
Polynomial-Time Perfect Matchings in Dense Hypergraphs

Peter Keevash
School of Mathematical
Sciences, Queen Mary,

University of London
London E1 4NS
United Kingdom

p.keevash@qmul.ac.uk

Fiachra Knox
School of Mathematical
Sciences, Queen Mary,

University of London
London E1 4NS
United Kingdom

F.Knox@qmul.ac.uk

Richard Mycroft
School of Mathematics

University of Birmingham
Birmingham B31 4AF

United Kingdom
r.mycroft@bham.ac.uk

ABSTRACT
Let H be a k-graph on n vertices, with minimum codegree
at least n/k + cn for some fixed c > 0. In this paper we
construct a polynomial-time algorithm which finds either
a perfect matching in H or a certificate that none exists.
This essentially solves a problem of Karpiński, Ruciński and
Szymańska, who previously showed that this problem is NP-
hard for a minimum codegree of n/k − cn. Our algorithm
relies on a theoretical result of independent interest, in which
we characterise any such hypergraph with no perfect match-
ing using a family of lattice-based constructions.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Hyper-
graphs, Graph Algorithms.

Keywords
Perfect Matchings; Lattices.

1. INTRODUCTION
The question of whether a given k-uniform hypergraph

(or k-graph) H contains a perfect matching (i.e. a partition
of the vertex set into edges), while simple to state, is one
of the key questions of combinatorics. In the graph case
k = 2, Tutte’s Theorem [18] gives necessary and sufficient
conditions for H to contain a perfect matching, and Ed-
monds’ Algorithm [5] finds such a matching in polynomial
time. However, for k ≥ 3 this problem was one of Karp’s
celebrated 21 NP-complete problems [6]. Results for perfect
matchings have many potential practical applications; one
example which has garnered interest in recent years is the
‘Santa Claus’ allocation problem (see [3]). Since the gen-
eral problem is intractable provided P ̸= NP, it is natural
to seek conditions on H which render the problem tractable
or even guarantee that a perfect matching exists. In recent
years a substantial amount of progress has been made in
this direction. One well-studied class of such conditions are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’13 June 1-4, Palo Alto, California, USA.
Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$15.00.

minimum degree conditions. In this paper we provide an
algorithm that essentially eliminates the hardness gap be-
tween the sparse and dense cases for the most-studied of
these conditions.

1.1 Minimum degree conditions
Suppose that H has n vertices and that k divides n (we as-

sume this throughout, since it is a necessary condition for H
to contain a perfect matching). In the graph case, a simple
argument shows that a minimum degree of n/2 guarantees
a perfect matching. Indeed, Dirac’s theorem [4] states that
this condition even guarantees that H contains a Hamilton
cycle. For k ≥ 3, there are several natural definitions of the
minimum degree of H. Indeed, for any set A ⊆ V (H), the
degree d(A) of A is the number of edges of H containing A.
Then for any 1 ≤ ℓ ≤ k− 1, the minimum ℓ-degree δℓ(H) of
H is the minimum of d(A) over all subsets A ⊆ V (H) of size
ℓ. Two cases have received particular attention: the mini-
mum 1-degree δ1(H) is also known as the minimum vertex
degree of H, and the minimum (k − 1)-degree δk−1(H) as
the minimum codegree of H.

For sufficiently large n, Rödl, Ruciński and Szemerédi [14]
determined the minimum codegree which guarantees a per-
fect matching in H to be exactly n/2 − k + c, where c ∈
{1.5, 2, 2.5, 3} is an explicitly given function of n and k.
They also showed that the condition δk−1(H) ≥ n/k is suffi-
cient to guarantee a matching covering all but k vertices ofH
(i.e. one edge away from a perfect matching). This provides
a sharp contrast to the graph case, where a minimum degree
of δ(G) ≥ n/2−εn only guarantees the existence of a match-
ing covering at least n−2εn vertices. Many other minimum
degree results for perfect matchings have also been proved;
see the survey [12] for details, as well as recent papers [1],
[2], [9], [10], [11] and [17].

Let PM(k, δ) be the decision problem of determining
whether a k-graph H with δk−1(H) ≥ δn contains a per-
fect matching. Given the result of [14], a natural ques-
tion to ask is the following: For which values of δ can
PM(k, δ) be decided in polynomial time? The main result
of [14] implies that PM(k, 1/2) is in P. On the other hand,
PM(k, 0) includes no degree restriction onH at all; as stated
above, this was shown to be NP-complete by Karp [6]. Szy-
mańska [16] proved that for δ < 1/k the problem PM(k, 0)
admits a polynomial-time reduction to PM(k, δ) and hence
PM(k, δ) is also NP-complete, while Karpiński, Ruciński
and Szymańska [7] showed that there exists ε > 0 such that
PM(k, 1/2−ε) is in P. This left a hardness gap for PM(k, δ)
when δ ∈ [1/k, 1/2− ε).

Main Result. In this paper we provide an algorithm
which eliminates this hardness gap almost entirely. More-
over, it not only solves the decision problem, but also pro-
vides a perfect matching or a certificate that none exists.

Theorem 1.1. Fix k ≥ 3 and γ > 0. Then there is an al-

gorithm with running time O(n2kk+3+k(k−1)+1), which given
any k-graph H on n vertices with δk−1(H) ≥ (1/k + γ)n,
finds either a perfect matching or a certificate that no per-
fect matching exists.

We remark that a more technical argument can reduce the

running time of the algorithm to O(n3k2−7k+1). We give this
argument in the full version of the paper.

1.2 Lattices and divisibility barriers
Theorem 1.1 relies on a result of Keevash and Mycroft [8]

giving fairly general sufficient conditions which ensure a per-
fect matching in a k-graph. In this context, their result es-
sentially states that if H is a k-graph on n vertices, and
δk−1(H) ≥ n/k + o(n), then H either contains a perfect
matching or is close to one of a family of lattice-based con-
structions termed ‘divisibility barriers’. The latter play a
key role in this paper, so we now describe them in detail.
The simplest example of a divisibility barrier is the fol-

lowing construction, given as an extremal example in [14]:
for a suitable choice of |A|, the k-graph formed by this con-
struction has the highest minimum codegree of any k-graph
on n vertices with no perfect matching.

Construction 1.2. Let A and B be disjoint sets such
that |A| is odd and |A ∪ B| = n, and let H be the k-graph
on A ∪ B whose edges are all k-tuples which intersect A in
an even number of vertices.

To describe divisibility barriers in general, we make the
following definition: for any k-graph H and any partition P
of V (H) into d parts, we define the index vector iP(S) ∈ Zd

of a subset S ⊆ V (H) with respect to P to be the vector
whose coordinates are the sizes of the intersections of S with
each part of P (note that we consider a partition to include
an implicit order on its parts, so that iP(S) is well-defined).
We then define IP(H) to be the set of index vectors iP(e)
of edges e ∈ H, and LP(H) to be the lattice (i.e. additive
subgroup) in Zd generated by IP(H).
A divisibility barrier is a k-graph H which admits a parti-

tion P of its vertex set V such that iP(V) /∈ LP(H); the next
proposition shows that such anH contains no perfect match-
ing (we omit the easy proof). To see that this generalises
the construction above, let P be the partition into parts A
and B; then LP(H) is the lattice of vectors (x, y) for which
x is even, and |A| being odd implies that iP(V) /∈ LP(H).

Proposition 1.3. Let H be a k-graph with vertex set V ,
and let P partition V such that iP(V) /∈ LP(H). Then H
does not contain a perfect matching.

A special case of the main theoretical result of this paper
is the following theorem, which states that the converse of
Proposition 1.3 holds for sufficiently large 3-graphs as in
Theorem 1.1. Thus we obtain an essentially best possible
strong stability version of the result of Rödl, Ruciński and
Szemerédi [14] in the case k = 3.

Theorem 1.4. For any γ > 0 there exists n0 = n0(γ)
such that the following statement holds. Let H be a 3-graph
on n ≥ n0 vertices, such that 3 divides n and δk−1(H) ≥
(1/3+γ)n, which does not contain a perfect matching. Then
there is a subset A ⊆ V (H) such that |A| is odd but every
edge of H intersects A in an even number of vertices.

