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AXTOMATIZATIONS AND QUANTIFIER COMPLEXITY

Richard Kaye,
Jesus College,
Oxford,

0X1 3DW,
ENGLAND.

ABSTRACT

Given any theory T we give axiomatizations of
IT and V. T, the 3 and v consequences of T.
n n n n

We show that if T is w-categorical and‘ﬁ%

axiomatized, but not En axiomatized, then

ELT is not finitely axiomatized (although T

may be).
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§0 INTRODUCTIOCN

Given a theory T, let VnT and 3n T be the theories
axiomatized by the b% and Bn sentences provable in T. If
T is given by some axiomatization can we find reasonably
simple axiomatizations of V%T and 3nT? The answer is in
fact 'ves', and we provide ways of doing this in §l below.
Our motivation for doing this comes from the observation
that T, anT and V;T are all equiconsistent and so we have
reduced the problem of constructing models of T to const-
ructing models of less complex theories. Many properties
of the theory T are transterred down to BnT and/or \%T,
one notable exception to this rule being that even if T is

_tinitely axiomatized, 3nT need not be. A full investigat-
ion of this phenomenon in the special case where T is one
vt the tinite fragments TEn of Peano Arithmetic, or some
related theory, was carried out in [KPD] and [K2] (see [K3]
for a survey). In this case the non-finite axlomatizability
of [Z;=En+2(lﬁn)=3n+2(lﬁn) takes a very strong form:
finite fragments of IE; actually have a strictly weaker
proof-theoretic strength (as measured in the usual way.)

T have suggested elsewhere that these simple model theo-
retic considerations may give new direction to research on
some long-standing open problems. One example 1s the case
where T is some theoryv of sets with a universal set (such as
NF or Church's) which is finitely axiomatizable and the con-
sistency proublem notoriously open. (Here the axiomatizations

of 3nT suggest new hlerarchies of theories and function
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classes that appear worthy of study.) The application
that concerns us here however is that of the theories of
bounded arithmetic (see e.g. [B] and [W]) and their rel-
ationships with complexity theory and the MRDP theorem.
(I shall give explicit examples from this field of study
in the text below.)

Consideration of §1 below and the examples cited in the
last paragraph lead to the following general questions:
Given an b%+l axiomatized theory T, what can one say about
axiomatizations of HkT and V&T for various k,2sn+1? Are
they finite? Are the obvious axiomatizations 'best possible’
in terms of quantifier complexity? Even for very well
behaved theories T these questions seem difficult and inter—
esting, and well worth study. Proof theorists have studied
these questions—§1 essentially consists of a model theoretic
study of the crucial facts about Gentzen-style deduction
systems relevant to this—however it seems that model theor-
ists have an extra trick up their sleeves that is also
relevant, namely the various notions of saturation. It was
George Wilmers who suggested that the problems in weak Sys-—
tems of arithmetic may one day be settled by consideration
of saturation properties of the nonstandard models of these
theories—see in particular his paper [W]. Taking this
suggestion seriously, in §2 we solve the analogous problem
(that of the non-finite axiomatizability of 3n+1T for an
v theory T) in the case where types over T and saturation

n+l

properties are most easily understood, namely the case
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when T is w-categorical. These results are hardiy the
last word on the subject: my object is to generate discuss-
ion on a new set of problems in model theory.

There are many people to thank£ Dugald Macpherson,
Angus Macintyre, Wilfrid Hodges and Alec Wilkie for inter-
esting discussions and encouragement; Jesus College fpr
financial support and the organizers of the Easter Model
theory conference for providing the venue to air these ideas.
As will be clear from the text below I have been greatly
influenced by Wilfrid Hodges' book [H], and in particular

all notation not explained below is taken from this book.

§1 THE AXIOMATIZATIONS

We start with a theory T axiomatized by,
{Yy o,(3) | ie N}
(where ¢, e,gn for each i and some fixed n2l) in a countable

language L (so T is Vn+1 axiomatized).

