∈ M
such that, for every B-interval [[a, b]] ⊆ M<B and every d > N, there exists a
nonstandard c < d with [[a, b]] not pregeneric over 〈c, Y 〉.

Proof. Let B > N. Using Proposition 2.8, let Y ∈ M be a monotone indicator
for B below B. Note that by requiring Y to be an indicator below a sufficiently
large number, one can make the code Y arbitrarily large.

Let [[a, b]] ⊆ M<B be a B-interval and d > N. Without loss of generality,
suppose Y (a, b) > d. Using Lemma 2.16, pick [[u, v]] ⊆ [[a, b]] such that N <
Y (u, v) < d. Let c = Y (u, v). Then for all [a′, b′] ⊆ [[u, v]], we have

Y (a′, b′) 6 Y (u, v) = c

by monotonicity of Y , and

Y (a, b) > d > Y (u, v) = c.

Hence (a, b, 〈c, Y 〉) 6≡ (a′, b′, 〈c, Y 〉) for every [a′, b′] ⊆ [[u, v]]. Therefore, [[a, b]]
is not pregeneric over 〈c, Y 〉.

These show that pregenericity is stable and optimal. More evidence of this
comes from its relationship with arithmetic saturation.

Proposition 5.13. If for every f ∈ M , there are B ∈ M and an indicator Y
for B below B such that a pregeneric interval over 〈f, Y 〉 exists in M<B, then
N is strong in M .

Proof. Suppose the hypothesis in the proposition holds. Let f : N → M be a
coded function in M . Abusing notation, we let f be a code for this function
in M . Using the hypothesis, let B ∈ M and Y be an indicator for B below B,
and pick a B-interval [[a, b]] ⊆ M<B that is pregeneric over 〈f, Y 〉. Note that
by the proof of Proposition 2.8, we may assume Y to be monotone.

We claim that f(n) > N if and only if f(n) > Y (a, b) for all n ∈ N. Note that
since [[a, b]] ∈ B, the ‘if part’ is obvious. So let n ∈ N such that f(n) > N.
Using Lemma 2.16, let [[u, v]] ⊆ [[a, b]] such that N < Y (u, v) < f(n). Recalling
that [[a, b]] is pregeneric over 〈f, Y 〉, let a′, b′ ∈ [[u, v]] such that

(a, b, 〈f, Y 〉) ≡ (a′, b′, 〈f, Y 〉). (†)

By monotonicity of Y , we have Y (a′, b′) 6 Y (u, v) < f(n). Thus by (†), we
get Y (a, b) < f(n) as required.

While pregeneric intervals are interesting in their own right, the original rea-
son for their introduction is to construct generic cuts. In doing this we shall
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prove the following characterisation of generic cuts in countable arithmetically
saturated models.

Theorem 5.14. Let M be countable and arithmetically saturated. A cut I is
generic if and only if it is contained in a pregeneric B-interval over c for every
c ∈ M .

The proof of this will emerge in the course of following discussion. Let us say
that a cut I ∈ C is strongly generic for B if and only if it is contained in a
pregeneric B-interval over c for every c ∈ M . It is easy to check that all such I
are in Z(B). For if I is strongly generic and a, b ∈ M are such that a ∈ I < b
then there is [[u, v]] pregeneric over 〈a, b〉 containing I. Then a, b 6∈ [[u, v]], so
[a, b] ⊇ [[u, v]] is a B-interval by axiom (4) for a neighbourhood system.

It is now straightforward to show that strongly generic cuts exist using the
Banach’s characterisation of comeagre sets.

Theorem 5.15. If M is countable and arithmetically saturated, then strong
genericity is an enforceable property of Z-cuts.

Proof. Let M be countable and arithmetically saturated. We play a Banach–
Mazur game on B. If c ∈ M , then ∃ can make the outcome of a play be
contained in a pregeneric interval over c using Theorem 5.9 in a single step.
Since M is countable and ∃ has ω many steps to play, she can actually ensure
that the outcome is contained in a pregeneric interval over c for every c ∈ M .
In other words, strong genericity is enforceable.

Corollary 5.16. If M is countable and arithmetically saturated then strongly
generic cuts I for B exist. Furthermore every generic cut I for B is strongly
generic.

In fact, a direct consequence of Proposition 5.13 and the definition of strong
genericity is that the strength of N in the hypothesis of the above theorem is
necessary.

Corollary 5.17. If M contains a strongly generic cut for B then N is strong
in M .

The other implication, that a strongly generic cut is generic will follow from
looking at conjugacy properties of strongly generic cuts.