Theorem 1.4 can be used to decide PM(3, 1/3 + γ), as
the existence of a subset A as in the theorem can be checked
using (simpler versions of) the algorithms in Section 2. How-
ever, the case k = 3 is particularly simple because there is
only one possible divisibility barrier; for k ≥ 4, the next con-
struction shows that the converse of Proposition 1.3 does not
hold for general k-graphs as in Theorem 1.1.

Construction 1.5. Let A, B and C be disjoint sets of
vertices with |A ∪ B ∪ C| = n, |A|, |B|, |C| = n/3 ± 2 and
|A| = |B| + 2. Fix some vertex x ∈ A, and let H be the
k-graph with vertex set A ∪B ∪ C whose edges are

1. any k-tuple e with |e ∩A| = |e ∩B| modulo 3, and

2. any k-tuple (x, z1, . . . , zk−1) with z1, . . . , zk−1 in C.

Construction 1.5 satisfies δk−1(H) ≥ n/3−k−1, so if k ≥ 4
then H meets the degree condition of Theorem 1.1. Further-
more, it is not hard to see that iP(V (H)) ∈ LP(V (H)) for
any partition P of V (H). In particular, if P is the partition
of V (H) into A, B and C, then (0, 0, k), (1, 1, k − 2) and
(1, 0, k − 1) are all values of iP(e) for edges e ∈ H, and the
above claim quickly follows in this case (recall that k | n).
However, H does not contain a perfect matching. To see
this, let M be a matching in H, and note that any edge
e ∈ M has |e ∩ A| = |e ∩ B| modulo 3, except for at most
one edge of M which has |e ∩ A| = |e ∩ B| + 1 modulo 3.
So, letting (i1, i2, i3) = iP(V (M)), we have i1 − i2 ∈ {0, 1}
(modulo 3). Since this is not true of iP(V (H)), we conclude
that V (M) ̸= V (H), that is, that M is not perfect.

1.3 Approximate divisibility barriers
Our starting point will be (a special case of) a result of

Keevash and Mycroft [8] on approximate divisibility barri-
ers. First we introduce the following less restrictive degree
assumption that we will use for the rest of the paper; it is
not hard to see that for small γ > 0 it follows from the
assumption in Theorem 1.1. (The reason for doing so will
become clear at the end of Section 2.)

δ1(H) ≥ γnk−1, and (1)

d(A) ≥ (1/k + γ)n for all but at most
εnk−1 sets A of k − 1 vertices of H.

(2)

The result from [8] states that under our degree assump-
tions, if H does not contain a perfect matching then we can
delete o(nk) edges fromH to obtain a subgraphH ′ for which
there exists a partition P of V (H) such that iP(V (H)) /∈
LP(H

′). Thus if H is far from a divisibility barrier then it
has a perfect matching. On the other hand, if H is itself a
divisibility barrier then H does not have a perfect matching.

New Result. The main theoretical contribution of this
paper is to fill the gap between these cases, by giving a nec-
essary and sufficient condition for the existence of a perfect
matching under our degree assumptions.

For the statement we need the following definitions. First,
we say that a lattice L is transferral-free if it does not contain
any vector with +1 in one co-ordinate, −1 in another, and
all remaining co-ordinates being zero. Second, we call a
lattice L an edge-lattice if it is generated by vectors whose
co-ordinates are non-negative and sum to k; thus LP(H) is
an edge-lattice for any k-graph H and partition P.

Theorem 1.6. For any k, γ, C0, there exist ε = ε(k, γ, C0)
and n0 = n0(k, γ, C0) such that, for any C with 2kk+2 ≤
C ≤ C0, any n ≥ n0 divisible by k, and any k-graph H on
n vertices satisfying (1) and (2), H has a perfect matching
if and only if the following condition holds:
(*) If P is a partition of V (H) into d parts, where 1 ≤

d < k, and L ⊆ Zd is a transferral-free edge-lattice such that
any matching M in H formed of edges e ∈ H with iP(e) /∈ L
has size less than C, then there exists a matching M ′ of size
at most k − 2 such that iP(V (H)\V (M ′)) ∈ L.

Our algorithm for the decision problem is essentially an
exhaustive check of condition (*) in Theorem 1.6, although
we also need to provide an algorithm to efficiently list the
partitions P as in the theorem. Thus Theorem 1.6 is re-
quired to prove correctness of the algorithm; we also believe
it to be of independent interest. Our proof of Theorem 1.6
relies on the main result of [8] as well as a substantial amount
of geometric, probabilistic and combinatorial theory.

1.4 Contents and notation
In the next section we present the algorithmic details of

the results in this introduction. That is, we assume Theo-
rem 1.6 and deduce Theorem 1.1. In Section 3 we outline
the proof of Theorem 1.6, presenting only the key ideas and
steps, as the full proof is too long and technical to include
here. In the final section we make some concluding remarks
and note analogues of our main results pertaining to multi-
partite hypergraphs, which can be proved in a similar way.
We write [r] to denote the set of integers from 1 to r, and

x ≪ y to mean for any y there exists x0 such that for any
x ≤ x0 the following statement holds. Similar statements
with more constants are defined similarly. Also, we write
a = b± c to mean b− c ≤ a ≤ b+ c.

2. ALGORITHMS AND ANALYSIS
We start with the following theorem, which can be used

to solve the decision problem of determining whether or not
H has a perfect matching.

Theorem 2.1. Fix k ≥ 3 and γ > 0. Then there ex-
ists ε = ε(k, γ) such that for any k-graph H on n vertices
which satisfies (1) and (2), Procedure DeterminePM deter-
mines correctly whether or not H contains a perfect match-

ing. Furthermore, it will do so in time O(n2kk+3+k(k−2)).

Procedure DeterminePM is essentially an exhaustive check
of condition (*) in Theorem 1.6. It is clear that the ranges
of M , d, L and M ′ in the procedure can be listed by brute
force in polynomial time. However, brute force cannot be
used for P, as there would be exponentially many possibili-
ties to consider, so first we provide an algorithm to construct
all possibilities for P.
We imagine each vertex class Vj to be a ‘bin’ to which ver-

tices may be assigned, and keep track of a set U of vertices

Procedure DeterminePM
Data: An integer k ≥ 3, a constant γ > 0 and a

k-graph H = (V,E).
Result: Determines correctly whether or not H has a

perfect matching provided H satisfies (1) and
(2) for ε = ε(k, γ, 2kk+3).

if |V | < n0(k, γ, 2k
k+3) then

Test every possible perfect matching in H, and halt
with appropriate output.

foreach matching M in H of size at most 2kk+2,
integer 1 ≤ d < k, transferral-free edge-lattice L ⊆ Zd

and partition P of V into d parts so that any edge
e ∈ H which does not intersect V (M) has iP(e) ∈ L do

if there is no matching M ′ ⊆ H of size at most
k − 2 such that iP(V \ V (M ′) ∈ L then

Output “no perfect matching” and halt.
Output “perfect matching” and halt.

yet to be assigned to a vertex class. So initially we take each
Vj to be empty and U = V (H). The procedure operates as
a search tree; at certain points the instruction is to branch
over a range of possibilities. This means to select one of
these possibilities and continue with this choice, then, when
the algorithm halts, to return to the branch point, select
the next possibility, and so forth. Each branch may produce
an output partition; the output of the procedure consists of
all output partitions. An informal statement of our proce-
dure is that we generate partitions by repeatedly branching
over all possible assignments of a vertex to a partition class,
exploring all consequences of each assignment before branch-
ing again. Furthermore, we only branch over assignments of
vertices which satisfy the following condition. Given a set
of assigned vertices, we call an unassigned vertex x reliable
if there exists a set B of k − 2 assigned vertices such that
d(x ∪B) ≥ (1/k + γ)n.

Lemma 2.2. Fix 0 < ε ≪ γ. Let H be a k-graph on a
vertex set V of size n which satisfies (1) and (2), let 1 ≤
d < k and let L ⊆ Zd be a transferral-free edge-lattice. Then
there are at most d2k−2 partitions P of V such that iP(e) ∈ L
for every e ∈ H, and Procedure ListPartitions lists them in
time O(nk+1).

Proof. First we note that the instruction ‘Assign x to Vj ’
in Procedure ListPartitions is well-defined. Indeed, since L
is transferral-free, for any set S ⊆ V (H) there is at most
one j ∈ [k] such that iP(S) + uj ∈ L.