THEOREM 1.1: 3 . .T is axiomatized by

n+1

37 » 35 (n(DAs,(3)) (+)
over all n Ean_and i e NN.
PROOF: Denote the theory (*) by T*, and suppose MfET* is

any model of T*. We shall show that there is a model
KET + le(n)

which clearly suffices.

The proof is by a model theoretic forcing argument.
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(See [H] for other constructions of this kind.) Conditions

are Vl'l-‘-l

formulas Ai(xo,..,xji) satisfying

a) MF aixi(i) for all i

b) F¥Yx ( Ai+1(§) - xi(i) ) for all i

K will be the substructure {ao.al,...} of a model

M'E Th(M)+ A\iki(ao,..,aj ). To make K<3 M' the required
i n

Henkin condition on the )\i's is:

'c) If 6(u,v) €Vn_1, and y is a tuple from xg,x,,.
then
either | Vx ( ?\k(i) + 08(y,z) ) for some k € IN and

some z from X,,..,X.
0 Jk

or Th(M) | ¥x ( A (%) » Vz-06(y,z) ) for some keNN.

This is satisfied in the usual way.

Finally to make Kr=T we need:

d) For each tuple y from XgsXyseee and each ieIN

there is ke N s.t. FV¥x ( kk(i) + ¢i(-}7) ).

To check (d) can be satisfied, suppose J\k(;) has been
constructed and we are considering ¢, and }G{xo.xl,..} .

By (a) ME 3xA, (X) . Write x.,..,x. as y,z where no
k 0 Iy

variable in z occurs in y. So: M[ Bi[aikk(i,i)]. The

formula inside [..] is 311 so applying (*) we have

ME 3.2 (A (7,2)A0,(3) ).
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So if ¢i(y) is jawei(y,w) with 6, € Vn-l then we just let
Ak+1(x) be the formula Ak(y,z)hﬁi(y,w) for some new tuple

of variables w from XgoXpsees

COROLLARY 1.2: If T is an b;+1 axiomatized theory where
nzl, then 73 T is axiomatized by a set of 3 v¥Y_ sentences.
n+1 n n
If T is complete (or more generally, if T decides allan and

V} sentences) then 3n+lT can be taken to be 3nu ¥;.

PROOF: Immediate from 1.1.

1.2 gives interesting information in the following
example: IE1 is the theory of arithmetic consisting of a
weak base theory together with the scheme of induction for
El formulas, i.e. formulas of the form 3Jx<t(a,y) 6(a,y,X)
with 8 q.f. in LA = { 0,1,+4,*,<}and t a term in‘this lan-
guage. (Thus t is a polynomial with coefficients from IN.)
See [W] for more details on IEI' It is unknown if IE1
proves the MRDP theorem on the diophantine representation
of r.e. predicates, or if IE1 has an b% axiomatization (the
natural axiomatization is VB) however IE, |-MRDP # IE, is VZ
(see [K1]). 1IU, is the same base theory together with

1

parameter-free induction on U, formulas, i.e. formulas of

1
the form V§<t(y) 6(x,y) with 8 q.f IUI is a very weak
theory with recursive finitely generated models, and its
natural axiomatization is 32. Does IUI have an VE axiomat-
ization? We suspect not: forexample IVI (which is the same
as IUI except the induction formulas need not be bounded)
has no VE axiomatization, although it too is 32, [K4].

However (also from [K4]) we have IUI}— Vl\l 31(IE1), so if
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IEIF-MRDP it is V, and hence by 1.2 we would have the sup-
rising consequences that IU; is equivalent to 32(IE1) and
is V&v 31 axiomatized.

Notice that our axiomatization of 3h+lT in 1.1 is
certainly not finite. Our next goal is to apply 1.1 to
obtain information about VQT. This will enable us to give
a 'proof-theoretic' condition implying EL+1T is not finitely
axiomatized.

As before, fix n2l and T axiomatized by { V@@i(§)| ielN}

with each Qi € 3n in L. For any L-theory S define

Dp(8) = (‘3yn(y)+o | ne3 , oeV_  and

SE 3y(n(¥)ad,(¥))+0 some i

so that DT(S) is V%, and if S is also V' then D (S)F—S.
Also define: DI(S)=S; Dr*'($)=Dp(d1(s)); DR(s)=V, pDi(s)
and D (9) for i=0,1,2.