Theorem 5.18. Let M be countable and arithmetically saturated. Let c ∈ M
and [[a, b]] ∈ B be a pregeneric interval over c. Then any two strongly generic
cuts contained in [[a, b]] are conjugate over c.

Proof. We use a back-and-forth argument.
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Let c ∈ M and [[a, b]] ∈ B be a pregeneric interval over c. Pick two strongly
generic cuts I and I ′ in [[a, b]]. At any stage of the back-and-forth, we have

• an interval [[u, v]] containing I,
• an interval [[u′, v′]] containing I ′, and
• tuples r̄, r̄′ ∈ M

such that

• [[u, v]] is pregeneric over 〈c, r̄〉,
• [[u′, v′]] is pregeneric over 〈c, r̄′〉, and
• (u, v, c, r̄) ≡ (u′, v′, c, r̄′).

We show how to add an arbitrary ∗r to r̄. In the process, we find ∗u, ∗v to
replace u, v and choose corresponding ∗u′, ∗v′, ∗r′ while keeping r̄′ fixed. This
constitutes the ‘forth’ step. The ‘back’ step is similar.

Using the definition of ‘strongly generic’, choose an interval [[∗u, ∗v]] that
contains I and is pregeneric over 〈u, v, c, r̄, ∗r〉. Pick an automorphism g ∈
Aut(M, c) such that 〈u, v, r̄〉g = 〈u′, v′, r̄′〉, which is possible since (u, v, c, r̄) ≡
(u′, v′, c, r̄′) and M is recursively saturated. It follows that [[∗ug, ∗vg]] ⊆ [[u′, v′]].
Using pregenericity of [[u′, v′]] and recursive saturation, let h ∈ Aut(M, c, r̄′)
such that [[u′, v′]]h ⊆ [[∗ug, ∗vg]]. The back-and-forth then continues by setting

[[∗u′, ∗v′]] = [[∗ugh−1

, ∗vgh−1

]] and ∗r′ = ∗rgh−1.

The required isomorphism is given by r̄ 7→ r̄′ at the end.

Corollary 5.19. If M be countable and arithmetically saturated, then every
strongly generic cut is generic.

Proof. Use Theorem 3.8.

6 Conjugacy properties and truth

We continue working with a fixed neighbourhood system B and its species
of cuts Z = Z(B) which will be assumed not to have any isolated point.
Additionally, in this section we assume that our model M is countable and
arithmetically saturated.

Results in the last section show that, in this context, the set G of Z-generic
cuts is comeagre in Z and satisfies the hypotheses of Theorem 3.8. The neigh-
bourhood of a generic cut is fuzzy or blurred in some sense, and this agrees
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with our idea that pregeneric intervals should be homogeneous. In fact, The-
orem 3.8 says that this blurry nature actually characterises genericity. It is
natural to ask exactly how large the blurry zone around a generic cut is. The
following shows that one can improve Theorem 5.18 slightly.

Corollary 6.1. If [[a, b]] is an interval satisfying

∃x ∈ [[a, b]] ∀[[u, v]] ⊆ [[a, b]] ∃x′ ∈ [[u, v]] (x, c) ≡ (x′, c),

then all generic cuts in [[a, b]] are conjugate over c.

Proof. Let [[a, b]] be an interval and x, c ∈ M such that

∀[[u, v]] ⊆ [[a, b]] ∃x′ ∈ [[u, v]] (x, c) ≡ (x′, c). (‡)

Pick two generic cuts I1 and I2 from [[a, b]]. Using Corollary 5.16, let [[u1, v1]] and
[[u2, v2]] be pregeneric intervals over 〈a, b, c〉 that contain I1 and I2 respectively.
Note that [[u1, v1]] and [[u2, v2]] have to be subintervals of [[a, b]].

Our plan is to map I1 close enough to I2 via x, so that Theorem 5.18 can
be applied. Using the axioms for a neighbourhood system, let [[u′

2, v
′
2]] be a

pregeneric subinterval of [[u2, v2]] over c containing I2 such that

u2 � u′
2 � v′2 � v2. (§)

Using (‡) and recursive saturation, let g1, g2 ∈ Aut(M, c) such that xg1 ∈
[[u1, v1]] and xg2 ∈ [[u′

2, v
′
2]]. It follows from (§) that [[u1, v1]]

g−1
1 g2 ∩ [[u2, v2]] ∈ B.

By Theorem 5.18, both I
g−1
1 g2

1 and I2 are conjugate over c to the generic cuts
in this intersection. Therefore, (M, I1, c) ∼= (M, I2, c).

This turns out to be the best possible.