Next we show that if the number of assigned vertices is at
least (1/k+ γ)n and at most (1− γ)n then there is always a
reliable unassigned vertex. To see this, note that the number
of sets x ∪B, where x is unassigned and B is a set of k − 2
assigned vertices, is at least γn

(
n/k+γn

k−2

)
> εnk−1. Hence

some such x ∪B has degree at least (1/k + γ)n, and so x is
reliable.

The final line of the procedure ensures that any partition
P of V (H) which is output has that property that iP(e) ∈ L
for every e ∈ H. The converse is also true: any partition P
of V (H) such that iP(e) ∈ L for every e ∈ H will be output
by some branch of the procedure. To see this, consider the
branch of the procedure in which, at each branch point, the
vertex x under consideration is assigned to the vertex class
in which it lies in P. By our initial remark, every other ver-
tex of H must also be assigned to the vertex class in which

Procedure ListPartitions
Data: A k-graph H and a transferral-free edge-lattice

L ⊆ Zd.
Result: Outputs all partitions of V (H) with iP(e) ∈ L

for every e ∈ H.

Set U = V (H).
Choose A ⊆ V (H) of size k − 1 such that d(A) ≥ δn.
Branch over all possible assignments of vertices in A.
while U ̸= ∅ do

if xy1 . . . yk−1 ∈ H for some vertices x ∈ U and
y1, . . . , yk−1 /∈ U then

if iP(y1 . . . yk−1) + uj ∈ L for some j ∈ [k] then
Assign x to Vj and remove x from U .

else
Halt with no output.

else
Choose x ∈ U which is reliable;
Branch over all possible assignments of x.

if iP(e) ∈ L for every e ∈ H then halt with output P.

it lies in P. We conclude that Procedure ListPartitions in-
deed runs correctly, returning all partitions P of V such that
iP(e) ∈ L for every e ∈ H.
It remains to bound the number of such partitions. Ob-

serve that after branching initially over all possible assign-
ments of A, at least (1/k+ γ)n vertices will be assigned (all
the neighbours of A) before the procedure branches again.
Further, the procedure will no longer branch once there are
fewer than γn unassigned vertices remaining. Indeed, in this
case for any unassigned vertex x there are fewer than γnk−1

edges containing x and another unassigned vertex. Thus
condition (1) implies that every unassigned vertex x is con-
tained in some edge xy1 . . . yk−1 of H where y1, . . . , yk−1 are
assigned. Hence when branching, we may always choose a
reliable vertex as stated in the procedure.
Consider some x over which the procedure branches. Then

there can be no edge xy1 . . . yk−1 of H where y1, . . . , yk−1

are assigned. Suppose that this is the case, and let B =
y1y2 . . . yk−2 be a set of assigned vertices such that d(x ∪
B) ≥ δn. (Such a B must exist since we chose x to be reli-
able.) None of the (1/k+γ)n vertices v such that xvy1 . . . yk−2

is an edge of H can have been assigned, and each will be as-
signed before the next branch of the procedure. We conclude
that after any branch in the procedure and before the next
branch, at least (1/k + γ)n vertices are assigned.
Hence the search tree has depth at most k. Since the

degree of the root of the search tree is at most dk−1 and
since the degree of every other vertex is the number of vertex
classes d, it follows that the search tree has at most d2k−2

leaf nodes. At most one partition is output at each leaf
node, so at most d2k−2 partitions P will be output by the
algorithm, as required. Furthermore, over all branches there
will be at most d2k−2n iterations of the while loop, and the
condition of the first if statement takes O(nk) operations to
check, and so the overall running time is O(nk+1).

Proof of Theorem 2.1. Fix k ≥ 3 and 0 < ε ≪ γ, and
let H be a k-graph on a vertex set V of size n which satisfies
(1) and (2). We first show that Procedure DeterminePM
determines correctly whether or not H has a perfect match-
ing. This is trivial if n < n0 = n0(k, γ, 2k

k+3), so assume
without loss of generality that n ≥ n0.

Suppose first that H does not contain a perfect matching.
Then by Theorem 1.6 applied with C = 2kk+2 there exists
a partition P of V into d parts, where 1 ≤ d < k, and a
transferral-free edge-lattice L ⊆ Zd such that

(i) any matching M in H formed of edges e ∈ H with
iP(e) /∈ L has size less than 2kk+2, and

(ii) no matching M ′ in H of size at most k− 2 has iP(V \
V (M ′)) ∈ L.

Let M be a maximal matching in H formed of edges e ∈ H
with iP(e) /∈ L, so |M | < 2kk+2. By maximality of M any
edge e ∈ H which does not intersect V (M) has iP(e) ∈
L. Therefore, Procedure DeterminePM will consider M , d,
and L and P in some iteration, and will then find that no
matching M ′ ⊆ H of size at most k−2 has iP(V \V (M ′)) ∈
L. Hence the procedure will output that H does not contain
a perfect matching, as required.

Now suppose that H does contain a perfect matching, and
suppose for a contradiction that Procedure DeterminePM
incorrectly claims that this is not the case. This can only
arise if Procedure DeterminePM considers a matching M in
H of size at most 2kk+2, an integer 1 ≤ d < k, a transferral-
free edge-lattice L ⊆ Zd and a partition P of V into d parts
so that any edge e ∈ H which does not intersect V (M)
has iP(e) ∈ L, and finds that no matching M ′ ⊆ H of size
at most k − 2 has iP(V \ V (M ′)) ∈ L. Since any edge
e ∈ H with iP(e) /∈ L must intersect V (M), any matching
in H formed of edges e ∈ H with iP(e) /∈ L has size at
most k|M | ≤ 2kk+3. So P, d and L are as in condition (*)
of Theorem 1.6 with C = 2kk+3; since H has a perfect
matching this is a contradiction.

It remains only to show that Procedure DeterminePM
must terminate in polynomial time. To see this, note that

there are at most nk·2kk+2

choices of matchings M , and

these can be generated in time O(n2kk+3

) by considering
each set of at most 2kk+2 edges in turn. Also, there are
only a constant number of choices for d and L, and these
can be generated in constant time. Indeed, since L is an
edge-lattice, it is generated by vectors with non-negative co-
ordinates which sum to k; the number of such generating
sets is bounded by a function of k. Lemma 2.2 applied to
H \ V (M) shows that the number of choices for P is also
constant, and the list can be generated in time O(nk+1). Fi-

nally, it takes time O(nk(k−2)) to evaluate the truth of the
condition of the central if statement. We conclude that in

any case this procedure will run in time O(n2kk+3+k(k−2)),
as required.

Now we will deduce our main result, Theorem 1.1. We
start by using Procedure DeterminePM to check whether H
contains a perfect matching. If H has no perfect matching
then this is certified by some M , L and P as in the proce-
dure. So suppose that H does contain a perfect matching.
How can we find it? A naive attempt at a proof is the fol-
lowing well-known idea. We examine each edge e of H in
turn and use the same procedure to test whether deleting
the vertices of e would still leave a perfect matching in the
remainder of H, in which case we say that e is safe. There
must be some safe edge e, which we add to our matching,
then repeat this process, until the number of vertices falls
below n0, at which point our procedure no longer works and
we resort to a constant-time brute force search.

The problem with this naive attempt is that as we remove
edges, the minimum codegree may become too low to apply
Procedure DeterminePM, and then the process cannot con-
tinue. To motivate the solution to this problem, suppose
that we have oracle access to a uniformly random edge from
some perfect matching. Such an edge is safe, and if we re-
peatedly remove such random edges, standard large devia-
tion estimates show that with high probability the minimum
codegree condition is preserved (replacing γ by γ/2, say). As
an aside, we note that since Linear Programming is in P, we
can construct a distribution (pe) on the safe edges such that∑

e:x∈e pe = k/n for every vertex x; using this distribution
instead of the oracle provides a randomised algorithm for
finding a perfect matching.
Our actual algorithm is obtained by derandomising the

oracle algorithm. Instead of a minimum codegree condi-
tion, we bound the sum of squares of codegree ‘deficiencies’,
which is essentially the condition (2) considered above. We
also need to introduce the vertex degree condition (1), oth-
erwise we do not have an effective bound on the number of
partitions P in Lemma 2.2. Conditions (i) and (ii) in the
following lemma effectively serve as proxies for (2) and (1).