We prove the following simple propertf of DT:
PROPOSITION 1.3: If o,T are sentenceg and oean. D%}—o.

i i
DT(o)F»t then DT}—T.

PROOF: We show by induction on i that if ¢ gan then:

i i .
DT+0}—DT(0), for all ieNN.

+1
7o)

with nean. Eevn and D%(O)F }?(n(?)ﬁ\¢i(?))+5 then by the

i=0 is trivial. If 3yn(y)+g is an axiom of D

induction hypothesis,
i - = -
Dr+obJ In(YIA 6,(¥) » €

so,
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Drk BF(oAN(T) A6 () > &

hence
DIt 35(o An()) &
i.e. D.}”wl-‘.-'l?n(i) > £

as required.

In fact D; (which can be considered as the closure

of the empty L theory under the inference rules

35 o, (NAnG ) » o

37y niy) » o

for ieNN, OEVn, nean) is VnT. The following theorem shows

a little more to be true:

THEOREM 1.4: Suppose o, = 3yn,(§) » 37 (ny(3)as; (7))
j

for j=1..k are k axioms of 3 T and
n+l
0 40,4+ 40, T €V,

then D%F—T .

PROOF: By induction on k, k=0 being trivial. Suppose

D; + -T is consistent, say MF=D¥ + ~T. We must show that
01+--+ck+aT is consistent.

1f DX 35(n (DA 6; (3))at for each j=l..k, then
J

k — —
for each j, and as Mf D% + a1 it follows that M| V?-nj('f)

each j, hence MF=01+02+°-+0k+qT as required.



73

Otherwise for some jsk we have:

D¥—1+3-§(nj(§),\¢,i (¥))A AT is consistent.
J

Write 1' for 1(3§(nj(§)4¢i (y))A A1), so 1! EVH. By the
J

0 +‘ +G. IG. + +O +_‘I[ ons Ste

i.e. ﬂT+01+"+0j_1+0j+1+°'+0k+ ay(ﬂj(y)h¢ij(y)) is consis-

tent. But a model of this must clearly satisfy Oj also,

hence —1T+01+--+0k is consistent, as required.

COROLLARY 1.5: If D% forms a hierarchy (i.e. D% = D? for

all ieIN) then 3n+1T isn't finitely axiomatized.

PROOF: If o +--+0 - 3

| e i .
n+1T’ then VhT_DT"DT for some i

by 1.4.

EXAMPLES: (i) The subtheories IEn of PA are defined to be
some base theory PA™ plus induction (with parameters) on
Zn formulas. By prenex operations and 1.1, En+2(IEn) is

axiomatized by

Va,x ( 6(a,x)*6(a,x+1) ) ~
Va,x ( 6(a,0)+6(a,x) )

oo . —
over all © EEH. Hn+1(IZn) = DIzn is the base theory PA

together with closure under the inference rule
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Vv a,x ( 8(a,x) » 6(a,x+1) )

()
¥ a,x ( 8(a,0) » 6(a,x) )

and Diz is the same except the rule (1) may only be used

I
n

to depth 1i.
Now for nzl, D%Z does form a hierarchy. In the ‘case of
n
IZl this is because the El definable functions in D%zl are
exactly the functions in Grzegorczyk's class E?+2. (This is
an easy modification of a result of Mints-Takeuti which is
already provable using the machinery developed here. One

just has to inductively Skolemize D;E by adding functions

1
that are in 1+2, using Herbrand's theorem to show that if

Y a,x ( 86(a,x)*»6(a,x+1) ) is provable in D%E then the

1
skolemization for D%Z can be extended to one for
1
D} +Va,x(8(a,0)+6(a,x)) in ¥, That DI, forms a hier-
IEl IEl ;

. -1
archy now follows since the E} s form a hierarchy. A similar
argument applies for D}z for n»l.) In fact we get the

n

following extra information: If a function f is defined
with Zn graph using k axioms of En+2(12n), then f is in the

kth

level of the analogous Grzegorczyk hierarchy, a result
first proved by Adamowicz, Bigoraskja and Kaye by a differ-
ent technique, [K2].