Proposition 6.2. Let [[a, b]] be a B-interval, D ⊆ Z and c ∈ M such that D
is dense in [[a, b]]. If all D-cuts in [[a, b]] are conjugate over c, then

∃x ∈ [[a, b]] ∀[[u, v]] ⊆ [[a, b]] ∃x′ ∈ [[u, v]] (x, c) ≡ (x′, c).

Proof. Let [[a, b]] ∈ B and D ⊆ Z such that D is dense in [[a, b]]. Fix c ∈ M ,
and suppose all D-cuts in [[a, b]] are conjugate over c. Using Theorem 5.9, let
[[r, s]] ⊆ [[a, b]] be a pregeneric interval of c, and pick x ∈ [[r, s]]. We show that
this x works.

Let [[u, v]] ⊆ [[a, b]] be arbitrary. We apply a similar trick as in the previous
proof again. Using the axioms for a neighbourhood system, let [[u′, v′]] be a
subinterval of [[u, v]] such that

u � u′ � v′ � v.
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Using the density of D in [[a, b]], take D-cuts I ∈ [[r, s]] and J ∈ [[u′, v′]]. By
assumption, I is conjugate to J over c. Let h ∈ Aut(M, c) such that Ih = J .
Then [[r, s]]h ∩ [[u, v]] is an interval whose preimage under h is a subinterval of
[[r, s]]. Let [[r′, s′]] be this preimage. Recall that [[r, s]] is a pregeneric interval
over c. So there exists an automorphism g ∈ Aut(M, c) such that xg ∈ [[r′, s′]]
and hence xgh ∈ [[u, v]], as required.

We now start to prove some new results that have no counterparts in GCMA.
The main theorem is a syntactic characterisation of conjugacy for generic cuts.
As a corollary, we obtain a description of the orbits of M under the action of
Aut(M, I) where I is a generic cut.

Definition 6.3. Let L I
A denote the language obtained from LA by adding

an extra unary relation symbol, which will usually represent a cut of M . The
language obtained from L I

A by adding all LA Skolem functions is denoted by
L I

Sk.

Definition 6.4. Let I ∈ C and c̄, c̄′ ∈ M . We write (c̄, I) ≡ (c̄′, I) to mean
that c̄ and c̄′ are of the same length, and

(M, I) � ϕ(c̄) ↔ ϕ(c̄′)

for all L I
A formulas ϕ(x̄).

Our first objective is to count the number of conjugacy classes of generic cuts.
It will turn out that in some cases there will be exactly ℵ0 conjugacy classes,
and in other cases just one. We have already proved results showing that under
certain conditions two generic cuts are conjugate. To characterise conjugacy,
we additionally need to know when two generic cuts are not conjugate. It is
obvious that if two cuts are separated by a definable point, then they cannot
be conjugate, and this observation gives us one set of examples.

Example 6.5. Let D be a dense set in Z that is invariant under the action
of Aut(M), and suppose B = BY for some GCMA indicator Y . If M 6� Th(N),
then there are at least countably infinitely many conjugacy classes of D-cuts
that are contained in cl(∅), the smallest elementary cut of M .

Proof. Let D, Y and B = BY be as in the statement and M 6� Th(N). By the
closure of Z, MB(0) exists and is in Z. Note that

MB(0) = sup{(µy)(Y (0, y) > n) : n ∈ N} (e cl(∅).

Take a ∈ cl(∅) such that a > MB(0). Then [[0, a]] ∈ B by the definition of
MB(0). Using an argument similar to that in the proof of Proposition 2.3
one can divide the B-interval [[0, a]] indefinitely into smaller subintervals by
definable points. Since D is dense in Z, we get any finite number of mutually
non-conjugate D-cuts in cl(∅).
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When M � Th(N), this trick does not work because there is no nonstandard
definable point. Instead we may make use of a function H that grows like an
ascending sequence of gaps. The cuts in consecutive gaps cannot be conjugate
because the maximum w such that H(w) is in the cut are all in different
congruence classes modulo a sufficiently large natural number. The following
technical lemma allows this to work.

Lemma 6.6. Let Y be a GCMA indicator. If M � ∀x∃y Y (x, y) > n for each
n ∈ N, then there is a strictly increasing function H : M → M definable in M
without parameters such that

H(k) �BY H(k + 1)

for all large enough k ∈ M .

Proof. Let Y be a GCMA indicator. Suppose M � ∀x∃y Y (x, y) > n for each
n ∈ N.

If M � ∀n∀x∃y Y (x, y) > n, then let H be the function defined recursively by

H(0) = 0 ∧ ∀z
(
H(z + 1) = (µy)(Y (H(z), y) > z + 1)

)
.