Lemma 2.3. Suppose that ε ≤ ε(k, γ) and n ≥ n1(k, γ).
Let V be a vertex set of size n and let H be a k-graph on V .
Set tA = max(0, (1/k + γ)n− d(A)) for each set A of k − 1
vertices of H. Suppose that

(i)
∑

A∈(V
k−1)

t2A < εγ2nk+1/4,

(ii) n
(
n−1
k−2

)
/3k−δ1(H)+

∑
A∈(V

k−1)
t2A/

√
εγ2n2 <

√
εnk−1,

(iii) H contains a perfect matching.

Then we can find, in time O(n2kk+3+k(k−1)), an edge e ∈ H
such that (i), (ii) and (iii) also hold for H \ e with n− k in
place of n.

The proof of Lemma 2.3 involves messy calculations, so we
just describe the idea. While δ1(H) > n

(
n−1
k−2

)
/3k we only

need to maintain condition (i); then an averaging argument
shows that the required edge exists. On the other hand, if
there is a vertex of small degree we can remove any edge
containing it: this so greatly decreases

∑
A∈(V

k−1)
t2A as to

compensate for any further decrease in δ1(H).

Proof of Theorem 1.1. We begin by running Proce-
dure DeterminePM to confirm that H contains a perfect
matching; if it does not, then we obtain a matching M in
H of size at most 2kk+2, a transferral-free lattice L and a
partition P of V (H) such that LP(H \ V (M)) ⊆ L, but
iP(V \ V (M ′)) /∈ L for any matching M ′ in H of size at
most k− 2, providing a certificate that no perfect matching
exists. If H does contain a perfect matching, then we pro-
ceed by using repeated applications of Lemma 2.3 to delete
edges of H (along with their vertices). Condition (iii) of
Lemma 2.3 is satisfied by assumption and conditions (i) and
(ii) follow easily from the codegree condition on H. Since
Lemma 2.3 ensures that its conditions are preserved after
an edge is deleted, we may repeat until n < n1(k, γ). At
this point we use the brute-force algorithm to find a perfect
matching in the remainder of H. Together with the deleted
edges this forms a perfect matching in H.

3. OUTLINES OF THE PROOFS
In this section we sketch the proof of Theorem 1.6, which

provides the theoretical basis for our algorithm.

3.1 Edge-detection lattices
We start by explaining and stating the theorem of Keevash

and Mycroft on approximate divisibility barriers. Given a
k-graph H and a partition P of V (H), the lattice LP(H) can
be seen as ‘detecting’ where edges of H lie with respect to
P. However, the information conveyed by LP(H) is by itself
insufficient, as shown by the k-graph formed in Construc-
tion 1.5. Indeed, in that instance LP(H) was complete, but
some index vectors did not represent enough edges: specif-
ically, H did not contain two disjoint edges with different
numbers of vertices in A and B modulo 3.

Thus in the proof of Theorem 1.6 we will frequently want
to know which index vectors are represented by many edges.
This leads to two important definitions analogous to those
of IP(H) and LP(H): we define IµP(H) to be the set of index

vectors i for which at least µnk edges e ∈ H have iP(e) = i,
and then we define Lµ

P(H) to be the lattice in Zd generated
by this set (where d is the number of parts of P). So IµP(H)
and Lµ

P(H) reflect how the edges of H lie with respect to P
with ‘weaker detection of edges’. Note that for any µ < µ′

we have Lµ′

P (H) ⊆ Lµ
P(H) ⊆ LP(H).

We say that the lattice Lµ
P(H) for a k-graph H is complete

if it contains all vectors in Zd whose co-ordinates sum to k.
The point of this definition is that if Lµ

P(H) is complete then
we must have iP(V) ∈ Lµ

P(H) (recall that k | n), so to form

a divisibility barrier we would have to delete at least µnk

edges. The following theorem is a consequence of a more
general result of Keevash and Mycroft [8].

Theorem 3.1. (Keevash and Mycroft [8]) Suppose that
1/n ≪ ε, µ ≪ γ, 1/k, and let H be a k-graph on a vertex set
V of size n which satisfies the degree conditions (1) and (2).
If Lµ

P(H) is complete for every partition P of V into parts
of size at least n/k then H contains a perfect matching.

3.2 Fullness
Next we explain our earlier definition of transferral-free

lattices and the associated concept of fullness. Let H be
a k-graph with a partition P of V (H) such that Lµ

P(H) is
incomplete. For any part X ∈ P, write uX for the index
vector with respect to P which is 1 on X and zero on every
other part of P. Suppose that Lµ

P(H) contains uX − uY ,
for some X ̸= Y ∈ P, and let P ′ be the partition formed
from P by merging the parts X and Y . Then it is not hard
to see that L2µ

P′(H) is also incomplete. To say that Lµ
P(H)

is transferral-free is then to say that no such merging is
possible; that is, uX − uY /∈ Lµ

P(H) for any parts X ̸=
Y of P. So we can view a partition which gives rise to
a transferral-free lattice as the simplest version of a given
approximate divisibility barrier.

We say that an edge-lattice L with respect to P is full if
it is transferral-free and for each index vector i of a (k− 1)-
set, there is a (unique) part X such that i + uX ∈ L. It
is not hard to show that if H satisfies (1) and (2) and
Lµ

P(H) is transferral-free, then Lµ
P(H) is also full. The fol-

lowing lemma expresses an important property of full lat-
tices, namely that they are subgroups of finite index in the
maximal lattice Lmax

P of vectors in ZP with co-ordinate sum
divisible by k.

Lemma 3.2. Let k ≥ 3 and suppose L is a full edge-lattice
with respect to a partition P of a set V . Then

(i) For any i ∈ Lmax
P and X ∈ P there is X ′ ∈ P such

that i− uX + uX′ ∈ L,

(ii) |Lmax
P /L| ≤ |P|.

Proof. We first show that:
(+) for any X1, X

′
1, X2 ∈ P, there exists X ′

2 ∈ P such
that uX1 + uX2 − uX′

1
− uX′

2
∈ L.

To see this, fix any index vector i′ of a (k − 3)-set in V .
Since L is full, we can find Y ∈ P such that i′ + uX1 +
uX2 + uY ∈ L. Similarly, we can find X ′

2 ∈ P such that
i′ + uX′

1
+ uY + uX′

2
∈ L. Then uX1 + uX2 − uX′

1
− uX′

2
is

the difference of these two index vectors and hence lies in L.
To prove (i), consider i′ ∈ L with

∑
Z∈P i′Z =

∑
Z∈P iZ

that minimises
∑

Z∈P |i′Z − iZ | subject to this condition.
Note that

∑
Z∈P |i′Z − iZ | ≤ 2. For suppose otherwise, and

choose X1, X
′
1, X2 such that iX1 − i′X1

> 0, iX2 − i′X2
> 0

and iX′
1
− i′X′

1
< 0 (or iX1 − i′X1

> 1 and iX′
1
− i′X′

1
< 0

if X1 = X2). Using (+), let X ′
2 ∈ P be such that i∗ =

uX1 + uX2 − uX′
1
− uX′

2
∈ L. Then i′ + i∗ contradicts our

choice of i′. It follows that i′ = i − uY + u′
Y for some

Y, Y ′ ∈ P. Using (+) again, we can choose X ′ such that
i∗∗ = uX +uY −uX′ −uY ′ ∈ L. Therefore i+uX −uX′ =
i′ + i∗∗ ∈ L, as claimed.
To prove (ii), fix any index vector i′ of a (k− 1)-set in V .

We claim that every coset L + v of L in Lmax
P contains an

index vector i′ + uX′ for some X ′ ∈ P; this clearly suffices
to prove the lemma. To see this, note that since I is full
there exists X ∈ P such that i′ + uX ∈ L. By the previous
claim, we obtain X ′ ∈ P such that −v−uX +uX′ ∈ L. But
now i′ + uX′ = (i′ + uX) + (−v − uX + uX′) + v ∈ L+ v,
as required.