(ii) The theories BZn of En—collection (see [PK]) do
not behave in the same way: BZn is 1 axiomatized, and

n+2
En+2(BEn) is the theory BZn considered in [KPD], which is
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not finitely axiomatizable, whereas Hn+1(BZn) is just the
theory IZn-l’ which (at least for n>1) is known to be fin-
itely axiomatized.

Theorem 1.4 (together with Herbrand's theorem) can
be considered as the content of the cut elimination theorem
as used in Buss's characterization of the polynomial time
computable function [B], and similar results (see for example

[CT]). Indeed a proof of Buss's theorem can be deduced

=]

T
using Herbrand's theorem in exactly the same way as sketched

from 1.4 by inductively Skoiemizing the appropriate D

above for IEl.
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§2 FINITE AXIOMATIZATIONS

In §80,1 we raised the question: 'Given an'V; theory T
(where n322) when is‘gnT finitely axiomatizable?' aad our
feeling was that the answer should be: 'not very often'.

An example: let T be a consistent VE theory in a pure rel-
ational language L with no finite models. Any gz.sentgnce

o provable from T has a finite model, but of course

Th axl""xk A xixxj so 32T has no finite models and
i<jsk

hence isn't finitely axiomatized. An example in arithmetic
where even partial information on this question would be
welcome is the bé theory IE1 of [W] mentioned above. As we
remarked before, if IEIF-MRDP then IE1 is VEl axiomatized
and in fact this axiomatization can be taken to be finite.
The corresponding theory BVEI(IEI) has been identified in
[K1] as IE,, the same basic set of axioms together with
parameter-free E1 induction. Now the analogous theories
Ii; (n21) and many other related theories turn out not to
be finitely axiomatized—see [K2] or [KPD] for details. A
similar result for IEI would have the required consequence
that IEIL—MRDP.

Here we aim to prove the corresponding result for an
Vg+1 w-categorical theory T, where nzl., We start with some
definitions and standard properties of w-categorical theories
(for this background material see e.g. [H].)

Fix an V£+l axiomatized w-categorical T with no finite

models. Then T is an-complete, i.e. any Oesh is either
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provable (T} 0) or disprovable (TH-0). An Hn—type over T
is a (not necessarily maximal) set ®(X) of an formulas
consistent with T in a finite number of variables Xx.

There are finitely many such maximal 3n—types over T for
each tuple Xx, and each maximal 3n—type ®(x) is isolated by

some ¢(x) € &, i.e.

TH WX ( 6(x) > ¥(X) )
for all ¥ € ®. The crucial property is of course that of
3 -saturation: If MET is countable,.a € M and ¢(5,§)G.3n

s.t. M 3x A ¢(a,x) for each finite S€d then
¢eS

MEFx A ¢(a,x). (In fact an w-categorical theory T is
ded :

saturated in the above sense without the restriction
¢§=3n, however we shall only need saturation for jn—types.)

Now for the theorem:

THEOREM 2.1: Suppose n2l and T is an \;+1 axiomatized
w-categorical theory with no finite models. Then

(a) If n=1 then 32T-is'not finitely axiomatized over \HT.
. . ] . .
(b) If n>1 and 3n+1T}-T (i.e. T isn't 3n+l axiomatized)

then 3n+1T is not finitely axiomatized over V%T.

REMARK: The extra condition in (b) is necessary: for example
T = 'DLO with end points' is a finitely axiomatized 33nV3

w-categorical theory.

PROOF OF 2.1: We first prove (a). Suppose T is V2 and

w-categorical, and suppose ajﬁﬁF 3§¢(§)+VHT where ¢ is

quantifier free. Let MEFT with aeMF¢(a), and let K be the

closure of a under the function symbols of L. Then ackeM
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and SQ.KF=¢(§)+‘GM, but by the Ryll-Nardzewski theorem K is

finite, for otherwise the types

¢k(x) = "x is obtained from a by k+i applications of

L-functions but not by any k applications of L-functions"

would yield infinitely many types over a in the variable x.
It follows that K doesn't even satisfy the 31 consequence
"there are at least k elements" of T for large k.