If M � ∃n∃x∀y Y (x, y) < n, then define H by

H(0) = 0 ∧ ∀z
(
H(z + 1) = (µy)(Y (H(z), y) > n)

)
,

where n = (max m)(∀x∃y Y (x, y) > m).

Proposition 6.7. Let Y be a GCMA indicator such that B = BY , and D be
a dense set of Z-cuts that is closed under the action of Aut(M).

(a) If M 6� ∀x∃y Y (x, y) > n for some n ∈ N, then no Z-cut can contain
cl(∅).

(b) If M � ∀x∃y Y (x, y) > n for all n ∈ N, then there are at least countably
infinitely many mutually non-conjugate D-cuts containing cl(∅).

Proof. Let Y be a GCMA indicator such that B = BY , and D be a dense set
of Z-cuts that is closed under the action of Aut(M).

(a) Take n ∈ N such that M � ∃x∀y Y (x, y) < n. Let x∗ = (µx)(∀y Y (x, y) <
n). Then x∗ ∈ cl(∅) and no B-interval is above x∗ because n ∈ N. So,
there cannot be any Z-cut above cl(∅).

(b) Suppose M � ∀x∃y Y (x, y) > n for each n ∈ N. Let H be a fast growing
function whose existence is guaranteed by Lemma 6.6. Pick x > cl(∅)

such that
(
[[H(x + k), H(x + k + 1)]]

)
k∈N

is a sequence of B-intervals,
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which is possible by recursive saturation. Using the density of D in Z,
take a D-cut Ik ∈ [[H(x + k), H(x + k + 1)]] for each k ∈ N. Noting that

(max w)(H(w) ∈ Ik) = x + k

for each k ∈ N, it can easily be verified that the cuts in (Ik)k∈N are
mutually non-conjugate.

Corollary 6.8. If B = BY for some GCMA indicator Y , then there are exactly
countably infinitely many conjugacy classes of generic cuts in M .

Proof. Let Y be a GCMA indicator such that B = BY .

Recall that Theorem 5.18 says that if two generic cuts are in the same pre-
generic interval, then they are conjugate. By the countability of M , this im-
plies that there can be at most countably infinitely many conjugacy classes of
generic cuts in M .

On the other hand, note that it is not possible to have M � Th(N) and

M � ∃x∀y Y (x, y) < n for some n ∈ N

both true at the same time. Otherwise, the truth of ∃x∃y Y (x, y) > n in M
for every n ∈ N then implies the existence of a nonstandard definable element.
Therefore we are done by Example 6.5, Proposition 6.7, Theorem 5.15, and
the Baire Category Theorem.

Remark. Note that there is exactly one conjugacy class of generic cuts for
Belem by Theorem 5.18 and Proposition 5.11.

All the above non-conjugacy claims are actually proved by cooking up a sen-
tence that is true in one structure but not the other. One may ask whether
we are able to find non-conjugate cuts that are elementary equivalent in the
expanded language. The following suggests that this may not be possible.

Example 6.9. Suppose B = Belem, and let I be a generic cut for Belem. If
a, b ∈ I such that tp(a) = tp(b), then (M, I, a) ∼= (M, I, b).

Proof. Suppose B = Belem and let a, b ∈ I ≺e M such that I is generic and
tp(a) = tp(b). Using Corollary 5.16, let [[r, s]] be a pregeneric interval over
〈a, b〉 that contains I. Then we necessarily have a, b � r.

Using Proposition 5.11 and recursive saturation, let g ∈ Aut(M) such that

a = bg and [[r, s]]g ⊆ [[r, s]].
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Let J = Ig. Then
J = Ig ∈ [[r, s]]g ⊆ [[r, s]]

so that both I and J are generic cuts in [[r, s]]. However, [[r, s]] is pregeneric
over a by Proposition 5.11. So by Theorem 5.18, there is an automorphism
h ∈ Aut(M, a) such that Jh = I and thus

(M, I, b) ∼= (M, Ig, bg) = (M, J, a) ∼= (M, Jh, ah) = (M, I, a),

as required.

This essentially says that the formula ‘x ∈ I’ of L I
A tells us a lot about an

element x when I is generic for Belem. On the other hand, the formula ‘x 6∈ I’
is much weaker.

Proposition 6.10. Suppose that all Z-cuts are closed under addition and
multiplication. If I is a generic cut, c ∈ M and B > I, then there are d, d′ ∈ M
such that I < d, d′ < B and (d, c) ≡ (d′, c), but (d, c, I) 6≡ (d′, c, I).