3.3 The key lemma and robust maximality
A key part of the proof of Theorem 1.6 is Lemma 3.4,

which we shall state after some motivation and definitions.
This lemma generalises Theorem 3.1 in two ways. First, in-
stead of the condition of Theorem 3.1 that Lµ

P(H) must be
complete, we now only require that iP(V) ∈ Lµ

P(H) (as dis-
cussed earlier, this must be true if Lµ

P(H) is complete). Fur-
thermore, whereas the condition of Theorem 3.1 must hold
for any partition P of V (H) into sufficiently large parts, we
now only require that iP(V) ∈ Lµ

P(H) for a single partition
P which meets two additional requirements.
The first requirement is that every vertex v ∈ V must lie

in many edges e ∈ H with iP(e) ∈ Lµ
P(H). This condition

can be seen as ensuring that each vertex of H lies in the
‘correct part’ of P. For example, if we fix µ > 0 and take
the k-graph from Construction 1.2 and move a single vertex
from part A to part B (but do not change the edge set of
H), then the only edges whose index changes are the fewer
than nk−1 edges which contain v. So Lµ

P(H) is unchanged,
and H doesn’t have a perfect matching (since H itself is
unchanged), but we now have iP(V) ∈ Lµ

P(H), due to v
being in the ‘wrong part’ of P.
Secondly, we must assume that Lµ

P(H) is transferral-free.
However this requirement, while necessary, is not sufficient,
as the following example will show. Fix k ≥ 5 and suppose
that P divides V into two parts, W1 and W2. Further, let
Q be a refinement of P which divides W1 into V11 and V12

and W2 into V21 and V22. Suppose further that |W1| is even,

but that |V11 ∪ V21| is odd. Now let H be the k-graph on V
whose edges are precisely the k-subsets of V which contain
an even number of vertices in W1 and an even number of
vertices in V11 ∪ V21. It is easy to see that Lµ

P(H) is full,
that δk−1(H) ≥ (1/k + γ)n and that iP(V) ∈ Lµ

P(H). In
this case, the conditions relating to P do not preclude the
existence of a perfect matching, but the conditions relating
to Q do. Indeed, H cannot contain a perfect matching since
it is a subgraph of the k-graph described in Construction 1.2,
where A = V11 ∪ V21 and B = V12 ∪ V22.

To avoid this kind of situation, we insist that there is
no strict refinement of P into not-too-small parts such that
Lµ

P(H) is transferral-free. Note that the trivial partition
into a single part satisfies this requirement if and only if H
is not close to a divisibility barrier. However, being maxi-
mal transferral-free is a rather fragile property, that can be
destroyed by even a small change in µ or alteration to H. In
the course of our proof we will need to remove small match-
ings from H in order to cover vertices which are exceptional
in various ways. We also need a property which is preserved
(with high probability) when H is replaced by an induced
subgraph on a randomly chosen set of vertices. Thus we
require a stronger property, namely that for some µ′ ≫ µ
(i.e. even at a much weaker ‘detection threshold’) the lattice

Lµ′

Q (H) is not transferral-free for any strict refinement Q of
P into not-too-small parts. Together these considerations
lead to the following key definition of robust maximality.

Definition 3.3. Let H be a k-graph on a vertex set V of
size n. We say that a partition P of V is (c, µ, µ′)-robustly
maximal with respect to H if

(i) Lµ
P(H) is transferral-free, and

(ii) for any partition P+ of V which strictly refines P into

parts of size at least cn, the lattice Lµ′

P+(H) is not
transferral-free.

We can now state the key lemma. We discuss its proof
later, but first we will analyse the property of robust maxi-
mality in more detail, and describe how Theorem 1.6 follows
from Lemma 3.4.

Lemma 3.4. Suppose that 1/n ≪ ε ≪ µ ≪ µ′ ≪ c, d, γ ≪
1/k, and let H be a k-graph whose vertex set V has size n
and which satisfies the degree condition (2). Also let P be a
partition of V with parts of size at least (1/k+ γ)n which is
(c, µ, µ′)-robustly maximal with respect to H. Suppose that

(i) for any vertex x ∈ V there are at least dnk−1 edges
e ∈ H with x ∈ e and iP(e) ∈ Lµ

P(H), and

(ii) iP(V) ∈ Lµ
P(H).

Then H contains a perfect matching.

3.4 Properties of robust maximality
Lemma 3.4 will only be useful if we can actually find a

(c, µ, µ′)-robustly maximal partition of the vertex set of a
k-graph H for some small constants µ, µ′ and c with µ ≪
µ′ ≪ c. This is achieved by the following proposition, which
even allows us to refine any given partition P to a robustly
maximal partition. The proof is straightforward; we repeat-
edly refine P into partitions with parts of size at least cn
which give rise to transferral-free lattices. When this is no
longer possible, the final refinement we obtain will be ro-
bustly maximal by definition.

Proposition 3.5. Let k ≥ 2 be an integer and c > 0 be
a constant. Let s = ⌊1/c⌋ and fix constants 0 < µ1 < · · · <
µs+1. Suppose that H is a k-graph on a vertex set V of
size n, and P is a partition of V with parts of size at least
cn such that Lµ1

P (H) is transferral-free. Then there exists
t ∈ [s] and a partition P ′ of V with parts of size at least cn
which refines P and is (c, µt, µt+1)-robustly maximal with
respect to H.

The next proposition demonstrates two important ‘inher-
itance’ properties of robust maximality. Namely, if P is a
robustly maximal partition of the vertex set V of a k-graph
H, and we form a subgraph H ′ ⊆ H either by deleting only
a small number of vertices and edges from H, or by restrict-
ing H to a random subset of V , then (the restriction of) P
will be robustly maximal with respect to H ′. Actually, we
prove a significantly stronger version of (ii), allowing us to
specify how many vertices of S should be taken from each
part of a partition Q of V .

Proposition 3.6. Suppose that 1/n ≪ 1/n′ ≪ µ ≪
µ′, α ≪ c, 1/k. Let H be a k-graph on n vertices with m
edges, and P be a (c, µ, µ′)-robustly maximal partition of
V (H) with respect to H, with parts of size at least cn. Then:

(i) If H ′ is a subgraph of H with at least (1−α)n vertices
and at least m − αnk edges, then the restriction of P
to V (H ′) is a (c+2α, µ+2α, µ′−α)-robustly maximal
partition with respect to H ′.

(ii) Suppose that a set S ⊆ V (H) of size n′ is chosen uni-
formly at random. Then with probability 1 − o(1) the
restriction of P to S is a (2c, µ/c, (µ′)3)-robustly max-
imal partition with respect to H[S].

Proof sketch. For (i) we simply count how many edges
of any given index can be removed in forming H ′, and the
result follows. The first part of (ii) is also straightforward:
a standard Chernoff bound shows that condition (i) of Def-
inition 3.3 holds for the restriction of P with high probabil-
ity. A similar argument shows that condition (ii) of Defini-
tion 3.3 holds for any specific partition P+ which refine this
partition, but unfortunately there are too many possibilities
for P+ to apply a union bound. Instead we proceed by a
technical argument using weak hypergraph regularity.

3.5 The proof of Theorem 1.6
Between Lemma 3.4 and Prop 1.3 we are moving towards

a characterisation of k-graphs H which satisfy the degree
conditions (1) and (2). Indeed, fix such an H and suppose
that P is a (c, µ, µ′)-robustly maximal partition of V :=
V (H) with parts of size at least cn such that every vertex lies
in many edges with iP(e) ∈ Lµ

P(H). Then by Proposition 1.5
H cannot contain a perfect matching if iP(e) /∈ LP(H). On
the other hand, if iP(e) ∈ Lµ

P(H) then H contains a perfect
matching by Lemma 3.4.
The idea of the proof of Theorem 1.6 is that we now ask

whether it is possible to delete a matching M of size at
most k−2 from H so that iP(V \V (M)) ∈ Lµ

P(H). If so, we
may delete the vertices covered by M from H to form a k-
graph H ′, and the restriction of P to V (H ′) is (2c, 2µ, µ′/2)-
robustly maximal with respect to H ′ by Proposition 3.6. So
Lemma 3.4 implies that H ′ contains a perfect matching, and
together with M this gives a perfect matching in H. On
the other hand, if H contains a perfect matching M∗ then

iP(V \ V (M∗)) = 0, so certainly iP(V \ V (M∗)) ∈ Lµ
P(H);

we will see that there is a submatching M ⊆ M∗ of size at
most k − 2 such that iP(V \ V (M)) ∈ Lµ

P(H). Putting the
two together gives the desired characterisation of whether a
k-graph H which satisfies the degree conditions contains a
perfect matching.