To prove (b), suppose 3n+lT-4F VnT+ Ixo(x) with ¢€VL_1
and n22, and consider forcing with b;—Z conditions with.
V;T+¢(§) in the language of T expanded by adding constant
symbols a. With this notion of forcing it is clear that the
compiled structure satisfies v;T+¢(5), hence by our
supposition satisfies 3n+1T'. Denote "it is enforcable
that the compiled structure satisfies S" (for this notion
of forcing) by |FS. 2.1 then follows from the following
two lemmas:

LEMMA 2.2: If an+1TI—T then [ T.
LEMMA 2.3: |} 3 T iff [ T.

PROOF OF 2.2: Suppose that | T and that o =

WV x3y¥zu(x,y,z) is V;+1 with ¢ € EL—Z and provable in T but

not in 3 Denote the compiled structure K, and suppose

'n+1T'
KF x(a) for any X € 3n+1. Then KF J xx(x) and since KFT
and T is complete we have 3n+1T|— F xx(x).

Now since |F T we have !Fc. This clearly means we have:
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For any condition a(x,a) there is a condition
B(i,f.ﬁ)zu(f,ﬁ) s.t: whenever Y(Xx,y,z,a)28B is
(1) a condition there is another condition

8(x,y,z,a)2Y s.t.
Y T+6(a) - Wx,7,z(8(X,¥,2,a)*V(%,¥,2))
(Here a 'condition' is of course an 1._1 formula consistent
with VnT+¢(E), and a € B denotes a is contained in B as a
conjunct.) The proof of (1) is standard. We also have:
For any tuple z there is a finite collection
th.(E,a-) (jsNeN) of conditions s.t. the compiled
(2) structure satisfies Vz Wtb.(E.E) , and for

jsN

each j if m(z,a)2 ¢, is a condition then

J

VnT+¢(§)}—VE ( ¢j(2,5) + n(z,a) ).
To see (2), notice that in the compiled structure K each
tuple zeK realises a maximal Bn-l type over a. Let ®(z,a)
be a typical such type.  We claim ¢ is principal, i.e.
isolated by some ¢(z,a) € ¢. If not let & = {¢0.¢1,¢2,..}
s.t. VnT+¢(£)+¢O+”+¢k IS ¢k+1 for all k. But then each
¢0A .. A¢k(E.E)A —.fbk+1(2,§) extends to a maximal complete
type over T, and these are all distinct, contradicing Ryll-
Nardzewski's theorem. Thus in K there are at most countably
many Sn-l types over a, and these are all principal, isol-
ated by ¢0.¢1,¢2,... say. Thus

Kk Vz W o (z,3),

kelN

and so for some NelN we have

Kk VzZ W o (z,3)

k sN
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for otherwise Kl= 4z A -|¢k(E,E) for each N, so
kEN

K|= az A -.¢k(z a) by saturation, a contradiction. This
ke IN

gives (2) as required.
We use (1) and (2) together to write down a proof of

Y3y Vzu(x,7,2) in 3 _,T.
By (2) we have maximal conditions aj(i,a) Ean—l such

that

(3) KEVx W a;(%,3).

jsN,
For each aj let B, 20.J be found satisfying the property in
(1). Then 3yBJ.(x,§ a) is a condition extending czj so by

the maximality of 0:j we have,

(4) V,T+6(@) | VX (a(x,3) » 378,(X,7,3) )
and so in particular we have
(5) kKEV: W 358.(%,7.3).

jaN 0 :