Proof. Under the hypotheses of the proposition, using Corollary 5.16, let
[[a, b]] ∈ B be a pregeneric interval over 〈c, B〉 containing I.

By Proposition 4.2 and Corollary 5.19, I 6= MB[b], so I < MB[b]. Let w ∈
MB[b]\I. By Proposition 2.3, MB(w) 6= MB[b]. Take z ∈ MB[b]\MB(w) and let
d = 〈w, z〉. Note that MB[b] ∈ Z is closed under addition and multiplication,
and thus d ∈ MB[b]. So now, we have

a ∈ I < w � z < 〈w, z〉 = d ∈ MB[b] < b.

Using Theorem 5.15 and the Baire Category Theorem, pick a generic cut J ∈
[[w, z]] ⊆ [[a, b]]. Then I and J are conjugate over 〈c, B〉 by Theorem 5.18. Let
g ∈ Aut(M, 〈c, B〉) such that Jg = I. Let d′ = dg so that (d, c, B) ≡ (d′, c, B).
In particular, as d < B, we have d′ < B as well. Note also that since J < d,
we have

I = Jg < dg = d′.

Let πL be the Skolem function defined by

∀p
(
πL(p) = (µx)

(
∃y(p = 〈x, y〉)

))
.

Then πL(d) = πL(〈w, z〉) = w > I, but since w ∈ J , we have

πL(d′) = πL(dg) = (πL(d))g = wg ∈ Jg = I.

Therefore, (d, c, I) 6≡ (d′, c, I).

Again, the above proof uses an L I
A formula that is true in one structure but not

in the other to prove non-conjugacy. This seems to provide evidence supporting

29



the conjecture that the L I
A theory of (M, I) determines its conjugacy type

when I is generic. We shall now show that this conjecture is in fact true.
Surprisingly, the formulas used in the proof of Proposition 6.7 are already
sufficient to describe the theory of (M, I). The next definition sets up the
notation we shall need properly.

Definition 6.11. Let φ(x̄, y) be an LA formula, I ∈ C and c̄ ∈ M . We write
νI

φ(x̄,y)(c̄)↓ for

∃y ∈ I
(
φ(c̄, y) ∧ ∀y′ ∈ I (y′ > y → ¬φ(c̄, y))

)
.

The expression νI
φ(x̄,y)(c̄)↑ is the negation of νI

φ(x̄,y)(c̄)↓. Define

νI
φ(x̄,y)(c̄) =

(max y ∈ I)(φ(c̄, y)), if νI
φ(x̄,y)(c̄)↓;

0, otherwise.

Note that the statements νI
φ(x̄,y)(c̄)↑, νI

φ(x̄,y)(c̄) = d, etc., are all first order

statements of the L I
A structure (M, I).

Lemma 6.12. Let I ∈ Z be generic. If c ∈ M , and [[a, b]] ∈ B is pregeneric
over c and contains I, then νI

φ(x,y)(c) < a for every LA formula φ(x, y) such

that νI
φ(x,y)(c)↓.

Proof. Let I ∈ Z be generic, c ∈ M , and [[a, b]] ∈ B be pregeneric over c
that contains I. Fix an LA formula φ(x, y). Clearly 0 < a. Suppose M �
νI

φ(x,y)(c)↓. Let A = νI
φ(x,y)(c) + 1 ∈ I. Then MB(A) < I by Proposition 4.2

and Corollary 5.19. Let B ∈ M such that MB(A) < B ∈ I. If A > a, then
[[A, B]] ⊆ [[a, b]] and

M � νI
φ(x,y)(c) ∈ [[a, b]] ∧ φ(c, νI

φ(x,y)(c))

while M � ∀y ∈ [[A, B]] ¬φ(c, y) by the maximality of νI
φ(x,y)(c), which is not

possible since [[a, b]] is pregeneric over c. Therefore, νI
φ(x,y)(c) < A 6 a.

Theorem 6.13. Let c ∈ M and I, J ∈ Z be generic. Then (M, I, c) ∼=
(M, J, c) if and only if

(M, I) � νI
α(x,y)(c)↓⇔ (M, J) � νJ

α(x,y)(c)↓

for every LA formula α(x, y).

Proof. One direction is obvious. For the other direction, let c ∈ M and I, J ∈
Z be generic such that M � νI

α(x,y)(c)↓↔ νJ
α(x,y)(c)↓ for every LA formula

α(x, y). Without loss of generality, assume I < J . Using Corollary 5.16, pick
a pregeneric interval [[a, b]] over c containing I, and a pregeneric interval [[u, v]]
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over c containing J . By genericity and Proposition 4.2 we have MB(a) < I.
Let A ∈ M such that MB(a) < A ∈ I < b.