More precisely, let H be a k-graph whose vertex set V has
size n, and which satisfies the degree conditions (1) and (2).
Suppose first that H contains a perfect matching M∗. Let
P be a partition of V into 1 ≤ d < k parts, and L ⊆ Zd be
a transferral-free edge-lattice such that any matching M in
H formed of edges e ∈ H with iP(e) /∈ L has size less than
C. Certainly we must then have Lµ

P(H) ⊆ L, from which we
deduce that L is full, and so has index at most k−1 in Lmax

P
by Lemma 3.2(ii). Next we require the following lemma,
which is a simple application of the pigeonhole principle.

Lemma 3.7. Let G = (X,+) be an abelian group of order
m, and suppose that elements xi ∈ X for i ∈ [r] are such
that

∑
i∈[r] xi = x′. Then

∑
i∈I xi = x′ for some I ⊆ [r]

with |I| ≤ m− 1.

This implies that we can find a matching M ′ in H of size
at most k−2 for which iP(M

′) lies in the same coset of L (in
Lmax

P) as iP(M
∗); since iP(V \ V (M∗)) = 0 ∈ L we deduce

that iP(V \ V (M ′)) ∈ L, so M ′ satisfies the requirement of
condition (*) of Theorem 1.6. This completes the proof of
the simpler direction of Theorem 1.6.

To prove the other direction of Theorem 1.6, namely that
condition (*) implies that H contains a perfect matching, we
begin by applying Proposition 3.5 to obtain a partition P
of V which is (c, µ, µ′)-robustly maximal with respect to H.
Since H has high vertex degree, all but a small number of
vertices v ∈ V lie in many edges e ∈ H with iP(e) ∈ Lµ

P(H);
we can ensure that this condition holds for all vertices v ∈ V
by moving these ‘bad’ vertices to a different part of P.
We continue writing P for the altered partition; Proposi-
tion 3.6 implies that P is still (c, µ, µ′)-robustly universal
for a slightly larger c and µ and a slightly smaller µ′.

Now let I = IµP(H) and L = Lµ
P(H), form I ′ by adding to

I any index vector i with respect to P for which H contains
at least 2k2 disjoint edges e ∈ H with iP(e) = i, and let L′

be the lattice generated by I ′ (so L ⊆ L′). It may well be the
case that L′ is not transferral-free; but by merging any parts
X,Y of P for which L′ contains the vector uX−uY we obtain
a new partition P∗ of V into fewer than k parts and a new
lattice L∗ which is transferral-free. Now, since there are at
most kk possible values of iP(e) for an edge e ∈ H, it follows
from our choice of I ′ that any matching of edges e ∈ H such
that iP∗(e) /∈ L∗ has size less than 2kk+2 ≤ C. So L∗ and
P∗ satisfy the requirements of condition (*) of Theorem 1.6,
from which we deduce that H contains a matching M ′ of
size at most k − 2 such that iP∗(V \ V (M ′)) ∈ L∗. From
this it follows that iP(V \V (M ′)) ∈ L′. By the definition of
I ′, when a set of fewer than 2k2 vertices is deleted from H
there will remain, for every i added to I to form I ′, an edge
e such that iP(e) = i. Using this fact along with Lemma 3.7,
we may greedily choose a small matching M ′′ in H \ V (M ′)
such that iP(V \ V (M ′ ∪M ′′)) ∈ L = Lµ

P(H).
Form H ′′ by deleting vertices covered by M or M ′ from

H; then by Proposition 3.6 the restriction of P to V (H ′′)
is (2c, µ/c, (µ′)3)-robustly maximal with respect to H ′′. So
H ′′ satisfies the conditions of Lemma 3.4 and so contains

a perfect matching; together with M and M ′′ this gives a
perfect matching in H.

3.6 Proof of the key lemma
Rather than prove Lemma 3.4 directly, we first prove the

following version of Lemma 3.4 for k-partite k-graphs H.
We say that a k-graph is k-partite if there is a partition of
its vertex set into vertex classes V1, . . . , Vk such that every
edge of H intersects each vertex class in a single vertex.
Similarly, we say that a set S of k − 1 vertices from such a
graph is k-partite if it intersects each vertex class in at most
one vertex.

Lemma 3.8. Suppose that 1/n ≪ ε, µ ≪ µ′ ≪ c, d ≪
γ, 1/k and ℓ ≤ k, and let H be a k-partite k-graph each of
whose k vertex classes has size n such that at most εnk−1

k-partite sets A of k − 1 vertices have d(A) < n/ℓ + γn.
Also let P be a partition of V (H) which refines the partition
into vertex classes into parts of size at least cn and which is
(c, µ, µ′)-robustly maximal with respect to H. Suppose that

(i) for any vertex x ∈ V there are at least dnk−1 edges
e ∈ H with x ∈ e and iP(e) ∈ Lµ

P(H), and

(ii) iP(V) ∈ Lµ
P(H).

Then H contains a perfect matching.

To deduce Lemma 3.4 for a (non-partite) k-graph H, we
take a random k-partition of V (H) into vertex classes of
size n/k. A technical argument using weak hypergraph reg-
ularity then shows that the conditions of Lemma 3.8 (with
ℓ = k) are satisfied with positive probability, and we apply
Lemma 3.8 to deduce that H contains a perfect matching.
It remains to prove the k-partite form, Lemma 3.8. One

key idea for this proof is the next proposition. For any k-
graph H on n vertices, any partition P of V (H) and any
index vector i ∈ IµP(H), there are at least µnk edges e ∈ H
with iP(e) = i. However, for the k-graphs H and partitions
P which we consider we can say much more. For each i ∈
IµP(H), we let Hi be the k-partite subgraph of H on the
vertex set

∪
W∈P,iW=1 W , whose edges are the edges in H

of index i.

Proposition 3.9. Suppose that 1/n ≪ µ, ε ≪ ε′ ≪ δ, c, 1/k.
Let H be a k-partite k-graph whose vertex classes V1, . . . , Vk

each have size cn ≤ |Vi| ≤ n, and in which at most εnk−1

k-partite sets S of k − 1 vertices have d(S) < δn. Also let
P be a partition of V (H) into parts of size at least cn which
refines the partition into vertex classes and has the property
that Lµ

P(H) is transferral-free.

(i) For any i ∈ IµP(H) there are at least δck−1nk/2 edges
e ∈ H with index iP(e) = i.

(ii) For any i ∈ IµP(H), at most ε′nk−1 k-partite sets S of
k − 1 vertices of Hi have dHi(S) < (δ − ε′)n.

(iii) Each part of P has size at least (δ − ε′)n.

Proof. For (ii), let W1 ⊆ V1, . . . ,Wk ⊆ Vk be the parts
of P such that iW = 1 (so V (Hi) =

∪
j∈[k] Wj). Consider

the k-partite sets S = {x1, . . . , xk−1} with xj ∈ Wj for
each j. By assumption, at most εnk−1 such sets S have
dH(S) < δn. Furthermore, if S satisfies dH(S) ≥ δn but
dHi(S) < (δ− ε′)n, then S is contained in at least ε′n edges

e ∈ H with iP(e) /∈ IµP(H) (since Lµ
P(H) is transferral-free).

Since there are at most 1/ck possible index vectors iP(e)
for an edge e ∈ H, there are at most µ(kn)k/ck such edges
of H. We therefore conclude that at most µ(kn)k/ckε′n ≤
ε′nk−1 sets S have this form, completing the proof of (ii).
We immediately deduce (iii). Since there are at least (cn)k−1

choices for S, (iii) implies in particular that Hi contains at
least ((cn)k−1 − ε′nk−1)(δ− ε′)n ≥ ck−1δnk/2 edges, and so
we also have (i).

What this proposition tells us is that if H and P satisfy
the conditions of Lemma 3.8, then for any i ∈ IµP(H) the
subgraph Hi satisfies a similar degree condition to H. In
fact, if P is non-trivial then the degree condition on Hi is in
a sense stronger than that on H. Indeed, in this case Propo-
sition 3.9(iii) applied with δ = 1/ℓ + γ implies that each
part of V (Hi) has size at most (1−1/ℓ)n. So when Proposi-
tion 3.9(ii) states that all but at most ε′nk−1 k-partite sets
S of k− 1 vertices have d(S) ≥ (1/ℓ+γ− ε′)n, this is out of
a maximum of (1− 1/ℓ)n vertices. Hence the proportion of
possible neighbours of S which are in fact neighbours of S

is at least 1/ℓ+γ/2
1−1/ℓ

≥ 1
ℓ−1

+ γ
2
. So expressed as a proportion,

the degree of most sets of k−1 vertices in Hi is significantly
greater than in H.