We once again apply (2) to obtain maximal conditions

ER'(E,},E,E) for EsNIE]N such that

Ni
ml
~—

(6) KEVE5.2 W g, (3,7,

LsN

1
and for each le(i,")? z,a) = B (x,y,a)A ER,(; y,z,a) that is

J
a condition obtain using (1) and our choice of Bj a con-

dition Gj (x,y,z,a)2 YJR. such that

. VnT+¢(5)}-Vi,§,z (Yjq > 85 ) and
V T+ (@ RV X,5.2 (85 > v )

by maximality of 52.
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Putting (3), (4), (5), (6), (7) together we haveh
VX V 3)’8 (x'?sa)

j=sN

KF=ai; 2 =N

2,3 J D
Ai,§,2(6£+w)
L,3 ]

and this sentence is 3 n+l® SO true in any model of 3+1
because T is complete. It now follows immediately from

this sentence that 3n+1T|— Vx3yVzu(x,y,z), concluding the

proof of 2.2,

PROOF OF 2.3: One direction is trivial. For the other,

suppose "— 3n+1T' Then by 1.1 the compiléd structure K

satisfies the following:
V%_l forcing with Th(K) gives a model of T.
We may choose K to have the following property:

If KF 3x6(x) with eevn-l’ then there is some
AMx,a) E'an_l, a condition in the first forcing
construction, such that A(Xx,a)|l 6(X) and

KE 3% A(X,3) .

Indeed if K 3 . T and K I x6(X) then 3, TH3 x6(%),
so | 3 x6(X).

It is easy now to see a strategy in the forcing game
with V’_ conditions over V%T+¢(§) to give a model of T (and

not just 3 One just follows the stategy in the ¥ _ -

n+1

forcing game with Th(K) and whenever this stategy dictates
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one should play 6(x) € Vn—l’ instead play some A(x,a) with
A(x,3) |} 6(X) and play to enforce 8(x). Hence | T as

required.

EXAMPLE: Let T be the théory of atomless boolean algebras

in the language L = { £, =1}. T is w-categorical and bg
axiomatized, but not 33. It follows that 33T is not finitely
axiomatized.

The above proof of 2.1 is based on a proof for T = IZn
given in [K2], where forcing arguments replace the constr-
uction Kn+l(M) = all elements of M that are definable by a
T formula. In fact if M%Iz; (=ZI ,,(IZ ) ) then

n+1

n+l

K (M) is the unique enforcable structure (with forcing

with ﬂh conditions over Th(M).) It follows that

M > kPl E s
n
n+1

(see [K2] for details). Thus the arithmetic and the w-

categorical cases both have the following property:

Forcing with V; (or Hn) conditions over Th(M)

ives a z
g 3n+1 (or n+1) elementary substructure

of M.
This raises the following interesting question:

QUESTION 1: What models M (for a countable language L)

have the property that a compiled structure K formed by
V;—forcing with Th(M) (nz0) is embedded as a substructure

of M?

It is easy to see that the embedding (if it exists)



must be q_l+l-e1ementary. This property holds in the case
MflT for w-categorical T, and indeed more generally if M
is 3n+1—saturated. The arithmetic case works for a diff-

erent reason. Consider the following property of models M:

Whenever Mp 3 Xx6(x) with BE:Yn there is lIJ(;)Ean_'_l

(*) s.t. V(x)26(x) and MEF3xV(X),and for some
keN, MFVX,...%( A\w(x ) > W (xy=x ) )
ixj

An easy Konig's lemma argument shows that Question 1
has a positive answer for models satisfying (*). Note too
that (*) only depends on 3n+2(M), so it makes sense to say

a theory has (°*).

QUESTION 2: If T is an VL+2 theory satisfying (*), where

nz0, can 3n+2T ever be finitely axiomatized?

We have been shifting our attention between theories
with very many types (such as arithmetic) and theories
with very few types (w—-'categoricity) and noted that the
common ground was the saturation properties of models. It
seems important to understand these properties better. I
conclude with a sample observation and a question on these
lines for the w-categorical case. Notice that if ¢i(§)
€ Vn for each i and [¢i(§) | ieN} is a type with no par-
ameters over a V:HI w-categorical theory T, then it is
contained in a complete type isolated by n(x) € 3 . Then
TH axn(x) and

Thus every model of 3n+1T realizes the type {tbi(x) | ielN }.

T Vx(n(x )+¢ (x)) for each i.

n+1 n+1
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QUESTION 3: If T is an w-categorical theory that is b}

axiomatized, what saturation properties do models of'VkT,

alT have, for various k,L € IN?
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