Consider the recursive type

p(y) = {u 6 y 6 v} ∪ {α(c, y) ↔ α(c, A) : α(x, y) ∈ LA}.

We show that this is finitely satisfied in M . Let α(x, y) ∈ LA such that
M � α(c, A). Now if M � νI

α(x,y)(c)↓, then by Lemma 6.12 and the maximality

of νI
α(x,y)(c), we have

a � A 6 νI
α(x,y)(c) < a,

which is a contradiction. So M � νI
α(x,y)(c)↑. By our hypothesis, we have

M � νJ
α(x,y)(c)↑. Note that A ∈ I < J and M � α(c, A). So there are cofinally

many y ∈ J such that M � α(c, y). In particular, there is a y ∈ J such that
M � y > u ∧ α(c, y). Thus M � ∃y ∈ [[u, v]] α(c, y), as required.

Let B realise p(y) in M . By construction, tp(A, c) = tp(B, c). Using recursive
saturation of M , let g ∈ Aut(M, c) such that Ag = B ∈ [[u, v]]. Since a �
A � b, the intersection [[a, b]]g ∩ [[u, v]] is a B-interval. Using Theorem 5.15
and the Baire Category Theorem, pick a generic cut J ′ in this interval. By
Theorem 5.18, J is conjugate to J ′ over c, and (J ′)g−1

is conjugate to I over
c. Therefore, I is conjugate to J over c.

Apart from giving alternative proofs of Proposition 6.2 and Example 6.9 for
generic cuts, this theorem also implies a weak quantifier elimination result.

Definition 6.14. Define L I
ν to be the language obtained from L I

Sk by adding
a new predicate

νI
α(x̄,y)(x̄)↓

for each LA formula α(x̄, y). L I
A structures are interpreted as L I

ν structures
in the natural way.

Corollary 6.15. Let I ∈ Z be generic and a, b ∈ M . Then (M, I, a) ∼=
(M, I, b) if and only if a and b satisfy the same quantifier free L I

ν formulas
with respect to I. In particular, (M, I) is ω-homogeneous.

The following example shows that the new predicates νI
α(x̄,y)(x̄)↓ are necessary

for the previous corollary. The idea is very similar to that in Proposition 6.7(b).

Example 6.16. Suppose B = Belem, and let I ∈ Z be generic. Then the
formula

(max j)((x)j ∈ I) is even

which is equivalent to

∃w
(
(x)2w = νI

∃j(y=(x)j)
(x)

)
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is not equivalent in (M, I) to a quantifier-free L I
Sk formula. In fact, it is not

even equivalent to an infinite conjunction of quantifier-free L I
Sk formulas.

Proof. Suppose B = Belem and let I ∈ Z be generic. Using recursive saturation,
let c ∈ M code an ascending sequence of gaps of length ω, i.e., c codes a
sequence of nonstandard length such that (c)i � (c)i+1 for each i ∈ N. Let
l ∈ M be the length of this sequence. Without loss of generality, assume this
sequence is strictly increasing on its domain. Pick an indicator Y for B below
maxi<l(c)i + 1. Using the strength of N in M , let ν ∈ M be nonstandard such
that

Y ((c)i, (c)i+1) > N iff Y ((c)i, (c)i+1) > ν.

for every i ∈ N. By overspill, let m > N such that

∀i < m Y ((c)i, (c)i+1) > ν.

Using arithmetic saturation, let i < m be nonstandard such that i 6∈ cl(c).

Pick generic cuts I ∈ [[(c)i−1, (c)i]] and J ∈ [[(c)i, (c)i+1]]. Notice that Proposi-
tion 5.11 and Theorem 5.18 imply that I and J are conjugate. Let g ∈ Aut(M)
such that I = Jg and set d = cg. Then by our choices of I and J ,

(max j)((c)j ∈ I) and (max j)((c)j ∈ J)

are of different parities. Hence

(c, I) 6≡ (c, J) ∼= (cg, Jg) = (d, I).

On the other hand, if t is a Skolem function such that t(c) ∈ [[(c)i−1, (c)i+1]],
then i is definable from (µj)((c)j > t(c)) ∈ cl(c), which is contradictory to
our choice of i. So for every Skolem function t, we either have t(c) < (c)i−1,
or (c)i+1 < t(c). It follows that

t(c) ∈ I iff t(c) < (c)i−1 iff t(c) ∈ J iff t(cg) ∈ Jg iff t(d) ∈ I

for every Skolem function t in LA. Thus, c and d have the same quantifier-free
L I

Sk type since cg = d. Therefore, the formula

(max j)((x)j ∈ I) is even

is not equivalent to an infinite conjunction of quantifier-free L I
Sk formulas.