This suggests the method of proof of Lemma 3.8: we pro-
ceed by induction on ℓ. For the base case ℓ = 2 Proposi-
tion 3.9(iii) implies that the partition P is simply the trivial
partition of V (H) into its vertex classes, whereupon (a k-
partite version of) Theorem 3.1 implies that H contains a
perfect matching. The main part of the proof is therefore
the inductive step, for which we may assume that P is non-
trivial by the same argument. Suppose then that H and P
are as in Lemma 3.8 for some value of ℓ, and consider the
subgraphs Hi for i ∈ I := IµP(H). For each i ∈ I apply
Proposition 3.5 to choose a partition Qi of the vertex set
V (Hi) of Hi which is (c, µ1, µ2)-robustly maximal with re-
spect to Hi, for some small µ1 ≪ µ2. Our strategy is to
randomly choose a subset Ti of V (Hi) for each i ∈ I, and
then to use the inductive hypothesis to find perfect match-
ings in each of the induced k-graphs H ′

i := Hi[Ti]. To do
this we stipulate that the sets Ti must partition V and that
when each Ti is partitioned according to the k-partition of
V , the parts of Ti have equal size ti ≥ εn. In addition, we
need to show that for each i ∈ I:

(i) At most ε′nk−1 k-partite sets A of k − 1 vertices of
Ti have dH′

i
(A) < (1/(ℓ − 1) + γ/3)ti (for a constant

ε′ ≫ ε).

(ii) The restriction of Qi to Ti is (2c, µ1/c, µ
3
2)-robustly

maximal.

(iii) For any vertex x ∈ Ti there are at least dtk−1
i edges

e ∈ H ′
i with x ∈ e and iQi(e) ∈ L

µ1/c
Qi

(H ′
i).

(iv) iQi(Ti) ∈ L
µ1/c
Qi

(H ′
i).

Condition (i) is a consequence of our observation above
that for most k-partite sets of k − 1 vertices of Hi, the pro-
portion of possible neighbours which are actually neighbours
is at least 1/(ℓ− 1) + γ/2. With high probability this prop-
erty is inherited by H ′

i , so we obtain (i). Also, since Qi

was chosen to be (c, µ1, µ2)-robustly maximal with respect
to Hi, (ii) holds with high probability by Proposition 3.6(ii).

For (iii) we notice that there may actually be a number of
vertices of Hi which lie in fewer than dnk−1 edges e ∈ Hi

with iQi(e) ∈ Lµ1
Qi

(Hi). However, a short deduction from

Proposition 3.9(ii) shows that the number of such ‘bad’ ver-
tices is small. Since our assumption on H was that every
vertex v ∈ V lies in many edges e ∈ H with iP(e) ∈ I we
may delete (before choosing the sets Ti) a small matching
to remove all of the ‘bad’ vertices (however, for simplicity
we continue to write V for the new vertex set). We may
then assume that every vertex of Hi lies in at least dnk−1

edges e ∈ Hi with iQi(e) ∈ Lµ1
Qi

(Hi). With high probability

the random selection will ensure that Lµ1
Qi

(Hi) ⊆ L
µ1/c
Qi

(H ′
i),

and so (iii) also holds with high probability.
Ensuring that (iv) is satisfied is therefore the principal

difficulty in the proof of Lemma 3.8. As noted above we will

have Lµ1
Qi

(Hi) ⊆ L
µ1/c
Qi

(H ′
i), so it is enough to ensure that

iQi(Ti) ∈ Lµ1
Qi

(Hi). However, we must use other arguments

to control iQi(Ti); in the remainder of the section we give
a sketch of these arguments. We begin by observing that
(iv) depends only on the values of |Ti ∩Y | for parts Y ∈ Qi.
Hence if two vertices x and y are contained in the same part
of Qi for every Qi such that x, y ∈ V (Hi), then they are
effectively interchangeable for our purposes. With this in
mind, we define a partition Q∩ of V where vertices x, y ∈ V
lie in the same part of Q∩ if and only if they lie in the
same part of every partition Qi, i.e., Q∩ is the ‘meet’ of
the partitions Qi. Our strategy will be to fix the number of
vertices n(i, Z) which the set Ti will take from each part Z
of Q∩ so that (iv) is satisfied, and then choose the sets Ti

uniformly at random to satisfy these constraints.
Recall that in our example in Section 3.3, problems arose

in relation to a divisibility barrier partition Q which was
‘hidden’ inside P. In order to discover and deal with any
such partitions, we will need to consider the ‘join’ Q∪ of
the partitions Qi. We define an auxiliary graph G whose
vertices are the parts of Q∩, where Z,Z′ ∈ Q∩ are adjacent
in G if they are contained in the same part of some Qi. The
parts of Q∪ are then formed by taking the union of the parts
of Q∩ in each component of G.
Choosing the numbers n(i, Z) so that (iv) is satisfied pro-

gresses through three stages: we first choose rough targets
for the number of vertices to be contained in each Ti; then we
choose how many vertices each Ti will take from each part of
Q∪, before finally refining this choice to obtain the numbers
n(i, Z) as required. A fractional perfect matching in a k-
graph H is a weighting pe of its edges such that

∑
x∈e pe = 1

for each x ∈ V (H). The first stage relies on the following
theorem, which is proved similarly to [13, Corollary 3.1]:

Theorem 3.10. Let H be a k-partite k-graph with vertex
classes of size n such that every partite set of k − 1 vertices
has degree at least n/k. Then H contains a fractional perfect
matching.

To obtain our targets for the size of each Ti, we apply
Theorem 3.10 to find a fractional perfect matching pe in an
auxiliary k-graph on V whose edges are all k-tuples e with
iP(e) ∈ I. Now set λi =

∑
iP (e)=i pe for each i ∈ I; then∑

i∈I λii = iP(V) by the definition of pe. Next we adjust
the λi slightly to obtain integers ρi with

∑
i∈I ρii = iP(V).

So we will aim for each Ti to take approximately ρi vertices
from each part of V (of size n). Actually, by using the error

term in the degree condition of Lemma 3.8 we can ensure
further that ρi ≥ ε′n for each i ∈ I.

In the second stage we choose provisional values for the
quantities |Ti ∩X| for X ∈ Q∪ in proportion to the integers
ρi. So if X ⊆ W for some W ∈ P with iW = 1 then our
target for |Ti ∩ X| will be ρi|X|/|W | (and if X ⊆ W with
iW = 0 then our target will be 0). We then round these
values to nearby integers and derive provisional values for
iQ∪(Ti) from these integers in the natural way; that is, for
each X ∈ Q∪ our provisional vector will have our provisional
value for |Ti ∩ X| as its X-coordinate. For each i ∈ I we
further adjust the provisional value for iQ∪(Ti) so that it
lies in Lµ

Q∪(Hi). Now the provisional values will no longer

sum to iQ∪(V); instead they will sum to some i′ ∈ Lµ
Q∪(H).

Crucially, the robust maximality of P now implies that Q∪

is not transferral-free, and it is not hard to show that further
iQ∪(V) must lie in Lµ

Q∪(H). It follows that d = iQ∪(V)− i′

must also lie in Lµ
Q∪(H). Using this fact, we can write d =∑

i∈I di in such a way that di ∈ Lµ
Q∪(Hi) for each i ∈ I.

Further d is small (in absolute value), so we can ensure that
each di is small. Finally, we add to each provisional iQ∪(Ti)
the vector di and note that the property iQ∪(Ti) ∈ Lµ

Q∪(H)
is preserved. This yields our final values for iQ∪(Ti). Thus
we fix the quantity |Ti ∩X| for each X ∈ Q∪.

In the final stage we use Baranyai’s Matrix Rounding The-
orem, which is stated below.

Theorem 3.11. [19, Theorem 7.5] Let A be a real ma-
trix. Then there exists an integer matrix B whose entries,
row sums, column sums and the sum of all the entries are
the entries, row sums, column sums and the sum of all the
entries respectively of A, rounded either up or down to the
nearest integer.