We are not yet able to prove a real quantifier elimination result, and whether
such a result is possible is the main open question arising from this work.

Question 6.17. Let M � PA be countable and arithmetically saturated, Z
a closed species of cuts without isolated point and I ∈ Z a Z-generic cut.
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Is it the case that every L I
A formula θ(x̄) is equivalent in (M, I) to a single

quantifier-free formula θqf(x̄) in the language L I
ν with the same free variables?

The main obstruction to answering this question at present is the observation
that (M, I) is not recursively saturated and may not be recursively saturated
for types built from quantifier-free L I

ν formulas.

7 Elementary generic cuts

Elementary cuts are so important and often studied that we feel it useful to
highlight them as a special case of the general theory above. Throughout this
section we assume that our model M of PA is countable and arithmetically
saturated.

In the case when B = Belem and Z = Zelem = Z(B) of Example 2.14, we
have shown that generic cuts for this species exist; we shall call these cuts
elementary generic cuts.

One useful property of the neighbourhood system of elementary intervals is
the following.

Proposition 7.1. The notion of elementary intervals Belem is relatively inde-
structible.

Proof. Let [[a, b]] ∈ B. Consider the recursive type

p(x) = {∀i < a (tn((x)i) < (x)i+1) : n ∈ N} ∪ {(x)0 = a ∧ (x)a 6 b}.

This is finitely satisfied in M since [[a, b]] contains an elementary cut. Any
element realizing p(x) in M witnesses the relative indestructibility of [[a, b]].

Therefore, by Propositions 4.7 and 4.8, an elementary generic I is semiregular
but not regular in M . It follows that M is never a conservative extension of
an elementary generic cut I, since I would be strong and hence regular in any
conservative extension.

Elementary generic cuts, like generic cuts for other species, are not definable
over a finite set of parameters in any logic. This means for example elementary
generic cuts cannot be of the form MB(a) or MB[b] (Proposition 4.2). Using
Corollary 4.4 and the well-known idea of chronic resplendency (see for example
the presentation in Kaye [1, Theorem 15.8]) it is also easy to see that there is
no Σ1

1 formula characterising genericity below any B ∈ M .

Proposition 4.2 also gives us some information about automorphisms fixing I
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pointwise via a theorem by Kotlarski [11].

Theorem 7.2 (Kotlarski [11, Theorem 4.1]). Let J be an elementary cut of
a countable arithmetically saturated M . If J 6= M [b] for any b ∈ M , then J is
closed in M , i.e.,

∀b > J ∃g ∈ Aut(M)
(
∀x ∈ J xg = x and bg 6= b

)
.

Corollary 7.3. All elementary generic cuts are closed.

It also follows from Proposition 4.2 and and Lemmas 2 and 4 of Kotlarski [10]
that an elementary generic cut I of M is recursively saturated as an LA struc-
ture. The standard systems of I and M are the same (since I is nonstandard)
and so by general results, I and M are isomorphic. This proves the following.

Proposition 7.4. If M is countable and arithmetically saturated then there
is a countable arithmetically saturated elementary end-extension N of M such
that M is elementary generic in N .

Similarly, any countable and arithmetically saturated M is K[b] for some
countable arithmetically saturated elementary end-extension K of M and
some b ∈ K. So we have the following.

Proposition 7.5. If M is countable and arithmetically saturated then there is
an elementary end-extension N of M such that M is not elementary generic
in N .

Although an elementary generic cut I is ‘rich’ considered as a model in its
own right, the pair of models (M, I) (i.e. M with a I realising a new predicate
symbol) is not recursively saturated (Corollary 4.4). The proof of that corollary
gives an example of a recursive set of formulas that is finitely satisfied but not
realised. It is instructive in the case of elementary generic cuts to give a more
straightforward example.

The idea of sequences of skies or gaps, introduced by Smoryński and Stavi [15]
and discussed further by Smoryński [13] and Kossak and Schmerl [9], gives us
a particularly nice necessary condition on (M, J) being recursively saturated,
where J is an elementary cut of M .

Fact 7.6 (Smoryński [13, Theorem 2.8]). If J is an elementary cut such that
(M, J) is recursively saturated as an L I

A structure, then J is the limit of an
ascending sequence of gaps of length J .

Proposition 7.7. An elementary generic cut I of a countable arithmetically
saturated M is not the limit of an ascending sequence of gaps of length I.

Proof. Suppose c ∈ M codes an ascending sequence of gaps of length I such
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that
sup{(c)i : i ∈ I} = I.