For this last stage, we deal with each partX ofQ∪ in turn.
Similarly to the previous step, we take the real numbers
|Z||Ti ∩ X|/|X| as provisional values for |Ti ∩ Z| = n(i, Z)
for each part Z ∈ Q∩. Let A be the matrix indexed by
the parts Z ⊆ X of Q∩ whose entries are the provisional
values of n(i, Z). We apply Theorem 3.11 to A to obtain a
new matrix B and take new, integer provisional values from
B. The fact that these values remain feasible is implied by
Theorem 3.11, as the row and column sums of A are the
part sizes |Z| and the values |Ti∩X|; since these are already
integers, the row and column sums remain unchanged. From
these integers we can derive provisional values for iQi(Ti)
for each i similarly as before; our goal now is to adjust these
provisional values so that in addition (iv) holds.

Fix i1, i2 ∈ I, and suppose that Z and Z′ are parts of Q∩

which are subsets of distinct parts Y1 and Y ′
1 respectively

of Qi1 , but that Z and Z′ are subsets of the same part Y2

of Qi2 . Define an (i1, i2, Z, Z
′)-swap as the operation of in-

creasing the provisional values of n(i1, Z) and n(i2, Z
′) each

by one, and decreasing those for n(i2, Z) and n(i1, Z
′) by

one. An (i1, i2, Z, Z
′)-swap has no effect on the provisional

values of iQi2
(Ti2); however, it adds uY1 −uY ′

1
to the provi-

sional value of iQi1
(Ti1).

We now make use of the auxiliary graphG, which was used
to define Q∪. Apply (a k-partite version of) Lemma 3.2(i)
to iQi(Ti) to obtain parts Y and Y ′ of Qi such that iQi(Ti)+
uY − uY ′ ∈ Lµ

Qi
(Hi). Then Y and Y ′ are both subsets of

some part X ∈ Q∪. We will show that we may make a
sequence of modifications to our targets for n(i, Z) whose

effect is to add uY − uY ′ to iQi(Ti), while leaving iQi′ (Ti′)
unchanged for any other i′ ∈ I. Indeed, choose parts Z and
Z′ of Q∩ with Z ⊆ Y and Z′ ⊆ Y ′, and choose a path
Z = Z0, . . . , Zs = Z′ in G. We now perform a sequence of
(i, ij , Zj−1, Zj)-swaps, where each ij is chosen so that Zj−1

and Zj lie in the same part of Qij . The net effect of these
swaps is to add uY −uY ′ to the provisional value of iQi(Ti),
while leaving iQi′ (Ti′) unaltered for every other i′ ∈ I. Ap-
plying this process for each i ∈ I in turn, we obtain (iv).
Together, properties (i)-(iv) above show that each of the

k-graphs H ′
i satisfies the conditions of Lemma 3.8 with ti in

place of n and other weaker constants, but crucially with ℓ−1
in place of ℓ. So by our inductive hypothesis we deduce that
each H ′

i contains a perfect matching; since the vertex sets
Ti partition V we conclude that H itself contains a perfect
matching, completing the proof of Lemma 3.8.

4. CONCLUSIONS
Our main result shows that the decision problemPM(k, δ)

is in P for δ > 1/k. Moreover, our algorithm provides either
a perfect matching or a certificate that none exists. The
correctness of our algorithm relies on a theoretical result
of independent interest, giving a characterisation of perfect
matchings in terms of approximate divisibility barriers. In
the case k = 3 this characterisation takes a particularly nice
form, which may be viewed as a strong stability version of
a theorem of Rödl, Ruciński and Szemerédi [14].
The complexity status of PM(k, δ) when δ = 1/k remains

open, that is, deciding whether there is a perfect matching
in a k-graph H with δk−1(H) ≥ n/k. We expect this will
be difficult to resolve, as this is the minimum degree thresh-
old at which a perfect fractional matching is guaranteed, so
there is a clear behavioural change at this point.
Finally, by similar methods we were also able to prove sim-

ilar results pertaining to k-partite k-graphs. The differences
between the proofs of the standard and k-partite versions
of these theorems are minor, so we state these results here
without further comment.

Theorem 4.1. For any k, γ and C0, there exist n0 =
n0(k, γ, C0) and ε = ε(k, γ, C0) such that for any C with
2kk+2 ≤ C ≤ C0 we have the following characterisation. Let
H be a k-partite k-graph whose k vertex classes each have
size n ≥ n0, such that δ1(H) ≥ γnk−1 and at most εnk−1 k-
partite sets S of k−1 vertices of H have d(S) < (1/k+γ)n.
Then H has a perfect matching if and only if the following
condition holds:
If P is a partition of V (H) which refines the partition

into vertex classes and partitions each vertex class into d
parts, where 1 ≤ d < k, and L ⊆ Zkd is a transferral-
free edge-lattice such that any matching M in H formed of
edges e ∈ H with iP(e) /∈ L has size less than C, then there
exists a matching M ′ in H of size at most k − 2 such that
iP(V (H)\V (M ′)) ∈ L.

Theorem 4.2. Fix k ≥ 3 and γ > 0. Then there is
a polynomial-time algorithm, which given any k-partite k-
graph H whose k vertex classes each have size n and in which
every k-partite set S of k−1 vertices has d(S) ≥ (1/k+γ)n,
finds either a perfect matching in H or a certificate that no
perfect matching exists.

5. ACKNOWLEDGEMENTS
Research supported in part by ERC grant 239696 and

EPSRC grant EP/G056730/1.

6. REFERENCES
[1] R. Aharoni, A. Georgakopoulos and P. Sprüssel,

Perfect matchings in r-partite r-graphs, European
Journal of Combinatorics 30 (2009), 39–42.

[2] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński
and B. Sudakov, Large matchings in uniform
hypergraphs and the conjectures of Erdős and
Samuels, J. Combin. Theory A 119 (2012), 1200–1215.

[3] A. Asadpour, U. Feige and A. Saberi, Santa Claus
meets hypergraph matchings, Proc.
APPROX-RANDOM (2008), 10–20.

[4] G. A. Dirac, Some theorems on abstract graphs, Proc.
London Math. Soc. 2 (1952), 69–81.

[5] J. Edmonds, Paths, trees, and Flowers, Canad. J.
Math. 17 (1965), 449–467.

[6] R. M. Karp, Reducibility among combinatorial
problems, Complexity of Computer Computations
(1972), 85–103.

[7] M. Karpiński, A. Ruciński and E. Szymańska, The
complexity of perfect matching problems on dense
hypergraphs, Proc. ISAAC ’09 (2009), 626–636.

[8] P. Keevash and R. Mycroft, A geometric theory for
hypergraph matchings, arXiv:1108.1757.

[9] I. Khan, Perfect matching in 3-uniform hypergraphs
with large vertex degree, arXiv:1101.5830.

[10] I. Khan, Perfect Matchings in 4-uniform hypergraphs,
arXiv:1101.5675.

[11] A. Lo and K. Markström, Perfect matchings in
3-partite 3-uniform hypergraphs, arXiv:1103.5654.

[12] V. Rödl and A. Ruciński, Dirac-type questions for
hypergraphs — a survey (or more problems for Endre
to solve), An Irregular Mind (Szemerédi is 70) 21
(2010), 1–30.

[13] V. Rödl, A. Ruciński and E. Szemerédi, Perfect
matchings in large uniform hypergraphs with large
minimum degree, Europ. J. Combin. 27 (2006)
1333–1349.

[14] V. Rödl, A. Ruciński and E. Szemerédi, Perfect
matchings in large uniform hypergraphs with large
minimum collective degree, J. Combin. Theory Ser.
A 113 (2009), 613–636.

[15] E. Szemerédi, Regular partitions of graphs, Problèmes
combinatoires et théorie des graphes (1978), 399–401.

[16] E. Szymańska, The complexity of almost perfect
matchings in uniform hypergraphs with high codegree,
Lecture Notes in Computer Science 5874 (2009),
438–449.

[17] A. Treglown and Y. Zhao, Exact minimum degree
thresholds for perfect matchings in uniform
hypergraphs, J. Combin. Theory A 119 (2012),
1500–1522.

[18] W. T. Tutte, The factorisation of linear graphs,
J. London Math. Soc. 22 (1947), 107–111.

[19] J.H. van Lint and R.M. Wilson, A course in
combinatorics, Cambridge University Press, 2001.