Using Corollary 5.16, pick a pregeneric interval [[a, b]] ∈ B over c that contains
I. Note that the sequence ((c)i)i∈I is cofinal in I. So let i ∈ I such that
(c)i > a. By Theorems 5.15 and 5.18, I is conjugate to a generic cut in
[[(c)i, (c)i+1]] ⊆ [[a, b]] over c. This is impossible since no Z-cut J ∈ [[(c)i, (c)i+1]]
can satisfy

{(c)j ∈ J : j ∈ M is less than the length of c} ⊆cf J,

as required.

All our known examples of elements c ∈ M for which N is definable in (M, I, c)
are above I. So we ask the following.

Question 7.8. Suppose M is countable and arithmetically saturated and I
is elementary generic for B, what is the set

{c ∈ M : N is definable in (M, I, c)}?

In particular, is it a subset of M \ I?

We conjecture that the elements of M definable in (M, I, c) are precisely the
elements in the Skolem closure of {νI

α(x,y)(c) : α ∈ LA}. In the case when c is
absent, by using a theorem by Kossak and Bamber [8], one can verify that all
elements definable without parameters in (M, I) are in cl(∅).

Theorem 7.9 (Kossak and Bamber [8, Theorem 4.1]). If J ∈ C is closed under
exponentiation, then every element definable in (M, J) without parameters is
in cl(c) for some c ∈ J .

To return to the topic of conjugacy properties, recall that exceptionally all el-
ementary intervals are pregeneric (over 0) by Proposition 5.11. A consequence
of this result is Example 6.9, which says that

∀a, b ∈ I
(

tp(a) = tp(b) ⇒ (M, I, a) ∼= (M, I, b)
)

for an elementary generic cut I. This relates generic cuts to the notion of free
cuts defined by Kossak.

Definition 7.10 (Kossak [6,7]). An elementary cut I is free if and only if
whenever a, b ∈ I with tp(a) = tp(b), we have (a, I) ≡ (b, I).

Corollary 7.11. All elementary generic cuts are free.

This provides new examples of free cuts. By Theorem 5.18 and Proposi-
tion 5.11, all elementary generic cuts are conjugate, and hence by Theorem 5.15
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the orbit of I under the action of Aut(M) has cardinality 2ℵ0 . This partially
answers a question by Kossak [7, Problem 4.7]. Proposition 6.10 also says
something about the degree of freeness of I. In Kossak’s terminology [6], it
says that I is the largest initial segment J of M such that I is J-free in M .

However, in view of the above discussion, this does not provide us with an
example of a free cut I such that (M, I) is recursively saturated. One possible
way to pursue this problem is to relax the axioms for a neighbourhood system
so that Proposition 7.7 cannot be proved but enough freeness is retained. The
statement of Proposition 2.3 seems to be a good candidate for a weakening
of axiom (5). Another way is to use arguments similar to those in Section 6
of GCMA. A positive answer to the following question will also help.

Question 7.12. If M is arithmetically saturated, I is generic for some species
Z, and ā ∈ M , is the theory Th(M, I, ā) coded in M?

In view of the interesting work that has been done on the automorphism
group of a countable recursively saturated or arithmetically saturated models
of PA, it would seem that the automorphism group Aut(M, I) is begging to
be explored, where I is elementary generic or (more generally) generic for
some other neighbourhood system. Theorem 5.18 and Corollary 6.15 provide
useful ways to construct automorphisms in this group. The new back-and-
forth system taken from GCMA, together with the well-known ones, suggest
that the structure of such groups is quite rich.

We only state two questions relating to this group here, and leave it to the
reader’s imagination to come up with others. In the next two questions, let
I be elementary generic in M , or more generally Z-generic for some closed
species Z.

Question 7.13. Is Aut(M, I) a maximal subgroup of Aut(M)?

Note that Aut(M, I) is naturally equipped with a topology, namely that gen-
erated by cosets of pointwise stabilisers of finite tuples from M . It is straight-
forward to see that G(I) is a closed normal subgroup of G{I}.

Question 7.14. Other than G(I), what are the other closed normal subgroups
of G{I}? In particular, if M � Th(N), is G(I) the only closed normal subgroup
of G{I}?

Another topic that is worth looking into is about L I
A elementary extensions of

the structure (M, I), where I is elementary generic in M . By standard model
theoretic techniques, we know that there is a countable elementary extension
of (M, I) that is recursively saturated in the expanded language. So genericity
is not preserved in all such extensions by Corollary 4.4. However, is there any
proper elementary extension (N, J) � (M, I) such that J is generic in N?
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